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A B S T R A C T   

Vegetation High Impedance Fault (VeHIF) events pose severe risks to public safety, wildlife, and forests. Over
current protection schemes generally cannot clear VeHIF events, which have previously resulted in bushfires. 
This research presents a VeHIF classification method based on the statistical variance analysis of volatility in the 
empirical mode decomposed feeder current. The author applied the proposed scheme to a dataset of 130 earth- 
faults with 100 % success rate and a mean classification time of 10 s (standard deviation of 14.32 s). While faster 
VeHIF fault classification should ideally be achieved, research findings show that faster classification speeds may 
not always be feasible or necessary. This finding relates to the fact that bushfire risk increases, when charring 
starts to spread over a branch with a breakout of flames. The present work further validates a positive pairwise 
correlation between a fault current’s volatility and arcing, demonstrating the efficacy of High Frequency (HF) 
signals as reliable VeHIF volatility signatures.   

1. Introduction 

VeHIFs often result in low fault currents. Traditional overcurrent 
protection devices generally cannot clear these small fault-current 
events. If left undetected, VeHIFs pose severe risks to public safety 
and can ignite fires. The detection of earth faults must ideally occur fast 
to minimize the bushfire risk. This need, for such a fast response to 
faults, presents another challenge in ensuring high security to minimize 
false positives. There is always the need to balance security and speed of 
a scheme. The HIF current has low magnitude and is volatile with high 
asymmetry. Generally, electric arcs escort VeHIFs, and HF signatures are 
released during this process. Literature poorly covers HF signatures, 
possibly due to the computational burden and the cost of sampling at 
higher rates. In [1], authors demonstrated that the zero-crossing arcs 
have varying widths, causing various different levels of HF noise bursts. 
The study observed HF transients of higher amplitude as the fault cur
rent (If) becomes more aggressively distorted at zero crossings. HIF 
models are widely used in the literature to apply different techniques 
(including wavelets, multiresolution, or statistical methods) for detect
ing HIF events. One concern with existing HIF electrical models is the 
stationary and steady arcing that such electrical HIF models produce 
with the same pattern, width, or level from fault inception to end. 

This paper contributes to the body of knowledge on the HIF phe
nomena. Key focus is on the temporal variation and growth of arcing and 

volatility during HIFs. This work articulately presents an experimental 
big-data analysis to address one key weakness of HIF models in repre
senting HIF arcing and volatility. It highlights the various stages of 
vegetation ignition development, connecting the growth of arcing and 
volatility (in If) to the physical process of charring that the vegetation 
experiences during a VeHIF. This work presents a new method for VeHIF 
classification based on the Empirical Mode Decomposition (EMD) of the 
feeder current. Variance analysis of the rate of change in the IMF1 sub- 
band is at the core of the proposed method. This variance analysis of the 
IMF1 sub-band’s volatility will be referred to as the ‘volatility-variance’ 
from here onwards. Key contributions to novel knowledge herein (on the 
HIF phenomena) can be summarized as follows:  

• Arcing is intermittent with fluctuating levels due to conduction 
through a non-linear impedance. The work identified that fault 
current arcing grows larger as fault progresses. There is a positive 
pairwise correlation between the fault current’s volatility and arcing. 
Both volatility and arcing often reach their maximums after 
carbonization (charring) begins to spread on the surface of the 
vegetation branch.  

• The author studied a few Intrinsic Mode Function (IMF) sub-bands 
for their volatility-variance correlation with the fault current (If). 
IMF1, covering the 1.41 kHz to 44.8 kHz frequency range, had a 
mean Pairwise Correlation Coefficient (PCC) of 0.99 with a Standard 
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Deviation (STD) of 0.016 (±1.61 %). This high correlation implies 
that volatility patterns (during VeHIFs) cannot reliably be detected 
with sampling rates less than 100 kSa/s.  

• The IMF1 ‘volatility-variance’ based analysis was applied to a dataset 
of 130 earth-faults with 100 % success and a mean classification time 
of 10 s (standard deviation of 14.32 s). The method classified 23 % of 
the tests in under 2 s and 1.5 % in over 70 s. Network disturbances (e. 
g. capacitor switching) can also produce volatility, but this volatility 
is short-lived and quickly dissipates. Conversely, VeHIF volatility 
signatures are long lasting, unstable, and random. The proposed 
method was resilience-tested using a VSD-controlled motor switch
ing disturbance. This verification did not produce a false positive, as 
the set volatility-variance threshold was not violated. 

2. Literature review 

HIF currents are often accompanied by electric arcs for which 
mathematical models exist [2]. These models have evolved since Cassie 
[3] and Mayr [4] first described arc conductivity using first-order dif
ferential equations. Fig. 1 shows a popular HIF electrical model [2,3] 
based on two anti-parallel DC sources and diodes. Modifications to this 
base model exist with variable resistors and inductors added to each arm 
of the anti-parallel section. Fig. 1 also shows the If generated, using this 
model, in Simulink. A key concern is that arcing (as modeled by elec
trical HIF models) is fixed with the same pattern, width, or level from 
fault inception to end. This paper will demonstrate that HIF arcs grow 
larger (often there are no arcs for many seconds post fault inception) as 
fault progresses. A second highlight herein will be validation of the 
positive correlation between arcing and If volatility. 

Asymmetry, non-linearity, intermittency, and randomness are 
typical HIF features, as reported in [5]. Kavaskar and Mohanty have 
characterized the HIF current as a low-magnitude, unstable, and fluc
tuating current [6]. In [7], Ozansoy and Gomes linked fault current 
volatility to the fire-initiation potential of HIF currents. Authors verified 
that the increase in current volatility (during a VeHIF) corresponds to 
when the flame (on the contact vegetation sample) extends along the 
branch, resulting in widespread charring. One conclusion by Marxsen 
[8] was that when a species undergoes higher degree of charring, the 
ignition at height is more likely to result in embers with the size/tem
perature conditions for fire ignition at ground level. In [9], Ozansoy and 
Gomes presented insights on the HIF current volatility and its implica
tion on fault detection. The diagnosis of relative volatility was applied to 
detect HIF signatures and branch charring in the RMS current data 
stream with respect to the stream itself. This contribution differs from 
[9] in that it demonstrates effectiveness of using the IMF1 sub-band of If, 
rather than If-rms. Furthermore, it presents a detailed application of the 

concept to a large dataset of 130 phase-to-earth (ph-to-e) faults, 
emphasising attainable response times. 

The use of EMD in the power system domain has been well- 
documented [10–15]. In [16], Biswal et al. used Ensemble EMD in 
conjunction with Hilbert Huang Transform (HHT) to design a differen
tial protection scheme for a shunt-compensated network. The authors 
estimated the Discrete Teager Energy (DTE) through HHT of the IMF and 
used the differential DTE from both ends as detectors. Lala and Kar
makar utilised an EMD-based approach (with Artificial Neural Network 
supervised learning) for classifying high impedance arc faults in [17]. 
Authors presented inclusive results for a detailed analysis of the arcing 
phenomena. The detailed discussion on application of EMD to the 
voltage signal is noteworthy, and analysis of IMFs and their respective 
PSD plots is informative. In [18], Mishra and Rout applied EMD and 
Hilbert Transform (HT) for feature extraction of a differential energy 
based input vector and used it for training a machine-learning fault 
classifier. Bin and Hongchun [19] employed a similar EMD and HT 
approach (in a resonant grounded network) and applied it to the zero- 
sequence current for fault localisation. Wang et al. used the IMF en
ergy moment to extract the failure features of a track circuit [20]. None 
of these prior works analysed a fault current volatility based scheme, 
and all reported an analysis based on synthetic simulation-based data 
except for [17]. 

3. Research aims and methodology 

This work presents the electrical and physical characterization of ph- 
to-e vegetation faults, linking If arcing and volatility to various ignition 
development stages. The study in [21] is one example of pure research 
on the physical and electrical phenomena of vegetation contacts with 
distribution conductors. A key objective herein is to demonstrate how If 
volatility and arcing are linked to various stages of ignition develop
ment. This research also highlights the gradual increase in volatility and 
arcing as carbonization (charring of the branch) spreads over the 
branch. The author demonstrates this by analysing If progression in 
exemplar fault current recordings. This makes it possible to link If pro
gression to various physical ignition stages. These ignition stages include 
contact development, moisture expulsion and progressive charring that 
a branch experiences when subject to electrical currents. A computa
tional method for identifying the arcing level in If will then be presented. 
This computational method relies on estimating the number of samples 
in each 20 ms window recording where If will be in its − 0.01×|If-max| <
If < 0.01×|If-max| range. This study then presents the correlation be
tween the arcing level and If volatility. Pearson’s linear correlation co
efficient, rho, is used to quantify correlation levels. The correlation 
analysis is applied to a dataset of 123 ph-to-e fault tests, including 
twelve 0.5 Arms, fifty-seven 1 Arms, and fifty-four 2 Arms limit tests 
(excluding tests ending with a flashover). The analysis will show that in 
90 % of the dataset, maximum arcing and volatility occurs by and after 
82.28 % and 83.8 % of the overall fault durations consecutively. The 
mean rho (representing the level of correlation between If volatility and 
arcing) is 0.77 with an STD of 0.195. Similarity level is higher than 0.90 
in 25 % of the tests and smaller than 0.73 in 25 % of the tests. 

This work presents an EMD-driven volatility-variance method for 
classifying VeHIFs. The author uses EMD decomposition to validate HF 
components as the most credible signatures of If volatility. The author 
uses Pearson’s linear correlation to compute the linear PCC between 
variances of dIf/dt and each one of the d(IMFx)/dt. In particular, the 
variance of d(IMF1)/dt has a mean PCC of 0.99 (STD of 0.016). This high 
PCC shows a near perfect positive correlation between d(IMF1)/dt and 
dIf/dt variances. Using this high positive correlation, author proposes a 
classification scheme relying on variance analysis of d(IMF1)/dt. The 
variance of the no-fault (IL) current’s volatility is first analysed, identi
fying likely thresholds to signify a VeHIF event. Classification occurs 
when the set thresholds are violated. The method is then explicitly 
verified using two recordings: a 2 Arms limit fault of the C. Glaucophyllus 

Fig. 1. Top: A popular HIF model based on two anti-parallel DC-source and 
diodes. Bottom: The HIF If generated by the model. 
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Fig. 2. First row: the sampled If. Second row: If-rms. Third row: dIf-rms/dt. (VT129; A. Mearnsii; 1 Arms limit).  
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Fig. 3. First row: the fault current (If). Second row: Very low-level of arcing at 10 s. Third row: Low-level of arcing at 25 s. Fourth row: High-level of arcing at 35 s. 
Fifth row: Very high level of arcing at 45 s. (VT129). 
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Fig. 4. Temporal arcing and volatility variation of If. First row: the sampled fault current. Second row: If-rms. Third row: dIf-rms/dt. Fourth row: moving mean of 
volatility. Fifth row: Moving mean of arcing level. (VT129). 
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species and a 0.5 Arms limit fault of Eu. Baxteri species. Results show how 
the volatility-variance of the If + IL case starts to deviate from the no- 
fault levels post fault inception. This deviation is due to the fault 
induced HF components in IMF1. Statistical reliability of the scheme is 
then validated by testing its application to 130 fault recordings. Finally, 
the author applies the method to a VSD-controlled motor disturbance, 
demonstrating the resilience of the scheme against false positives. 

4. Stages of ignition development and arcing 

The validation dataset employs fault data from staged VeHIFs per
formed for the ‘Vegetation Conduction Ignition Testing’ project [8]. In the 
project, ph-to-earth (ph-to-e) fault tests included a tree branch laid 
across two conductors, one energized with the 12.7 kV phase voltage 
and the other earthed. The LF channel (DC to 50 kHz) sampled If 

continuously with a 100 kSa/s sampling rate. Fig. 2 shows the LF 
recording during a ph-to-e VeHIF test (of A. Mearnsii species) labelled 
‘VT129′. The test was terminated after If reached 1 Arms. Various stages 
of ignition development [8] can be identified for VeHIFs. These are the 
contact development (Stage 1), moisture expulsion (Stage 2), and pro
gressive charring (Stage 3) [8]. As shown in Fig. 2, Stage 1 is dominated 
by a progressive increase in the plasma until If reaches its first 
maximum. In Stage 2, If falls due to the expulsion of the moisture, which 
dries out the species, resulting in its resistance to increase. Finally, in 
Stage 3, charring begins accompanied by breakout of flames. During 
charring, arcs often appear in the flame causing If volatility. If volatility 
(a sign of charring) begins to peak around the first local minimum (after 
the first maximum) [7]. 

Fig. 3 shows the arcing level computation in If at various 20 ms 
window intervals (time spaced) during the progression of VT129. All 
waveforms are in p. u. using the base values of 2.27 A and 17.3 kV. As 
illustrated in Fig. 3, arcing is intermittent with fluctuating levels due to 
conduction through a non-linear impedance. When arcing occurs, it 
extinguishes near the zero-crossings due to inadequate voltage levels for 
sustaining the discharge. It reignites once voltage recovers to a level 
where the discharge can be sustained again. These discontinuities near 
zero-crossings have varying widths and grow larger as fault progresses. 
The arcing level is computed by estimating the number of samples in 
each 20-ms window recording, where − 0.01×|If-max| < If < 0.01×|If- 
max|. This is based on the premise that a higher number of samples is 
recorded near zero crossings at times of high arcing. 

5. The link between arcing and volatility 

Fig. 4 shows the temporal variation of the moving means of If’s 
volatility and arcing level. The volatility measure is the 40-sample 
moving mean of the average dIf-rms/dt of 20 ms data blocks taken 
every 100 ms. The arcing measure is the 40 sample moving mean of the 
arcing level. The Pearson’s linear correlation coefficient, rho, is defined 
in (1) where Xa is the volatility measure, and Yb is the arcing level 

Fig. 5. CDF of maximum arcing and volatility level occurrence times as per
centage of the overall fault durations of 123 fault tests. 

Fig. 6. Statistical distribution of the occurrences of maximum volatility times during the progression of faults measured as tmax-volatility/tfault-duration percentage.  
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measure. The rho is used for estimating the level of temporal similarity 
between the two measures. The rho between the two measures was 
computed as 0.98 for VT129, a near perfect positive correlation (+1 
indicates a perfect positive correlation). 

rho(a, b) =
∑n

i=1(Xa,i − Xa) × (Yb,i − Yb)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xa,i − Xa)

2
×
∑n

j=1
(Yb,j − Yb)

2

√ (1) 

The presented single recording analysis (for VT129) supports the 
hypothesis that arcing reaches its maximum in Stage 3 when volatility 
increases. This growth relates to the increased levels of HF noise emis
sions during Stage 3. As in Fig. 4, arcing is low and steady during Stage 1 
when progressive increase in the plasma results in the first If maximum. 
Volatility is also increasing during Stage 1 as the If magnitude increases. 
In Stage 2, If falls due to the increasing fault impedance (attributable to 
expulsion of moisture), but volatility appears to be steady. Arcing in
creases after the 23 s. This increase continues almost linearly into Stage 
3. In Stage 3, both volatility and arcing increase as If peaks with 
carbonization (charring) breakout. Finally, in Stage 3, charring begins 
accompanied by flame breakout. During charring, arcs appear in the 
flame, causing If volatility. If volatility (a sign of charring) peaks around 
the first local minimum, which comes after the first maximum. The 
current HIF electrical models can neither accurately model temporal 
variation of arcing nor If volatility. This weakness is a shortcoming 
considering the use of such models in academic publications for gener
ating synthetic fault data. The following section seeks to provide further 
evidence on this claim. 

6. Big data analysis 

This section analyses the volatility and arcing trends in a dataset of 
123 ph-to-e fault tests (twelve 0.5 A, fifty-seven 1 A, and fifty-four 2 A 
limit tests). Tests, ending with a flashover, were excluded from the 
analysis based on the recommendation in [4]. The hypothesis of this 
research is that If arcing and volatility are closely correlated, both often 
reaching their maxima in Stage 3. The key intent of this section is to 
generalize this hypothesis statistically. This analysis is additional to the 
earlier evidence presented using the single fault recording of VT129. 

Fig. 5 shows the Cumulative Distribution Function (CDF) of the 
maximum-level timestamps for arcing and volatility measures as per
centages relative to the overall fault durations. It displays the time
stamps at which volatility and arcing reached their maximums during 
the temporal progression of faults within the dataset. In 90 % of the 
dataset, the maximum arcing level occurred by and after 82.28 % of the 
overall fault durations. For example, in VT605 (the test at the 90 % 
boundary), the maximum arcing occurred 58.5 s into the fault. VT605 
was terminated at the 71.1 s, when If-rms reached the set current limit. In 
90 % of the tests, maximum volatility similarly occurred by and after 
83.8 % of the overall fault durations. For example, in VT467 (the test at 
the 90 % boundary), the maximum volatility level was reached 26.9 s 
into the fault for an overall fault duration of 32.1 s. These findings 
support the hypothesis that both arcing and volatility usually grow to 
their maxima during Stage 3, when carbonization is underway. 

Fig. 6 shows the statistical analysis of maximum volatility times 
(tmax-volatility) as percentages of respective fault durations. As shown, the 
mean tmax-volatility occurs at approximately 93.45 % of the fault duration 
with a standard deviation of 14.72 %. The median (red line in the middle 
of the box plots) is close to 100 %, signifying that volatility generally 
increases as fault progresses. The bottom and top of the box plot 
represent the 25th and 75th percentiles, respectively. The distance in 
between the percentiles is equal to the interquartile range. The whisker 
extends below the box to the furthest observation within the whisker 
length. Observations beyond the whisker length are the outliers, which 
extend more than 1.5 times the interquartile range away from the bot
tom or top of the box. There were a number of outliers, such as the 
VT141 (2 Arms limit, C. Glaucophyllus species). However, in 90 % of the 
tested faults, max volatility occurred by and after 83.8 % of the fault 
duration. Fig. 7 shows the VT141 fault current recording, its Irms, and 
dIrms/dt. VT141 goes through all three stages of ignition development, 

Fig. 7. Top: the sampled If. Centre: If-rms. Bottom: dIf-rms/dt. (VT141).  

Fig. 8. Statistical distribution of the occurrences of maximum arcing times 
during the progression of faults measured as tmax-arcing/tfault-duration percentage. 
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Fig. 9. First row: If. Second row: If-rms. Third row: dIrms/dt. Fourth row: moving mean of volatility. Fifth row: Moving mean of arcing level. (VT386, 2 A limit, 
Eu. Baxteri)). 
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with ~ 2 s separating Stages 1 and 2. In Stage 3, If is very volatile 
midway through the fault, but unexpectedly decays until it recovers and 
ramps up around the 60 s mark. 

Fig. 8 shows the statistical analysis of the max arcing times (tmax- 

arcing) as percentages (tmax-arcing/tfault-duration) of fault durations. For 
example, in VT767, maximum arcing occurred 66.4 s into the fault, 
which had a duration of 78.1 s. Maximum arcing occurred at 85 % point 
of the overall fault duration of VT767. The mean tmax-arcing is 93.87 % 
with an STD of 11.38 %. Fig. 9 shows the VT386 If recording, its Irms, and 
moving means of the fault’s volatility and arcing. VT386 is an outlier test 
where max volatility occurred soon after fault inception. For VT386, 
while arcing was still high at the end of the fault, max arcing occurred at 
40 s into the recording. 

Another critical observation in VT386 is the inverse correlation be
tween If’s volatility and arcing. As shown in Fig. 9, volatility falls as the 
fault progresses, while arcing level is increasing. In the entire dataset of 
123 ph-to-e fault tests, VT386 was the only test with an inverse corre
lation between If’s volatility and arcing. As shown in Fig. 8, there were 
few other outliers (in 90 % of the faults, max arcing occurred by/after 
82.28 % of fault durations) as well. The number of outliers (four in total) 
is smaller when compared to the outliers of the volatility distribution 
(twelve in total). The increase of arcing as the fault progresses is 
consequently more consistent in a higher number of tests when 
compared to volatility. 

The box plot of Fig. 10 depicts the statistical analysis of the pairwise 
linear correlation between volatility and arcing. The mean rho was 0.77 
with an STD of 0.195. The 25th to 75th percentile range was 0.73 to 
0.90. In 25 % of the tests, rho was higher than 0.90. Conversely, in only 
25 % of the tests, rho was smaller than 0.73. There were five outliers 
extending beyond the lower whisker. These outliers still exhibited a 
positive pairwise correlation, with the exception of VT386. As shown in 
Fig. 10, VT386 was the only outlier where rho was negative (-0.52), 
designating an inverse correlation. These results statistically confirm 
that volatility and arcing are indeed substantially positively correlated. 

7. VeHIF volatility-variance analysis using EMD 

This section analyzes the volatility of VeHIFs currents using EMD. 
Identifying frequencies that lead to If volatility during a fault is the key 
objective. EMD is a data-driven and adaptive method of time-domain 
signal decomposition, which uses the signal as its bases. This is in 
contrast to wavelet methods, which require the choice of a pre- 
determined basis or mother wavelet for the decomposition. Fig. 11 

shows the EMD of a VeHIF If signal (VT963; 2 A limit; C. Glaucophyllus 
species), where If has been broken down into a set of IMFs. In Fig. 11, the 
sampled fault current and its rolling RMS are shown on top of the EMD 
generated IMFs. IMFs show the sub-signal oscillation modes of dominant 
frequencies embedded in the If time-sequence. They neatly characterize 
a finite set of sub-band signals at dominant frequencies over the same 
time segment. 

Welch’s method was used to obtain the predominant frequency with 
the highest spectral density in each IMF. As expected, the highest fre
quency component was captured by the first IMF. IMF1 covers the 1.41 
to 44.8 kHz frequency range with a dominant frequency of 17.84 kHz. 
The predominant frequency reduces to 0.14 Hz with the increasing IMF 
order. Both IMF4 and IMF5 have 50 Hz as their predominant frequency 
mode, indicative of mode-mixing [22] (a common problem in EMD). 
This finding is similar to the observation made in [17] for the EMD 
analysis of the arcing voltage. This suggests that the 50 Hz fundamental 
cannot always contribute to extremas [22] due to the non-linear growth 
of the fault current. This forces EMD to split the 50 Hz mode over two 
IMFs. It is also notable to observe the distinct magnitude spike in the HF 
modes (IMF1 to IMF3) and the Low Frequency (LF) modes (IMF7 to 
IMF8) a few seconds prior to the conclusion of the test, when If reached 
the set threshold. 

The proposed volatility-variance based classification is based on the 
cumulative analysis of the variance of di/dt in each IMF. The variance- 
based concept explores fluctuations in the volatility of the stream. The 
stream includes the sliding window of ten most recent samples of the 
discrete gradient in each IMF. This aids in computationally observing 
fluctuations in the gradient of each sub-signal, indicative of volatility in 
that stream. The forward volatility is computed from (1) by calculating 
rolling average of the variance of a data stream’s volatility. The VRate 
parameter defines the number of samples stored in a computation 
window). The default VRate is 10, but can be adjusted. The volatility 
index for each stream (IMF1 to IMF10) is the moving mean of the rolling 
variance of the stream’s rate of change. This is calculated at a rate of 
5000 samples, as in (2). This rolling average of the variance of the fault 
current’s volatility (di/dt) is termed the ‘volatility-variance’ index. 

σ2
IMF− z(n) = Var

(
dIIMF− z

dt
(i + 1 − VRate) :

dIIMF− z

dt
(i)

)

fori = VRate : VRate : (lenght(Current) − VRate)

volind IMF− z(j) =
1
N
×

∑j− 1+N

k=j
σ2

IMF− z(k) (2)  

forj ≥ 1andN = 5000  

whereVRate = 10samples,

z is the IMF index number,nisthevarianceindexnumber,
σ2

IMF− z is the rolling variance of the zth indexed IMF’s gradient, 
volindIMF− z is the volatility-variance of a zth indexed IMF. 
Fig. 12 shows the volatility-variance analysis of the sampled If and its 

first four IMFs from 56 s onwards (in test VT963). Fig. 12 only shows the 
56 s onwards segment to enable better visual contrast of the volatility- 
variance indexes of the data streams. In calculating If’s volatility, vola
tility indexes were normalized to better capture the volatility trends 
instead of a magnitude based focus. The Pearson’s linear correlation 
coefficient was used to calculate the Pairwise Correlation Coefficient 
(PCC) between the variance of dIf/dt and variances of each d(IMFx)/dt. 
In this case, PCC measures the correlation between If’s volatility and 
those of the IMF streams. For each IMF mode, its PCC with If has been 
labelled on top of the respective subplot. 

As shown in Fig. 12, IMF1 has a nearly perfect positive correlation 
(+1 signifies an ideal pairwise correlation) with If. IMF2 also has a good 
positive correlation. It covers the 1.19 kHz to 14.3 kHz mode range, with 

Fig. 10. Distribution of correlation coefficient between arcing and volatility.  
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Fig. 11. Empirical Mode Decomposition of a VeHIF (VT963; 2 A limit).  
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a dominant frequency of 8.23 kHz. IMF3, which is the volatility of the 
third harmonic, has a poorer PCC score. From IMF4 onwards, the PCC 
measures decrease. Both IMF4 and IMF5 (with the dominant frequency 
of 50 Hz, the fundamental) have low PCCs of around 0.1. This signifies 
that the volatility of the fault current is mainly due to HF components 
rather than the 50 Hz fundamental. Therefore, IMF1 dominates the 
volatility-variance of the current. 

The volatility-variance of dIf/dt produces an identical trend as the 
IMF1 (PCC of 0.997), albeit some small magnitude differences. This was 
anticipated, as it shows that HF terms dominate. This makes the sam
pling rate a critical factor in the design of protection schemes against 
VeHIFs. Therefore, a high sampling rate, such as 100 kSa/s, is indeed 
required for detecting the volatility induced during VeHIFs. In contrast, 
the ‘F60 Feeder Protection System’ (marketed for HIF detection capa
bility) has a sampling rate of 3.2 kSa/s (50-Hz frequency system) [23]. 
Another manufacturer recommends [24] a sample rate of 32 samples per 

cycle, which equates to 1.6 kSa/s (50 Hz system). The proposed sam
pling rate of 100 kSa/s is even higher than sampling rates of most sub
station grade power-quality meters (128, 256, or 512 Sa/cycle). Even if 
the fault current (If) is sampled at 25 kSa/s (~512 Sa/cycle) or less, 
some HF signatures will be lost, missing critical volatility patterns. 
Therefore, VeHIF HF signatures cannot be reliably detected with lower 
sampling rates. 

Table 1 shows the PCC comparison of IMFs in a large dataset of 
VeHIF faults. The aim is to verify the statistical significance of HF 
components over the LF components. For this reason, the rolling vari
ance average of each d(IMFx)/dt was determined to compute its linear 
PCC to the rolling variance average of the dIf/dt itself. As in Table 1, 
IMF1 leads with a nearly perfect mean PCC and a very low STD. This 
result confirms IMF1 as a reliable sub-band for volatility detection 
during VeHIF events. 

Fig. 12. Volatility-variance analysis of If and its IMFs (VT963; 56 s onwards). 
Row one: dIf/dt. Rows two to seven: volatility-variance of each data stream. 

Table 1 
Statistical comparison of the PCCs of IMFs.  

IMF Mean PCC Standard Deviation Standard Deviation 

IMF1 (1.41 kHz to 44.8 kHz)  0.99  0.016 ± 1.61 % 
IMF2 (1.19 kHz to 14.3 kHz)  0.90  0.113 ±12.5 % 
IMF3 (150 Hz)  0.764  0.222 ± 28.8 % 
IMF4 (50 Hz)  0.58  0.273 ± 47 % 
IMF5 (50 Hz)  0.504  0.299 ± 60 %  

Fig. 13. Classification of VT963. First Row: Sampled If. Second Row: Sampled 
IL. Third Row: Rolling RMS currents of IL and (IL + If). Fourth Row: Volatility of 
the (i) IL only case (blue trace) case (ii) IL + If (red trace) case. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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The mean PCC for IMF2 is also high at 0.9 but with an STD of ± 12.5 
%. IMF3 has a 28.8 % standard deviation relative to its mean 0.76. The 
two 50 Hz IMF sub-bands have mean PCCs of 0.58 and 0.5, respectively. 
However, both IMF4 and IMF5 have very high STDs rendering them 
unreliable as indicators. In conclusion, IMF1, with its near-perfect mean 
PCC and low STD, is an ideal and reliable EMD sub-band for VeHIF 
induced volatility detection. 

8. Classifying a VeHIF through volatility analysis 

During the project [8], only If was sampled in an unloaded feeder 
with no recordings of any load data. As such, the load data (IL) used 
herein was separately sourced from a 22 kV substation at the University 
using a 50 kHz bandwidth AC flex current probe. The probe was con
nected to a data logger with a Low-Pass filter of 50 kHz cut-off fre
quency, and sampled the current at 100 kSa/s. 

The verification methodology relied on superimposition of the If and 
IL datasets in measuring the volatility-variance of the IMF1 sub-band 
using (3) and (4). Fig. 13 shows the sampled If, IL and their 100 ms 
rolling RMS over a 83 s period. Fig. 13 also displays the rolling variance 
average of IMF1′s rate of change. VT963 is a 2 Arms limit fault of the C. 
Glaucophyllus species. Fault inception occurred at 4.53 s into the 
recording. At the time of classification, If-rms was 0.25 Arms. One can see 
in Fig. 13 that the variances of the two channels is common for both the 
IL (no-fault) and If + IL (fault) cases in the 0 s to 4.53 s period. The 
variance of IL’s volatility is fluctuating around a mean of 1.0419 A/s 
with an STD of 0.0137 A/s (no-fault case). After inception at 4.53 s, the 
variance of (If + IL)’s volatility deviates from that of the no-fault case 
and starts to increase. This increase is largely due to the volatility of the 
fault induced HF components in the IMF1 sub-band. IMF1′s volatility 
variance has an STD of 0.0299 A/s over a mean of 1.1216 A/s. A 
threshold of 1.1 A/s was selected for classifying the fault (If + IL) case 

Fig. 14. Classification of VT271 (0.5 A limit, Eu. Baxteri). First Row: If. Second Row: IL. Third Row: Rolling RMS currents of IL and (IL + If). Fourth Row: Volatility of 
the (i) IL only (blue trace) case (ii) IL + If (red trace) case. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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from the no-fault (IL) case. Fault classification occurred 7.3 s into the 
recording with a response time of 2.77 s. 

Fig. 14 shows the same volatility-variance analysis for VT271 (0.5 A 
limit, Eu. Baxteri). For VT271, the classification occurs 24 s into the 
recording, giving a detection time of 18.1 s. When the fault was classi
fied, If-rms was 78 mArms. The slower, progressive increase of If in VT271 
(as compared to VT963) is clearly the cause of this increased response 
time. The response time in VT271 is 18.1 s, as compared to 2.77 s in 
VT963. Despite taking 18.1 s to classify the fault (i.e. VT271), Fig. 14 
shows that the fault was still in Stage 1 when classified and had not even 
reached its first maximum yet. Nevertheless, the proposed protection 
scheme was effective in classifying the fault, before Stage 3 began. 

In Stage 3, a branch generally undergoes carbonisation with a 
breakout of flames (i.e. increased bushfire risk due to the ember for
mation). While the method took 18.1 s to classify (i.e. due to low If), the 
fault was classified before the fire ignition risk grew. This further sat
isfies the Marxsen condition [8] for earth fault detection to occur within 
2 s of reaching an If of 0.5-Arms for tenfold reduction in the fire risk. 
While taking 18.1 s to classify, If-rms was 78 mArms at the classification 
time. Therefore, classification occurred, when fire risk was lower, well 
before If grew to 0.5-Arms. Fig. 15 validates this by providing a visual 
image of the branch at 24 s into the recording. As shown in Fig. 15, there 
were no flames/embers at 24 s into the recording. In summary, the 
proposed method may take relatively long to classify some VeHIFs, 
especially those with slow If growth. Yet, it classifies before localised 
burning begins on the branch. 

σ2
IMF1(n) = Var

(
dIIMF1

dt
(i + 1 − VRate) :

dIIMF1

dt
(i)

)

(3)  

fori = VRate : VRate : lenght(Current) − VRate)

volind IMF1(j) =
1
N
×

∑j− 1+N

k=j
σ2

IMF1(k) (4)  

forj ≥ 1,N = 1000, andVRate = 50 

The method was applied to a dataset of 130 ph-to-e recordings (a mix 
of 0.5, 1, and 2 Arms limit tests) with a 100 % success rate. Fig. 16 shows 
the CDF of response times. All 130 tests were classified with a mean 

Fig. 15. The branch at 24 s into the recording. The branch is yet to experience 
any charring, any breakout of flames, and no embers are being shed (VT271). 

Fig. 16. CDF analysis of time to detection metrics of 130 ph-to-e faults.  

Fig. 17. Test with the longest classification duration of 79.24 s (VT943; 2 Arms limit test of F. Angustifolia species.  
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classification time of 10 s (STD of 14.32 s). 73 % of the tests were 
classified in under 10 s (with reference to the fault start times). Only 1.5 
% of the tests were classified in a duration longer than 70 s. Fig. 17 
shows the If waveform during VT943 (test with the longest classification 
duration of 79.24 s). In VT943, the contact with the conductor occurred 
at 4.76 s into the recording. The fault was classified at 84 s into the 

recording. At classification, If was 0.16 Arms, far lower than Marxsen 0.5- 
Arms limit [8]. Hence, this worst-case classification still satisfied the 
Marxsen condition [8] for earth fault detection to occur within 2 s of If 
reaching 0.5-Arms. The fault was classified before If reached 0.5-Arms. 
Fig. 18 shows a snapshot of the video recording of the test VT943 at the 
classification time. As shown, there were neither any flames nor any 

Fig. 18. Visual status of the branch of F. Angustifolia at the classification time (image at 84 s into the recording) showing the branch yet to experience any charring. 
There were no breakout of flames or embers at classification. 

Fig. 19. Volatility variance during asynchronous machine switching.  
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embers. Despite taking 79.24 s to classify the fault, the fault was still in 
Stage 1. The fault was yet to reach Stage 3, when charring and aggressive 
breakout of flames begins. Therefore, the classification occurred before 
the fire ignition risk could grew, despite taking longer than a minute. 

9. Comparison with other disturbances 

HIF indicators could possibly classify other disturbances such as 
Asynchronous Machine (AS), capacitor bank switching, or starting a 
Variable Speed Drive (VSD) controlled AC motor. It is critical to 
distinguish such disturbances from VeHIFs to avoid false positives. This 
section applies the method to three distinct disturbance cases. A 600 
kVAr three-phase capacitor bank was modelled in a 5-bus radial 22 kV 
feeder for simulating the switching transients. For modelling the AS, a 
10 HP squirrel-cage induction machine was connected to the 22 kV 
feeder through a step-down transformer. The third modelled distur
bance was a low-voltage VSD controlled AC motor, also connected to the 
feeder through a step-down transformer. Figs. 19 to 21 show the 
volatility-variance of all three cases, all switched at 0.5 s. When the 
switching of the AS machine took place (see Fig. 19), there was a sudden 
increase in all first four IMFs’ rolling volatility-variance. However, all 
these volatilities either died down or stabilized quickly. It is highly 
unlikely that sharp spikes will be experienced in all four IMFs during a 
VeHIF. The short-lived nature of volatility, in other disturbances, 

distinguishes them from VeHIFs. As the scheme uses moving averages, 
short-lived volatility cannot lead to a sustained increase in the volatility 
index and no subsequent threshold violation can take place. A similar 
observation can be seen for the capacitor bank switching (see Fig. 20). 
The variances of first four IMFs’ volatility spiked after 0.5 s, but they 
were not sustained and quickly died down. 

For the VSD controlled motor (see Fig. 21), IMF1′s volatility-variance 
stabilisation took longer (around 1.5 s), but also did not match the 
continuous instability in IMF1′s volatility during a VeHIF. This was 
verified by measuring the rolling variance average of IMF1′s volatility 
using (3) and (4). Fig. 22 shows the sampled IVSD, IL and their 100 ms 
rolling RMS over a 10 s period. Fig. 22 also shows IMF1′s volatility- 
variance. As shown, there was no credible change in the volatility- 
variance indexes of the IL (no-disturbance) and IVSD + IL (disturbance) 
cases. The 1.1 threshold level was not violated, resulting in no 
classification. 

10. Discussion of results 

In [8], Marxsen argues that earth fault detection within 2 s of If 
reaching a magnitude of 0.5-Arms could potentially result in a tenfold 
reduction in the fire risk. Another conclusion in [8] states that when a 
species undergoes high degree of charring, the ignition at height is more 
likely to result in embers with the size and temperature conditions for 

Fig. 20. Volatility variance during capacitor bank switching.  

C. Ozansoy                                                                                                                                                                                                                                       



Engineering Science and Technology, an International Journal 48 (2023) 101561

16

fire ignition at ground level. Herein, author proposed a new method that 
perfectly satisfied the 2 s criteria, even in slow growth VeHIF cases. The 
method’s effectives in detecting VeHIFs (before they progress into 
localised charring) has been validated through its application to a large 
dataset of 130 fault recordings. The proposed ‘volatility-variance’ 
method relies on rolling variance average of the rate of change in a 
feeder current’s IMF1. The concept examines fluctuations in the vola
tility of the feeder current’s IMF1 data stream. Author applied the pro
posed method to a dataset of 130 ph-to-e fault recordings with 100 % 
success and a mean classification time of 10 s (STD of 14.32 s). The 
proposed scheme classified 23 % of the tests in under 2 s delay and 1.5 % 
in above 70 s delay. A common distinguishing feature, in VeHIFs taking 
above the mean detection delay time of 10 s, was the slow If growth. At 
the classification of these tests, If amplitudes were very low and still in 
contact development (Stage 1). In the worst-case test example (VT943), 
fault classification occurred after 79.24 s into the recording. Despite 
taking so long, the method still classified the fault, before it reached 
Stage 3 where charring begins. At the time of classification of VT943 as a 
fault, If was 0.16 Arms lower than the 0.5-Arms limit discussed above. 
Hence, the fault was classified prior to the 2 s time limit starting upon If 
reaching a magnitude of 0.5-Arms. Research findings show that classifi
cation of VeHIFs by Stage 3 (in the ignition development process) may 
still result in a significant reduction in the fire risk, irrespective of the 
length of the detection time. 

11. Conclusions 

This research investigated VeHIFs with conclusions drawn on stages 
of vegetation ignition development as well as volatility diagnosis for 
fault detection. The work demonstrates the link between a fault cur
rent’s volatility and the stages of vegetation ignition development. 
Volatility and arcing peak as charring of the vegetation branch spreads 
over the branch. The author then presents EMD of fault currents to 
validate the near perfect correlation between the volatilities If and the 
HF components. This validates HF components as the most credible 
signatures of If volatility during a VeHIF. 

A concept, based on the rolling variance average of the rate of change 
in the first IMF sub-band (IMF1), was later proposed. The method relies 
on identification of a threshold, from the prior no-fault volatility-vari
ance levels, to discriminate between fault and no-fault conditions. If the 
threshold level is violated, the scheme signals a fault. The proposed 
scheme was applied to a dataset of 130 ph-to-e faults with 100 % success 
and a mean classification time of 10 s (STD of 14.32 s). 23 % of the tests 
were classified in under 2 s, and 1.5 % classified in above 70 s. While 
classification should ideally be fast, research findings herein show that 
classification of VeHIFs by Stage 3 would still result in a significant 
reduction in the fire risk, irrespective of the length of the detection time. 
This relates to the various stages of ignition development that a vege
tation branch goes through during a VeHIF event. Specifically, it relates 
to the fact that only in Stage 3, charring begins to spread over a tree 
branch with a breakout of flames. In the dataset of 130 fault recordings, 

Fig. 21. Volatility variance during VSD controlled AC motor switching.  

C. Ozansoy                                                                                                                                                                                                                                       



Engineering Science and Technology, an International Journal 48 (2023) 101561

17

a test labeled as VT943 took the longest (79.24 s into the recording) to 
classify. When VT943 was classified, If was only 0.16 Arms and the fault 
still was in the contact development stage (Stage 1). The fault was 
therefore classified before If reached 0.5-Arms, a limit after which 
empirical research shows heightened fire risk. 

When a species experiences a high level of charring, this ignition (at 
height) produces embers that fall to the ground. These falling embers are 
more likely to fit the size and temperature conditions for fire ignition at 
the ground level. While the transition time from contact development 
(Stage 1) to carbonization (Stage 3) varies across different faults, it was 
the longest in low If growth cases. The low-speed If growth faults were 
those faults that required long classification times. VeHIF signatures are 
long lasting, unstable and random. They produce sustained (and 
growing) If volatility throughout the fault. In other disturbances (e.g. 
capacitor-bank switching), disturbance signatures are short-lived. They 
dissipate quickly without being classified, when analysed with the 
scheme. The proposed method (based on the variance analysis of If’s 
volatility) is resilient to power-system network disturbances. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] C.R. Ozansoy, D.P.S. Gomes, M. Faulkner, Visibility of Vegetation High-Impedance 
Fault Low-Frequency and High-Frequency Signatures, IEEE Trans. Power Delivery 
38 (3) (2023) 2236–2239, https://doi.org/10.1109/TPWRD.2023.3265513. 

[2] D.P.S. Gomes, C. Ozansoy, High-impedance faults in power distribution systems: A 
narrative of the field’s developments, 2021/12/01/, ISA Trans. 118 (2021) 15–34, 
https://doi.org/10.1016/j.isatra.2021.02.018. 

[3] A. Cassie, Theorie Nouvelle des Arcs de Rupture et de la Rigidité des Circuits, Cigre, 
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