VICTORIA UNIVERSITY
 MELBOURNE AUSTRALIA

Some additive reverses of Callebaut and Hölder inequalities for isotonic functionals

This is the Published version of the following publication

Dragomir, Sever S (2023) Some additive reverses of Callebaut and Hölder inequalities for isotonic functionals. Constructive Mathematical Analysis, 6 (4). pp. 249-259. ISSN 2651-2939

The publisher's official version can be found at https://dergipark.org.tr/en/pub/cma/issue/80083/1362691
Note that access to this version may require subscription.

Some additive reverses of Callebaut and Hölder inequalities for isotonic functionals

Sever S. Dragomir*

Abstract

In this paper, we obtain some reverses of Callebaut and Hölder inequalities for isotonic functionals via a reverse of Young's inequality we have established recently. Applications for integrals and n-tuples of real numbers are provided as well.

Keywords: Isotonic functionals, Hölder's inequality, Schwarz's inequality, Callebaut's inequality, integral inequalities, discrete inequalities.
2020 Mathematics Subject Classification: 26D15, 26D10.

1. Introduction

Let L be a linear class of real-valued functions $g: E \rightarrow \mathbb{R}$ having the properties:
(L1) $f, g \in L$ imply $(\alpha f+\beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$.
(L2) $1 \in L$, i.e., if $f_{0}(t)=1, t \in E$ then $f_{0} \in L$.
An isotonic linear functional $A: L \rightarrow \mathbb{R}$ is a functional satisfying
(A1) $A(\alpha f+\beta g)=\alpha A(f)+\beta A(g)$ for all $f, g \in L$ and $\alpha, \beta \in \mathbb{R}$.
(A2) If $f \in L$ and $f \geq 0$, then $A(f) \geq 0$.
(A3) The mapping A is said to be normalised if $A(\mathbf{1})=1$.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Thus, they provide, for example, Jessen's inequality, which is a functional form of Jensen's inequality (see [2], [20] and [21]). For other inequalities for isotonic functionals, see [1], [4]-[19] and [22]-[25]. For related results, see [10, 11]

We note that common examples of such isotonic linear functionals A are given by

$$
A(g)=\int_{E} g d \mu \text { or } A(g)=\sum_{k \in E} p_{k} g_{k},
$$

where μ is a positive measure on E in the first case and E is a subset of the natural numbers \mathbb{N} in the second ($p_{k} \geq 0, k \in E$). As is known to all, the famous Young inequality for scalars says that if $a, b>0$ and $\nu \in[0,1]$, then

$$
\begin{equation*}
a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \tag{1.1}
\end{equation*}
$$

with equality if and only if $a=b$. The inequality (1.1) is also called ν-weighted arithmeticgeometric mean inequality. We consider the function $f_{\nu}:[0, \infty) \rightarrow[0, \infty)$ defined for $\nu \in(0,1)$

[^0]by
\[

$$
\begin{equation*}
f_{\nu}(x)=1-\nu+\nu x-x^{\nu} . \tag{1.2}
\end{equation*}
$$

\]

For $[m, M] \subset[0, \infty)$, define

$$
\Delta_{\nu}(m, M):= \begin{cases}f_{\nu}(m), & M<1 \tag{1.3}\\ \max \left\{f_{\nu}(m), f_{\nu}(M)\right\}, & m \leq 1 \leq M \\ f_{\nu}(M), & 1<m\end{cases}
$$

and

$$
\delta_{\nu}(m, M):= \begin{cases}f_{\nu}(M), & M<1 \tag{1.4}\\ 0, & m \leq 1 \leq M \\ f_{\nu}(m), & 1<m\end{cases}
$$

In the recent paper [9], we obtained the following refinement and reverse for the additive Young's inequality:

$$
\begin{equation*}
\delta_{\nu}(m, M) a \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq \Delta_{\nu}(m, M) a \tag{1.5}
\end{equation*}
$$

for positive numbers a, b with $\frac{b}{a} \in[m, M] \subset(0, \infty)$ and $\nu \in[0,1]$, where $\Delta_{\nu}(m, M)$ and $\delta_{\nu}(m, M)$ are defined by (1.3) and (1.4), respectively.

Kittaneh and Manasrah [16], [17] provided a refinement and an additive reverse for Young inequality as follows:

$$
\begin{equation*}
r(\sqrt{a}-\sqrt{b})^{2} \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq R(\sqrt{a}-\sqrt{b})^{2} \tag{1.6}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$. The case $\nu=\frac{1}{2}$ reduces (1.6) to an identity. Using (1.5) and (1.6), we have the simpler, however coarser bounds:

$$
\left.\left.\begin{array}{rl}
& r \times \begin{cases}(1-\sqrt{M})^{2} a, & M<1 \\
0, & m \leq 1 \leq M \\
(\sqrt{m}-1)^{2} a, & 1<m\end{cases} \tag{1.7}\\
\leq & (1-\nu) a+\nu b-a^{1-\nu} b^{\nu}
\end{array}\right\} \begin{array}{ll}
(1-\sqrt{m})^{2} a, & M<1
\end{array}\right\} \begin{array}{ll}
\max \left\{(1-\sqrt{m})^{2},(\sqrt{M}-1)^{2}\right\} a, & m \leq 1 \leq M . \\
(\sqrt{M}-1)^{2} a, & 1<m
\end{array} .
$$

We recall that Specht's ratio is defined by [24]

$$
S(h):=\left\{\begin{array}{ll}
\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)}, & h \in(0,1) \cup(1, \infty) \tag{1.8}\\
1, & h=1
\end{array} .\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$. The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$
\begin{equation*}
S\left(\left(\frac{a}{b}\right)^{r}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq S\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{1.9}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$. The second inequality in (1.3) is due to Tominaga [26], while the first one is due to Furuichi [15]. On making use of (1.5) and (1.9), we have the following lower and upper bounds in terms of Specht's ratio:

$$
\left.\left.\begin{array}{rl}
& \begin{cases}{\left[S\left(M^{r}\right)-1\right] M^{\nu} a,} & M<1 \\
0, & m \leq 1 \leq M \\
{\left[S\left(m^{r}\right)-1\right] m^{\nu} a,} & 1<m\end{cases} \tag{1.10}\\
\leq & (1-\nu) a+\nu b-a^{1-\nu} b^{\nu}
\end{array}\right\} \begin{array}{ll}
{[S(m)-1] m^{\nu} a,} & M<1 \\
\max \left\{[S(m)-1] m^{\nu},[S(M)-1] M^{\nu}\right\} a, & m \leq 1 \leq M . \\
{[S(M)-1] M^{\nu} a,} & 1<m
\end{array}\right] .
$$

We consider the Kantorovich's constant defined by

$$
\begin{equation*}
K(h):=\frac{(h+1)^{2}}{4 h}, h>0 . \tag{1.11}
\end{equation*}
$$

The function K is decreasing on $(0,1)$ and increasing on $[1, \infty), K(h) \geq 1$ for any $h>0$ and $K(h)=K\left(\frac{1}{h}\right)$ for any $h>0$. The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's constant holds.

$$
\begin{equation*}
K^{r}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq K^{R}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{1.12}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$. The first inequality in (1.12) was obtained by Zou et al. in [27], while the second by Liao et al. [18]. By making use of (1.5) and (1.9), we have the following lower and upper bounds in terms of Kantorovich's constant:

$$
\left.\begin{array}{rl}
& \begin{cases}{\left[K^{r}(M)-1\right] M^{\nu} a,} & M<1 \\
0, & m \leq 1 \leq M \\
{\left[K^{r}(m)-1\right] m^{\nu} a,} & 1<m\end{cases} \tag{1.13}\\
\leq & (1-\nu) a+\nu b-a^{1-\nu} b^{\nu}
\end{array}\right\} \begin{array}{ll}
{\left[K^{R}(m)-1\right] m^{\nu} a,} & M<1 \\
\max \left\{\left[K^{R}(m)-1\right] m^{\nu},\left[K^{R}(M)-1\right] M^{\nu}\right\} a, & m \leq 1 \leq M . \\
{\left[K^{R}(M)-1\right] M^{\nu} a,} & 1<m
\end{array} .
$$

In this paper, we obtain some reverses of Callebaut and Hölder inequalities for isotonic functionals via the reverse of Young's inequality obtained in (1.5). Applications for integrals and n-tuples of real numbers are provided as well.

2. Reverses of Callebaut's Inequality

The functional version of Callebaut's inequality states that

$$
\begin{equation*}
A^{2}(f g) \leq A\left(f^{2(1-\nu)} g^{2 \nu}\right) A\left(f^{2 \nu} g^{2(1-\nu)}\right) \leq A\left(f^{2}\right) A\left(g^{2}\right) \tag{2.14}
\end{equation*}
$$

provided that $f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)}, f g \in L$ for some $\nu \in[0,1]$. For the discrete and integral versions in one real variable, see [3].

We start with the following result:

Theorem 2.1. Let $A, B: L \rightarrow \mathbb{R}$ be two normalised isotonic functionals. If $f, g: E \rightarrow \mathbb{R}$ are such that $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$ and

$$
\begin{equation*}
0<m \leq \frac{f}{g} \leq M<\infty \tag{2.15}
\end{equation*}
$$

for some constants m, M, then

$$
\begin{align*}
(0 & \leq)(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.16}\\
& \leq \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} A\left(f^{2}\right) B\left(g^{2}\right),
\end{align*}
$$

where f_{ν} is defined by (1.2). In particular,

$$
\begin{align*}
(0 & \leq) A\left(f^{2}\right) A\left(g^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) A\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.17}\\
& \leq \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} A\left(f^{2}\right) A\left(g^{2}\right) .
\end{align*}
$$

Proof. For any $x, y \in E$, we have

$$
m^{2} \leq \frac{f^{2}(x)}{g^{2}(x)}, \frac{f^{2}(y)}{g^{2}(y)} \leq M^{2}
$$

Consider

$$
a=\frac{f^{2}(x)}{g^{2}(x)}, b=\frac{f^{2}(y)}{g^{2}(y)},
$$

then $\frac{b}{a} \in\left[\left(\frac{m}{M}\right)^{2},\left(\frac{M}{m}\right)^{2}\right]$ and by the inequality (1.5), we have

$$
\begin{align*}
(0 & \leq)(1-\nu) \frac{f^{2}(x)}{g^{2}(x)}+\nu \frac{f^{2}(y)}{g^{2}(y)}-\left(\frac{f^{2}(x)}{g^{2}(x)}\right)^{1-\nu}\left(\frac{f^{2}(y)}{g^{2}(y)}\right)^{\nu} \tag{2.18}\\
& \leq \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} \frac{f^{2}(x)}{g^{2}(x)}
\end{align*}
$$

for any $x, y \in E$. Now, if we multiply (2.18) by $g^{2}(x) g^{2}(y)>0$ then we get

$$
\begin{align*}
& (1-\nu) g^{2}(y) f^{2}(x)+\nu f^{2}(y) g^{2}(x)-f^{2(1-\nu)}(x) g^{2 \nu}(x) f^{2 \nu}(y) g^{2(1-\nu)}(y) \tag{2.19}\\
\leq & \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} f^{2}(x) g^{2}(y)
\end{align*}
$$

for any $x, y \in E$. Fix $y \in E$. Then by (2.19), we have in the order of L that

$$
\begin{align*}
& (1-\nu) g^{2}(y) f^{2}+\nu f^{2}(y) g^{2}-f^{2 \nu}(y) g^{2(1-\nu)}(y) f^{2(1-\nu)} g^{2 \nu} \tag{2.20}\\
\leq & \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} g^{2}(y) f^{2} .
\end{align*}
$$

If we take the functional A in (2.19), then we get

$$
\begin{aligned}
& (1-\nu) g^{2}(y) A\left(f^{2}\right)+\nu f^{2}(y) A\left(g^{2}\right)-f^{2 \nu}(y) g^{2(1-\nu)}(y) A\left(f^{2(1-\nu)} g^{2 \nu}\right) \\
\leq & \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} g^{2}(y) A\left(f^{2}\right)
\end{aligned}
$$

for any $y \in E$. This inequality can be written in the order of L as

$$
\begin{align*}
& (1-\nu) A\left(f^{2}\right) g^{2}+\nu A\left(g^{2}\right) f^{2}-A\left(f^{2(1-\nu)} g^{2 \nu}\right) f^{2 \nu} g^{2(1-\nu)} \tag{2.21}\\
\leq & \max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} A\left(f^{2}\right) g^{2}
\end{align*}
$$

Now, if we take the functional B in (2.21), then we get the desired result (2.16).
Corollary 2.1. Let $A, B: L \rightarrow \mathbb{R}$ be two normalised isotonic functionals. If $f, g: E \rightarrow \mathbb{R}$ are such that $f \geq 0, g>0, f^{2}, g^{2}, f g \in L$ and the condition (2.15) holds true, then

$$
\begin{align*}
(0 & \leq) \frac{1}{2}\left[A\left(f^{2}\right) B\left(g^{2}\right)+A\left(g^{2}\right) B\left(f^{2}\right)\right]-A(f g) B(f g) \tag{2.22}\\
& \leq \frac{1}{2}\left(\frac{M}{m}-1\right)^{2} A\left(f^{2}\right) B\left(g^{2}\right) .
\end{align*}
$$

In particular,

$$
\begin{equation*}
(0 \leq) A\left(f^{2}\right) A\left(g^{2}\right)-A^{2}(f g) \leq \frac{1}{2}\left(\frac{M}{m}-1\right)^{2} A\left(f^{2}\right) A\left(g^{2}\right) \tag{2.23}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
(0 \leq) 1-\frac{A^{2}(f g)}{A\left(f^{2}\right) A\left(g^{2}\right)} \leq \frac{1}{2}\left(\frac{M}{m}-1\right)^{2} \tag{2.24}
\end{equation*}
$$

Proof. Observe that

$$
f_{\frac{1}{2}}\left(\left(\frac{m}{M}\right)^{2}\right)=\frac{m^{2}+M^{2}}{2 M^{2}}-\frac{m}{M}=\frac{(M-m)^{2}}{2 M^{2}}
$$

and

$$
f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)=\frac{m^{2}+M^{2}}{2 m^{2}}-\frac{M}{m}=\frac{(M-m)^{2}}{2 m^{2}} .
$$

Therefore

$$
\max \left\{f_{\nu}\left(\left(\frac{m}{M}\right)^{2}\right), f_{\nu}\left(\left(\frac{M}{m}\right)^{2}\right)\right\}=\frac{(M-m)^{2}}{2 m^{2}}=\frac{1}{2}\left(\frac{M}{m}-1\right)^{2}
$$

and by (2.16), we get the desired result (2.22).
Remark 2.1. We observe that the inequality (2.23) can be written as

$$
\begin{equation*}
A\left(f^{2}\right) A\left(g^{2}\right)\left[1-\frac{1}{2}\left(\frac{M}{m}-1\right)^{2}\right] \leq A^{2}(f g) \tag{2.25}
\end{equation*}
$$

We observe that the function $\varphi:[1, \infty) \rightarrow \mathbb{R}, \varphi(t)=1-\frac{1}{2}(t-1)^{2}$ is positive for $t \in(1,1+\sqrt{2})$ and negative for $t \in[1, \infty)$. Therefore, the inequality (2.25) is of interest only in the case that $\frac{M}{m} \in$ $(1,1+\sqrt{2})$.

On using the inequality (2.16) and (1.7), we get

$$
\begin{align*}
(0 & \leq)(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.26}\\
& \leq R \max \left\{\left(1-\frac{m}{M}\right)^{2},\left(\frac{M}{m}-1\right)^{2}\right\} A\left(f^{2}\right) B\left(g^{2}\right)
\end{align*}
$$

and since

$$
\max \left\{\left(1-\frac{m}{M}\right)^{2},\left(\frac{M}{m}-1\right)^{2}\right\}=\left(\frac{M}{m}-1\right)^{2}
$$

then we get from (2.26) that

$$
\begin{align*}
& (0 \leq)(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.27}\\
\leq & R\left(\frac{M}{m}-1\right)^{2} A\left(f^{2}\right) B\left(g^{2}\right)
\end{align*}
$$

provided $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$.
On using the inequality (2.16) and (1.10), we get the following reverse of Callebaut's inequality in terms of Specht's ratio

$$
\begin{align*}
& (0 \leq)(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.28}\\
& \leq \max \left\{\left[S\left(\left(\frac{m}{M}\right)^{2}\right)-1\right]\left(\frac{m}{M}\right)^{2 \nu},\left[S\left(\left(\frac{M}{m}\right)^{2}\right)-1\right]\left(\frac{M}{m}\right)^{2 \nu}\right\} A\left(f^{2}\right) B\left(g^{2}\right)
\end{align*}
$$

provided $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$.
Finally, on using the inequality (2.16) and (1.13), we get the following reverse of Callebaut's inequality in terms of Kantorovich's constant

$$
\begin{align*}
(0 & \leq)(1-\nu) A\left(f^{2}\right) B\left(g^{2}\right)+\nu A\left(g^{2}\right) B\left(f^{2}\right)-A\left(f^{2(1-\nu)} g^{2 \nu}\right) B\left(f^{2 \nu} g^{2(1-\nu)}\right) \tag{2.29}\\
& \leq \max \left\{\left[K^{R}\left(\left(\frac{m}{M}\right)^{2}\right)-1\right]\left(\frac{m}{M}\right)^{2 \nu},\left[K^{R}\left(\left(\frac{M}{m}\right)^{2}\right)-1\right]\left(\frac{M}{m}\right)^{2 \nu}\right\} \\
& \times A\left(f^{2}\right) B\left(g^{2}\right)
\end{align*}
$$

provided $f \geq 0, g>0, f^{2}, g^{2}, f^{2(1-\nu)} g^{2 \nu}, f^{2 \nu} g^{2(1-\nu)} \in L$ for some $\nu \in[0,1]$.

3. Reverses of Hölder's Inequality

We have the following additive reverse of Hölder's inequality:
Theorem 3.2. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functional and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. If f, $g: E \rightarrow \mathbb{R}$ are such that $f g, f^{p}, g^{q} \in L$ and

$$
\begin{equation*}
0<m_{1} \leq f \leq M_{1}<\infty, 0<m_{2} \leq g \leq M_{2}<\infty \tag{3.30}
\end{equation*}
$$

then

$$
\begin{align*}
(0 & \leq) 1-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{3.31}\\
& \leq \max \left\{f_{\frac{1}{p}}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right), f_{\frac{1}{p}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\right\}
\end{align*}
$$

where $f_{\frac{1}{p}}$ is defined by

$$
\begin{equation*}
f_{\frac{1}{p}}(x)=\frac{1}{q}+\frac{1}{p} x-x^{\frac{1}{p}} \tag{3.32}
\end{equation*}
$$

Proof. Observe that, by (3.30), we have

$$
m_{1}^{p} \leq A\left(f^{p}\right) \leq M_{1}^{p} \text { and } m_{2}^{q} \leq A\left(g^{q}\right) \leq M_{2}^{q} .
$$

Also

$$
\left(\frac{m_{1}}{M_{1}}\right)^{p} \leq \frac{f^{p}}{A\left(f^{p}\right)} \leq\left(\frac{M_{1}}{m_{1}}\right)^{p} \text { and }\left(\frac{m_{2}}{M_{2}}\right)^{q} \leq \frac{g^{q}}{A\left(g^{q}\right)} \leq\left(\frac{M_{2}}{m_{2}}\right)^{q}
$$

giving that

$$
\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1} \leq \frac{\frac{f^{p}}{A\left(f^{p}\right)}}{\frac{g^{q}}{A\left(g^{q}\right)}} \leq\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q} .
$$

Using the inequality (1.5) for $b=\frac{f^{p}}{A\left(f^{p}\right)}, a=\frac{g^{q}}{A\left(g^{q}\right)}, \nu=\frac{1}{p}, M=\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}$ and $m=$ $\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}$, we have

$$
\begin{align*}
0 & \leq \frac{1}{q} \frac{g^{q}}{A\left(g^{q}\right)}+\frac{1}{p} \frac{f^{p}}{A\left(f^{p}\right)}-\frac{f g}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{3.33}\\
& \leq \max \left\{f_{\frac{1}{p}}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right), f_{\frac{1}{p}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\right\} \frac{g^{q}}{A\left(g^{q}\right)}
\end{align*}
$$

If we take the functional A in (3.33), then we get

$$
\begin{aligned}
0 & \leq \frac{1}{q} \frac{A\left(g^{q}\right)}{A\left(g^{q}\right)}+\frac{1}{p} \frac{A\left(f^{p}\right)}{A\left(f^{p}\right)}-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \\
& \leq \max \left\{f_{\frac{1}{p}}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right), f_{\frac{1}{p}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\right\} \frac{A\left(g^{q}\right)}{A\left(g^{q}\right)},
\end{aligned}
$$

which is equivalent to the desired result (3.30).
The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic functionals holds:

Corollary 3.2. Let $A: L \rightarrow \mathbb{R}$ be a normalised isotonic functional, $f, g: E \rightarrow \mathbb{R}$ are such that $f g, f^{2}$, $g^{2} \in L$ and the condition (3.30) is valid, then

$$
\begin{equation*}
(0 \leq) 1-\frac{A(f g)}{\left[A\left(f^{2}\right)\right]^{1 / 2}\left[A\left(g^{2}\right)\right]^{1 / 2}} \leq \frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 m_{1}^{2} m_{2}^{2}} \tag{3.34}
\end{equation*}
$$

Proof. For $p=2$, we have $f_{\frac{1}{2}}(x)=\frac{1+x}{2}-\sqrt{x}, x \geq 0$. Then

$$
f_{\frac{1}{2}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{2}\left(\frac{M_{2}}{m_{2}}\right)^{2}\right)=\frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 m_{1}^{2} m_{2}^{2}}
$$

and

$$
f_{\frac{1}{2}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{-2}\left(\frac{M_{2}}{m_{2}}\right)^{-2}\right)=\frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 M_{1}^{2} M_{2}^{2}}
$$

and since

$$
\max \left\{f_{\frac{1}{2}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{2}\left(\frac{M_{2}}{m_{2}}\right)^{2}\right), f_{\frac{1}{2}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{-2}\left(\frac{M_{2}}{m_{2}}\right)^{-2}\right)\right\}=\frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 m_{1}^{2} m_{2}^{2}}
$$

then by (3.31) we get the desired result (3.34).

Using the inequality (3.34) and (1.7), we get

$$
\begin{align*}
& (0 \leq) 1-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{3.35}\\
\leq & T \max \left\{\left(1-\left(\frac{m_{1}}{M_{1}}\right)^{\frac{p}{2}}\left(\frac{m_{2}}{M_{2}}\right)^{\frac{q}{2}}\right)^{2},\left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2}\right\},
\end{align*}
$$

where $T=\max \left\{\frac{1}{p}, \frac{1}{q}\right\}$. Since

$$
\begin{aligned}
& \max \left\{\left(1-\left(\frac{m_{1}}{M_{1}}\right)^{\frac{p}{2}}\left(\frac{m_{2}}{M_{2}}\right)^{\frac{q}{2}}\right)^{2},\left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2}\right\} \\
= & \left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2},
\end{aligned}
$$

then by (3.35) we have the inequality

$$
\begin{equation*}
(0 \leq) 1-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \leq T\left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2} \tag{3.36}
\end{equation*}
$$

where $T=\max \left\{\frac{1}{p}, \frac{1}{q}\right\}, f, g: E \rightarrow \mathbb{R}$ are such that $f g, f^{p}, g^{q} \in L$ and they satisfy the condition (3.30). Using the inequality (3.34) and (1.10), we get

$$
\begin{align*}
(0 \leq &) 1-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{3.37}\\
& \leq \max \left\{\left[S\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right)-1\right]\left(\frac{M_{1}}{m_{1}}\right)^{-1}\left(\frac{M_{2}}{m_{2}}\right)^{-\frac{q}{p}},\right. \\
& {\left.\left[S\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)-1\right]\left(\frac{M_{1}}{m_{1}}\right)\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{p}}\right\} }
\end{align*}
$$

provided $f, g: E \rightarrow \mathbb{R}$ are such that $f g, f^{p}, g^{q} \in L$ and they satisfy the condition (3.30). Using the inequality (3.34) and (1.13), we get

$$
\begin{align*}
(0 \leq &) 1-\frac{A(f g)}{\left[A\left(f^{p}\right)\right]^{1 / p}\left[A\left(g^{q}\right)\right]^{1 / q}} \tag{3.38}\\
& \leq \max \left\{\left[K^{T}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right)-1\right]\left(\frac{M_{1}}{m_{1}}\right)^{-1}\left(\frac{M_{2}}{m_{2}}\right)^{-\frac{q}{p}},\right. \\
& {\left.\left[K^{T}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)-1\right]\left(\frac{M_{1}}{m_{1}}\right)\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{p}}\right\} }
\end{align*}
$$

where $T=\max \left\{\frac{1}{p}, \frac{1}{q}\right\}, f, g: E \rightarrow \mathbb{R}$ are such that $f g, f^{p}, g^{q} \in L$ and they satisfy the condition (3.30).

4. Applications for Integrals

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of subsets of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For a μ-measurable function $w: \Omega \rightarrow \mathbb{R}$, with $w(x) \geq 0$ for μ-a.e. (almost every) $x \in \Omega$, consider the Lebesgue space

$$
L_{w}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f \text { is } \mu \text {-measurable and } \int_{\Omega}|f(x)| w(x) d \mu(x)<\infty\right\} .
$$

For simplicity of notation, we write everywhere in the sequel $\int_{\Omega} w d \mu$ instead of $\int_{\Omega} w(x) d \mu(x)$. The same for other integrals involved below. We assume that $\int_{\Omega} w d \mu=1$.

Let f, g be μ-measurable functions with the property that there exists the constants $M, m>0$ such that

$$
\begin{equation*}
0<m \leq \frac{f}{g} \leq M<\infty \mu \text {-almost everywhere (a.e.) on } \Omega \text {. } \tag{4.39}
\end{equation*}
$$

If $f^{2}, g^{2} \in L_{w}(\Omega, \mu)$, then by (2.17) we have

$$
\begin{align*}
(0 & \leq) \int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu-\int_{\Omega} w f^{2(1-s)} g^{2 s} d \mu \int_{\Omega} w f^{2 s} g^{2(1-s)} d \mu \tag{4.40}\\
& \leq \max \left\{f_{s}\left(\left(\frac{m}{M}\right)^{2}\right), f_{s}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} \int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu
\end{align*}
$$

for any $s \in[0,1]$, where f_{s} is defined by (1.2), and, in particular,

$$
\begin{equation*}
(0 \leq) 1-\frac{\left(\int_{\Omega} w f g d \mu\right)^{2}}{\int_{\Omega} w f^{2} d \mu \int_{\Omega} w g^{2} d \mu} \leq \frac{1}{2}\left(\frac{M}{m}-1\right)^{2} \tag{4.41}
\end{equation*}
$$

Let f, g be μ-measurable functions with the property that there exists the constants m_{1}, M_{1}, m_{2}, M_{2} such that

$$
\begin{equation*}
0<m_{1} \leq f \leq M_{1}<\infty, 0<m_{2} \leq g \leq M_{2}<\infty \mu \text {-a.e. on } \Omega . \tag{4.42}
\end{equation*}
$$

Let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (3.31) we have the following reverse of Hölder's inequality

$$
\begin{align*}
(0 & \leq) 1-\frac{\int_{\Omega} w f g d \mu}{\left(\int_{\Omega} w f^{p} d \mu\right)^{1 / p}\left(\int_{\Omega} w g^{q} d \mu\right)^{1 / q}} \tag{4.43}\\
& \leq \max \left\{f_{\frac{1}{p}}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right), f_{\frac{1}{p}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\right\}
\end{align*}
$$

where $f_{\frac{1}{p}}$ is defined by (3.32).
In particular, we have the reverse of Cauchy-Bunyakovsky-Schwarz inequality

$$
\begin{equation*}
(0 \leq) 1-\frac{\int_{\Omega} w f g d \mu}{\left(\int_{\Omega} w f^{2} d \mu\right)^{1 / 2}\left(\int_{\Omega} w g^{2} d \mu\right)^{1 / 2}} \leq \frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 m_{1}^{2} m_{2}^{2}} \tag{4.44}
\end{equation*}
$$

From (3.36), we have, for $T=\max \left\{\frac{1}{p}, \frac{1}{q}\right\}$, that

$$
\begin{equation*}
(0 \leq) 1-\frac{\int_{\Omega} w f g d \mu}{\left(\int_{\Omega} w f^{p} d \mu\right)^{1 / p}\left(\int_{\Omega} w g^{q} d \mu\right)^{1 / q}} \leq T\left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2} \tag{4.45}
\end{equation*}
$$

5. Applications for Real Numbers

We consider the n-tuples of positive numbers $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right)$ and the probability distribution $p=\left(p_{1}, \ldots, p_{n}\right)$, i.e. $p_{i} \geq 0$ for any $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$.

If there exist the constants $m, M>0$ such that

$$
0<m \leq \frac{a_{i}}{b_{i}} \leq M<\infty \text { for any } i \in\{1, \ldots, n\}
$$

then by (4.40), for the counting discrete measure, we have

$$
\begin{align*}
(0 & \leq) \sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2}-\sum_{i=1}^{n} p_{i} a_{i}^{2(1-s)} b_{i}^{2 s} \sum_{i=1}^{n} p_{i} a_{i}^{2 s} b_{i}^{2(1-s)} \tag{5.46}\\
& \leq \max \left\{f_{s}\left(\left(\frac{m}{M}\right)^{2}\right), f_{s}\left(\left(\frac{M}{m}\right)^{2}\right)\right\} \sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2}
\end{align*}
$$

for any $s \in[0,1]$, where f_{s} is defined by (1.2). In particular,

$$
\begin{equation*}
(0 \leq) 1-\frac{\left(\sum_{i=1}^{n} p_{i} a_{i} b_{i}\right)^{2}}{\sum_{i=1}^{n} p_{i} a_{i}^{2} \sum_{i=1}^{n} p_{i} b_{i}^{2}} \leq \frac{1}{2}\left(\frac{M}{m}-1\right)^{2} . \tag{5.47}
\end{equation*}
$$

If there exists the constants $m_{1}, M_{1}, m_{2}, M_{2}$ such that

$$
\begin{equation*}
0<m_{1} \leq a_{i} \leq M_{1}<\infty, 0<m_{2} \leq b_{i} \leq M_{2}<\infty \text { for any } i \in\{1, \ldots, n\} \tag{5.48}
\end{equation*}
$$

and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then by (4.43) we have the following reverse of Hölder's inequality

$$
\begin{align*}
(0 & \leq) 1-\frac{\sum_{i=1}^{n} p_{i} a_{i} b_{i}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} p_{i} b_{i}^{q}\right)^{1 / q}} \tag{5.49}\\
& \leq \max \left\{f_{\frac{1}{p}}\left(\left[\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right]^{-1}\right), f_{\frac{1}{p}}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}\right)\right\},
\end{align*}
$$

where $f_{\frac{1}{p}}$ is defined by (3.32). In particular, we have the reverse of Cauchy-BunyakovskySchwarz inequality

$$
\begin{equation*}
(0 \leq) 1-\frac{\sum_{i=1}^{n} p_{i} a_{i} b_{i}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} p_{i} b_{i}^{2}\right)^{1 / 2}} \leq \frac{\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}}{2 m_{1}^{2} m_{2}^{2}} . \tag{5.50}
\end{equation*}
$$

From (4.45), we have for $T=\max \left\{\frac{1}{p}, \frac{1}{q}\right\}$, that

$$
\begin{equation*}
(0 \leq) 1-\frac{\sum_{i=1}^{n} p_{i} a_{i} b_{i}}{\left(\sum_{i=1}^{n} p_{i} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} p_{i} b_{i}^{q}\right)^{1 / q}} \leq T\left(\left(\frac{M_{1}}{m_{1}}\right)^{\frac{p}{2}}\left(\frac{M_{2}}{m_{2}}\right)^{\frac{q}{2}}-1\right)^{2} \tag{5.51}
\end{equation*}
$$

provided a and b satisfy the condition (5.48).

References

[1] D. Andrica, C. Badea: Grüss' inequality for positive linear functionals, Periodica Math. Hung., 19 (1998), 155-167.
[2] P. R. Beesack, J. E. Pečarić: On Jessen's inequality for convex functions, J. Math. Anal. Appl., 110 (1985), 536-552.
[3] D. K. Callebaut: Generalization of Cauchy-Schwarz inequality, J. Math. Anal. Appl., 12 (1965), 491-494.
[4] S. S. Dragomir: A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math.(Taiwan), 24 (1992), 101-106.
[5] S. S. Dragomir: On a reverse of Jessen's inequality for isotonic linear functionals, J. Ineq. Pure \& Appl. Math., 2 (3) (2001), Article 36.
[6] S. S. Dragomir: On the Jessen's inequality for isotonic linear functionals, Nonlinear Anal. Forum, 7 (2) (2002), 139-151.
[7] S. S. Dragomir: On the Lupaş-Beesack-Pečarić inequality for isotonic linear functionals, Nonlinear Funct. Anal. \& Appl., 7 (2) (2002), 285-298.
[8] S.S. Dragomir: Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc., 74 (3) (2006), 417-478.
[9] S. S. Dragomir: Additive refinements and reverses of Young's operator inequality with applications, Preprint RGMIA Res. Rep. Coll., 18 (2015), Art. A 165.
[10] S. S. Dragomir: Inequalities for Synchronous Functions and Applications, Constr. Math. Anal., 2 (3) (2019), 109-123.
[11] S. S. Dragomir, Ostrowski's Type Inequalities for the Complex Integral on Paths, Constr. Math. Anal., 3 (4) (2020), 125138.
[12] S. S. Dragomir, N. M. Ionescu: On some inequalities for convex-dominated functions, L'Anal. Num. Théor. L'Approx., 19 (1) (1990), 21-27.
[13] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University (2000).
[14] S. S. Dragomir, C. E. M. Pearce and J. E. Pečarić: On Jessen's and related inequalities for isotonic sublinear functionals, Acta. Sci. Math.(Szeged), 61 (1995), 373-382.
[15] S. Furuichi: Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc., 20 (2012), 46-49.
[16] F. Kittaneh, Y. Manasrah: Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262-269.
[17] F. Kittaneh, Y. Manasrah: Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59 (2011), 1031-1037.
[18] W. Liao, J. Wu and J. Zhao: New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19 (2) (2015), 467-479.
[19] A. Lupaş: A generalisation of Hadamard's inequalities for convex functions, Univ. Beograd. Elek. Fak., 544/576 (1976), 115-121.
[20] J .E. Pečarić: On Jessen's inequality for convex functions (III), J. Math. Anal. Appl., 156 (1991), 231-239.
[21] J. E. Pečarić, P. R. Beesack: On Jessen's inequality for convex functions (II), J. Math. Anal. Appl., 118 (1986), 125-144.
[22] J. E. Pečarić, S. S. Dragomir: A generalisation of Hadamard's inequality for isotonic linear functionals, Radovi Mat.(Sarjevo), 7 (1991), 103-107.
[23] J. E. Pečarić, I. Raşa: On Jessen's inequality, Acta. Sci. Math.(Szeged), 56 (1992), 305-309.
[24] W. Specht: Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[25] G. Toader, S. S. Dragomir: Refinement of Jessen's inequality, Demonstr. Math., 28 (1995), 329-334.
[26] M. Tominaga: Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
[27] G. Zuo, G. Shi and M. Fujii: Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

Sever S. Dragomir
Victoria University
School of Engineering \& Science
PO Box 14428, Melbourne City, MC 8001, Australia
University of the Witwatersrand
School of Computer Science \& Applied Mathematics
Private Bag 3, Johannesburg 2050, South Africa
ORCID: 0000-0003-2902-6805
Email address: sever.dragomir@vu.edu.au

[^0]: Received: 19.09.2023; Accepted: 28.11.2023; Published Online: 30.11.2023
 *Corresponding author: Sever S. Dragomir; sever.dragomir@vu.edu.au
 DOI: 10.33205/cma. 1362691

