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1. INTRODUCTION

Let L be a linear class of real-valued functions g : E → R having the properties:
(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R.
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E then f0 ∈ L.

An isotonic linear functional A : L → R is a functional satisfying
(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L and α, β ∈ R.
(A2) If f ∈ L and f ≥ 0, then A (f) ≥ 0.
(A3) The mapping A is said to be normalised if A (1) = 1.

Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy
a number of convenient properties. Thus, they provide, for example, Jessen’s inequality, which
is a functional form of Jensen’s inequality (see [2], [20] and [21]). For other inequalities for
isotonic functionals, see [1], [4]-[19] and [22]-[25]. For related results, see [10, 11]

We note that common examples of such isotonic linear functionals A are given by

A (g) =

∫
E

gdµ or A (g) =
∑
k∈E

pkgk,

where µ is a positive measure on E in the first case and E is a subset of the natural numbers N
in the second (pk ≥ 0, k ∈ E). As is known to all, the famous Young inequality for scalars says
that if a, b > 0 and ν ∈ [0, 1], then

(1.1) a1−νbν ≤ (1− ν) a+ νb

with equality if and only if a = b. The inequality (1.1) is also called ν-weighted arithmetic-
geometric mean inequality. We consider the function fν : [0,∞) → [0,∞) defined for ν ∈ (0, 1)
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by

(1.2) fν (x) = 1− ν + νx− xν .

For [m,M ] ⊂ [0,∞), define

(1.3) ∆ν (m,M) :=


fν (m) , M < 1

max {fν (m) , fν (M)} , m ≤ 1 ≤ M

fν (M) , 1 < m

and

(1.4) δν (m,M) :=


fν (M) , M < 1

0, m ≤ 1 ≤ M

fν (m) , 1 < m

.

In the recent paper [9], we obtained the following refinement and reverse for the additive
Young’s inequality:

(1.5) δν (m,M) a ≤ (1− ν) a+ νb− a1−νbν ≤ ∆ν (m,M) a

for positive numbers a, b with b
a ∈ [m,M ] ⊂ (0,∞) and ν ∈ [0, 1] , where ∆ν (m,M) and

δν (m,M) are defined by (1.3) and (1.4), respectively.
Kittaneh and Manasrah [16], [17] provided a refinement and an additive reverse for Young

inequality as follows:

(1.6) r
(√

a−
√
b
)2

≤ (1− ν) a+ νb− a1−νbν ≤ R
(√

a−
√
b
)2

,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} . The case ν = 1
2 reduces

(1.6) to an identity. Using (1.5) and (1.6), we have the simpler, however coarser bounds:

r ×


(
1−

√
M
)2

a, M < 1

0, m ≤ 1 ≤ M

(
√
m− 1)

2
a, 1 < m

(1.7)

≤ (1− ν) a+ νb− a1−νbν

≤R×


(1−

√
m)

2
a, M < 1

max

{
(1−

√
m)

2
,
(√

M − 1
)2}

a, m ≤ 1 ≤ M(√
M − 1

)2
a, 1 < m

.

We recall that Specht’s ratio is defined by [24]

(1.8) S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) , h ∈ (0, 1) ∪ (1,∞)

1, h = 1

.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h ̸= 1. The function is

decreasing on (0, 1) and increasing on (1,∞) . The following inequality provides a refinement
and a multiplicative reverse for Young’s inequality

(1.9) S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν ,
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where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}. The second inequality in (1.3) is due to Tominaga
[26], while the first one is due to Furuichi [15]. On making use of (1.5) and (1.9), we have the
following lower and upper bounds in terms of Specht’s ratio:

[S (Mr)− 1]Mνa, M < 1

0, m ≤ 1 ≤ M

[S (mr)− 1]mνa, 1 < m

(1.10)

≤ (1− ν) a+ νb− a1−νbν

≤


[S (m)− 1]mνa, M < 1

max {[S (m)− 1]mν , [S (M)− 1]Mν} a, m ≤ 1 ≤ M

[S (M)− 1]Mνa, 1 < m

.

We consider the Kantorovich’s constant defined by

(1.11) K (h) :=
(h+ 1)

2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any h > 0 and
K (h) = K

(
1
h

)
for any h > 0. The following multiplicative refinement and reverse of Young

inequality in terms of Kantorovich’s constant holds.

(1.12) Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν ,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} . The first inequality in
(1.12) was obtained by Zou et al. in [27], while the second by Liao et al. [18]. By making use
of (1.5) and (1.9), we have the following lower and upper bounds in terms of Kantorovich’s
constant: 

[Kr (M)− 1]Mνa, M < 1

0, m ≤ 1 ≤ M

[Kr (m)− 1]mνa, 1 < m

(1.13)

≤ (1− ν) a+ νb− a1−νbν

≤


[
KR (m)− 1

]
mνa, M < 1

max
{[
KR (m)− 1

]
mν ,

[
KR (M)− 1

]
Mν
}
a, m ≤ 1 ≤ M[

KR (M)− 1
]
Mνa, 1 < m

.

In this paper, we obtain some reverses of Callebaut and Hölder inequalities for isotonic
functionals via the reverse of Young’s inequality obtained in (1.5). Applications for integrals
and n-tuples of real numbers are provided as well.

2. REVERSES OF CALLEBAUT’S INEQUALITY

The functional version of Callebaut’s inequality states that

(2.14) A2 (fg) ≤ A
(
f2(1−ν)g2ν

)
A
(
f2νg2(1−ν)

)
≤ A

(
f2
)
A
(
g2
)

provided that f2, g2, f2(1−ν)g2ν , f2νg2(1−ν), fg ∈ L for some ν ∈ [0, 1]. For the discrete and
integral versions in one real variable, see [3].

We start with the following result:
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Theorem 2.1. Let A, B : L → R be two normalised isotonic functionals. If f, g : E → R are such that
f ≥ 0, g > 0, f2, g2, f2(1−ν)g2ν , f2νg2(1−ν) ∈ L for some ν ∈ [0, 1] and

(2.15) 0 < m ≤ f

g
≤ M < ∞

for some constants m, M, then

(0 ≤) (1− ν)A
(
f2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f2
)
−A

(
f2(1−ν)g2ν

)
B
(
f2νg2(1−ν)

)
(2.16)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

A
(
f2
)
B
(
g2
)
,

where fν is defined by (1.2). In particular,

(0 ≤)A
(
f2
)
A
(
g2
)
−A

(
f2(1−ν)g2ν

)
A
(
f2νg2(1−ν)

)
(2.17)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

A
(
f2
)
A
(
g2
)
.

Proof. For any x, y ∈ E, we have

m2 ≤ f2 (x)

g2 (x)
,
f2 (y)

g2 (y)
≤ M2.

Consider

a =
f2 (x)

g2 (x)
, b =

f2 (y)

g2 (y)
,

then b
a ∈

[(
m
M

)2
,
(
M
m

)2]
and by the inequality (1.5), we have

(0 ≤) (1− ν)
f2 (x)

g2 (x)
+ ν

f2 (y)

g2 (y)
−
(
f2 (x)

g2 (x)

)1−ν (
f2 (y)

g2 (y)

)ν

(2.18)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

f2 (x)

g2 (x)

for any x, y ∈ E. Now, if we multiply (2.18) by g2 (x) g2 (y) > 0 then we get

(1− ν) g2 (y) f2 (x) + νf2 (y) g2 (x)− f2(1−ν) (x) g2ν (x) f2ν (y) g2(1−ν) (y)(2.19)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

f2 (x) g2 (y)

for any x, y ∈ E. Fix y ∈ E. Then by (2.19), we have in the order of L that

(1− ν) g2 (y) f2 + νf2 (y) g2 − f2ν (y) g2(1−ν) (y) f2(1−ν)g2ν(2.20)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

g2 (y) f2.

If we take the functional A in (2.19), then we get

(1− ν) g2 (y)A
(
f2
)
+ νf2 (y)A

(
g2
)
− f2ν (y) g2(1−ν) (y)A

(
f2(1−ν)g2ν

)
≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

g2 (y)A
(
f2
)
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for any y ∈ E. This inequality can be written in the order of L as

(1− ν)A
(
f2
)
g2 + νA

(
g2
)
f2 −A

(
f2(1−ν)g2ν

)
f2νg2(1−ν)(2.21)

≤max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

A
(
f2
)
g2.

Now, if we take the functional B in (2.21), then we get the desired result (2.16). □

Corollary 2.1. Let A, B : L → R be two normalised isotonic functionals. If f, g : E → R are such
that f ≥ 0, g > 0, f2, g2, fg ∈ L and the condition (2.15) holds true, then

(0 ≤)
1

2

[
A
(
f2
)
B
(
g2
)
+A

(
g2
)
B
(
f2
)]

−A (fg)B (fg)(2.22)

≤1

2

(
M

m
− 1

)2

A
(
f2
)
B
(
g2
)
.

In particular,

(2.23) (0 ≤)A
(
f2
)
A
(
g2
)
−A2 (fg) ≤ 1

2

(
M

m
− 1

)2

A
(
f2
)
A
(
g2
)
,

or, equivalently

(2.24) (0 ≤) 1− A2 (fg)

A (f2)A (g2)
≤ 1

2

(
M

m
− 1

)2

.

Proof. Observe that

f 1
2

((m
M

)2)
=

m2 +M2

2M2
− m

M
=

(M −m)
2

2M2

and

fν

((
M

m

)2
)

=
m2 +M2

2m2
− M

m
=

(M −m)
2

2m2
.

Therefore

max

{
fν

((m
M

)2)
, fν

((
M

m

)2
)}

=
(M −m)

2

2m2
=

1

2

(
M

m
− 1

)2

and by (2.16), we get the desired result (2.22). □

Remark 2.1. We observe that the inequality (2.23) can be written as

(2.25) A
(
f2
)
A
(
g2
) [

1− 1

2

(
M

m
− 1

)2
]
≤ A2 (fg) .

We observe that the function φ : [1,∞) → R, φ (t) = 1 − 1
2 (t− 1)

2 is positive for t ∈
(
1, 1 +

√
2
)

and negative for t ∈ [1,∞). Therefore, the inequality (2.25) is of interest only in the case that M
m ∈(

1, 1 +
√
2
)
.

On using the inequality (2.16) and (1.7), we get

(0 ≤) (1− ν)A
(
f2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f2
)
−A

(
f2(1−ν)g2ν

)
B
(
f2νg2(1−ν)

)
(2.26)

≤Rmax

{(
1− m

M

)2
,

(
M

m
− 1

)2
}
A
(
f2
)
B
(
g2
)
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and since

max

{(
1− m

M

)2
,

(
M

m
− 1

)2
}

=

(
M

m
− 1

)2

,

then we get from (2.26) that

(0 ≤) (1− ν)A
(
f2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f2
)
−A

(
f2(1−ν)g2ν

)
B
(
f2νg2(1−ν)

)
(2.27)

≤R

(
M

m
− 1

)2

A
(
f2
)
B
(
g2
)

provided f ≥ 0, g > 0, f2, g2, f2(1−ν)g2ν , f2νg2(1−ν) ∈ L for some ν ∈ [0, 1].
On using the inequality (2.16) and (1.10), we get the following reverse of Callebaut’s inequal-

ity in terms of Specht’s ratio

(0 ≤) (1− ν)A
(
f2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f2
)
−A

(
f2(1−ν)g2ν

)
B
(
f2νg2(1−ν)

)
(2.28)

≤ max

{[
S

((m
M

)2)
− 1

](m
M

)2ν
,

[
S

((
M

m

)2
)

− 1

](
M

m

)2ν
}
A
(
f2
)
B
(
g2
)

provided f ≥ 0, g > 0, f2, g2, f2(1−ν)g2ν , f2νg2(1−ν) ∈ L for some ν ∈ [0, 1].
Finally, on using the inequality (2.16) and (1.13), we get the following reverse of Callebaut’s

inequality in terms of Kantorovich’s constant

(0 ≤) (1− ν)A
(
f2
)
B
(
g2
)
+ νA

(
g2
)
B
(
f2
)
−A

(
f2(1−ν)g2ν

)
B
(
f2νg2(1−ν)

)
(2.29)

≤max

{[
KR

((m
M

)2)
− 1

](m
M

)2ν
,

[
KR

((
M

m

)2
)

− 1

](
M

m

)2ν
}

×A
(
f2
)
B
(
g2
)

provided f ≥ 0, g > 0, f2, g2, f2(1−ν)g2ν , f2νg2(1−ν) ∈ L for some ν ∈ [0, 1].

3. REVERSES OF HÖLDER’S INEQUALITY

We have the following additive reverse of Hölder’s inequality:

Theorem 3.2. Let A : L → R be a normalised isotonic functional and p, q > 1 with 1
p + 1

q = 1. If f,
g : E → R are such that fg, fp, gq ∈ L and

(3.30) 0 < m1 ≤ f ≤ M1 < ∞, 0 < m2 ≤ g ≤ M2 < ∞,

then

(0 ≤)1− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

(3.31)

≤max

{
f 1

p

([(
M1

m1

)p(
M2

m2

)q]−1
)
, f 1

p

((
M1

m1

)p(
M2

m2

)q)}
,

where f 1
p

is defined by

(3.32) f 1
p
(x) =

1

q
+

1

p
x− x

1
p .
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Proof. Observe that, by (3.30), we have

mp
1 ≤ A (fp) ≤ Mp

1 and mq
2 ≤ A (gq) ≤ Mq

2 .

Also (
m1

M1

)p

≤ fp

A (fp)
≤
(
M1

m1

)p

and
(
m2

M2

)q

≤ gq

A (gq)
≤
(
M2

m2

)q

giving that [(
M1

m1

)p(
M2

m2

)q]−1

≤
fp

A(fp)
gq

A(gq)

≤
(
M1

m1

)p(
M2

m2

)q

.

Using the inequality (1.5) for b = fp

A(fp) , a = gq

A(gq) , ν = 1
p , M =

(
M1

m1

)p (
M2

m2

)q
and m =[(

M1

m1

)p (
M2

m2

)q]−1

, we have

0 ≤ 1

q

gq

A (gq)
+

1

p

fp

A (fp)
− fg

[A (fp)]
1/p

[A (gq)]
1/q

(3.33)

≤ max

{
f 1

p

([(
M1

m1

)p(
M2

m2

)q]−1
)
, f 1

p

((
M1

m1

)p(
M2

m2

)q)}
gq

A (gq)
.

If we take the functional A in (3.33), then we get

0 ≤ 1

q

A (gq)

A (gq)
+

1

p

A (fp)

A (fp)
− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

≤ max

{
f 1

p

([(
M1

m1

)p(
M2

m2

)q]−1
)
, f 1

p

((
M1

m1

)p(
M2

m2

)q)}
A (gq)

A (gq)
,

which is equivalent to the desired result (3.30). □

The following reverse of Cauchy-Bunyakovsky-Schwarz inequality for isotonic functionals
holds:

Corollary 3.2. Let A : L → R be a normalised isotonic functional, f, g : E → R are such that fg, f2,
g2 ∈ L and the condition (3.30) is valid, then

(3.34) (0 ≤) 1− A (fg)

[A (f2)]
1/2

[A (g2)]
1/2

≤ (M1M2 −m1m2)
2

2m2
1m

2
2

.

Proof. For p = 2, we have f 1
2
(x) = 1+x

2 −
√
x, x ≥ 0. Then

f 1
2

((
M1

m1

)2(
M2

m2

)2
)

=
(M1M2 −m1m2)

2

2m2
1m

2
2

and

f 1
2

((
M1

m1

)−2(
M2

m2

)−2
)

=
(M1M2 −m1m2)

2

2M2
1M

2
2

and since

max

{
f 1

2

((
M1

m1

)2(
M2

m2

)2
)
, f 1

2

((
M1

m1

)−2(
M2

m2

)−2
)}

=
(M1M2 −m1m2)

2

2m2
1m

2
2

,

then by (3.31) we get the desired result (3.34). □



256 Sever S. Dragomir

Using the inequality (3.34) and (1.7), we get

(0 ≤) 1− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

(3.35)

≤T max


(
1−

(
m1

M1

) p
2
(
m2

M2

) q
2

)2

,

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2
 ,

where T = max
{

1
p ,

1
q

}
. Since

max


(
1−

(
m1

M1

) p
2
(
m2

M2

) q
2

)2

,

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2


=

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2

,

then by (3.35) we have the inequality

(3.36) (0 ≤) 1− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

≤ T

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2

,

where T = max
{

1
p ,

1
q

}
, f, g : E → R are such that fg, fp, gq ∈ L and they satisfy the condition

(3.30). Using the inequality (3.34) and (1.10), we get

(0 ≤)1− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

(3.37)

≤max

{[
S

([(
M1

m1

)p(
M2

m2

)q]−1
)

− 1

](
M1

m1

)−1(
M2

m2

)− q
p

,

[
S

((
M1

m1

)p(
M2

m2

)q)
− 1

](
M1

m1

)(
M2

m2

) q
p

}

provided f, g : E → R are such that fg, fp, gq ∈ L and they satisfy the condition (3.30). Using
the inequality (3.34) and (1.13), we get

(0 ≤)1− A (fg)

[A (fp)]
1/p

[A (gq)]
1/q

(3.38)

≤max

{[
KT

([(
M1

m1

)p(
M2

m2

)q]−1
)

− 1

](
M1

m1

)−1(
M2

m2

)− q
p

,

[
KT

((
M1

m1

)p(
M2

m2

)q)
− 1

](
M1

m1

)(
M2

m2

) q
p

}
,

where T = max
{

1
p ,

1
q

}
, f, g : E → R are such that fg, fp, gq ∈ L and they satisfy the condition

(3.30).
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4. APPLICATIONS FOR INTEGRALS

Let (Ω,A, µ) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and
a countably additive and positive measure µ on A with values in R∪{∞} . For a µ-measurable
function w : Ω → R, with w (x) ≥ 0 for µ -a.e. (almost every) x ∈ Ω, consider the Lebesgue
space

Lw (Ω, µ) := {f : Ω → R, f is µ-measurable and
∫
Ω

|f (x)|w (x) dµ (x) < ∞}.

For simplicity of notation, we write everywhere in the sequel
∫
Ω
wdµ instead of

∫
Ω
w (x) dµ (x).

The same for other integrals involved below. We assume that
∫
Ω
wdµ = 1.

Let f, g be µ-measurable functions with the property that there exists the constants M,m > 0
such that

(4.39) 0 < m ≤ f

g
≤ M < ∞ µ-almost everywhere (a.e.) on Ω.

If f2, g2 ∈ Lw (Ω, µ), then by (2.17) we have

(0 ≤)

∫
Ω

wf2dµ

∫
Ω

wg2dµ−
∫
Ω

wf2(1−s)g2sdµ

∫
Ω

wf2sg2(1−s)dµ(4.40)

≤max

{
fs

((m
M

)2)
, fs

((
M

m

)2
)}∫

Ω

wf2dµ

∫
Ω

wg2dµ

for any s ∈ [0, 1] , where fs is defined by (1.2), and, in particular,

(4.41) (0 ≤) 1−
(∫

Ω
wfgdµ

)2∫
Ω
wf2dµ

∫
Ω
wg2dµ

≤ 1

2

(
M

m
− 1

)2

.

Let f, g be µ-measurable functions with the property that there exists the constants m1, M1,
m2, M2 such that

(4.42) 0 < m1 ≤ f ≤ M1 < ∞, 0 < m2 ≤ g ≤ M2 < ∞ µ-a.e. on Ω.

Let p, q > 1 with 1
p +

1
q = 1, then by (3.31) we have the following reverse of Hölder’s inequality

(0 ≤)1−
∫
Ω
wfgdµ(∫

Ω
wfpdµ

)1/p (∫
Ω
wgqdµ

)1/q(4.43)

≤max

{
f 1

p

([(
M1

m1

)p(
M2

m2

)q]−1
)
, f 1

p

((
M1

m1

)p(
M2

m2

)q)}
,

where f 1
p

is defined by (3.32).
In particular, we have the reverse of Cauchy-Bunyakovsky-Schwarz inequality

(4.44) (0 ≤) 1−
∫
Ω
wfgdµ(∫

Ω
wf2dµ

)1/2 (∫
Ω
wg2dµ

)1/2 ≤ (M1M2 −m1m2)
2

2m2
1m

2
2

.

From (3.36), we have, for T = max
{

1
p ,

1
q

}
, that

(4.45) (0 ≤) 1−
∫
Ω
wfgdµ(∫

Ω
wfpdµ

)1/p (∫
Ω
wgqdµ

)1/q ≤ T

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2

.
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5. APPLICATIONS FOR REAL NUMBERS

We consider the n-tuples of positive numbers a = (a1, ..., an) , b = (b1, ..., bn) and the proba-
bility distribution p = (p1, ..., pn) , i.e. pi ≥ 0 for any i ∈ {1, ..., n} with

∑n
i=1 pi = 1.

If there exist the constants m, M > 0 such that

0 < m ≤ ai
bi

≤ M < ∞ for any i ∈ {1, ..., n} ,

then by (4.40), for the counting discrete measure, we have

(0 ≤)

n∑
i=1

pia
2
i

n∑
i=1

pib
2
i −

n∑
i=1

pia
2(1−s)
i b2si

n∑
i=1

pia
2s
i b

2(1−s)
i(5.46)

≤max

{
fs

((m
M

)2)
, fs

((
M

m

)2
)}

n∑
i=1

pia
2
i

n∑
i=1

pib
2
i

for any s ∈ [0, 1] , where fs is defined by (1.2). In particular,

(5.47) (0 ≤) 1−
(
∑n

i=1 piaibi)
2∑n

i=1 pia
2
i

∑n
i=1 pib

2
i

≤ 1

2

(
M

m
− 1

)2

.

If there exists the constants m1, M1, m2, M2 such that

(5.48) 0 < m1 ≤ ai ≤ M1 < ∞, 0 < m2 ≤ bi ≤ M2 < ∞ for any i ∈ {1, ..., n}

and p, q > 1 with 1
p +

1
q = 1, then by (4.43) we have the following reverse of Hölder’s inequality

(0 ≤)1−
∑n

i=1 piaibi

(
∑n

i=1 pia
p
i )

1/p
(
∑n

i=1 pib
q
i )

1/q
(5.49)

≤max

{
f 1

p

([(
M1

m1

)p(
M2

m2

)q]−1
)
, f 1

p

((
M1

m1

)p(
M2

m2

)q)}
,

where f 1
p

is defined by (3.32). In particular, we have the reverse of Cauchy-Bunyakovsky-
Schwarz inequality

(5.50) (0 ≤) 1−
∑n

i=1 piaibi

(
∑n

i=1 pia
2
i )

1/2
(
∑n

i=1 pib
2
i )

1/2
≤ (M1M2 −m1m2)

2

2m2
1m

2
2

.

From (4.45), we have for T = max
{

1
p ,

1
q

}
, that

(5.51) (0 ≤) 1−
∑n

i=1 piaibi

(
∑n

i=1 pia
p
i )

1/p
(
∑n

i=1 pib
q
i )

1/q
≤ T

((
M1

m1

) p
2
(
M2

m2

) q
2

− 1

)2

provided a and b satisfy the condition (5.48).
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[21] J. E. Pečarić, P. R. Beesack: On Jessen’s inequality for convex functions (II), J. Math. Anal. Appl., 118 (1986), 125–144.
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