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A B S T R A C T

In medical image segmentation, accuracy is commonly high for tasks involving clear boundary partitioning
features, as seen in the segmentation of X-ray images. However, for objects with less obvious boundary
partitioning features, such as skin regions with similar color textures or CT images of adjacent organs with
similar Hounsfield value ranges, segmentation accuracy significantly decreases. Inspired by the human visual
system, we proposed the multi-scale detail enhanced network. Firstly, we designed a detail enhanced module
to enhance the contrast between central and peripheral receptive field information using the superposition
of two asymmetric convolutions in different directions and a standard convolution. Then, we expanded the
scale of the module into a multi-scale detail enhanced module. The difference between central and peripheral
information at different scales makes the network more sensitive to changes in details, resulting in more
accurate segmentation. In order to reduce the impact of redundant information on segmentation results and
increase the effective receptive field, we proposed the channel multi-scale module, adapted from the Res2net
module. This creates independent parallel multi-scale branches within a single residual structure, increasing
the utilization of redundant information and the effective receptive field at the channel level. We conducted
experiments on four different datasets, and our method outperformed the common medical image segmentation
algorithms currently being used. Additionally, we carried out detailed ablation experiments to confirm the
effectiveness of each module.
1. Introduction

Accurately locating lesions or abnormal information in a large
number of medical images is a challenging task for physicians [1].
Accurate medical image segmentation models can significantly reduce
workload and pressure for physicians [2]. In recent years, various types
of medical image segmentation models have emerged, among which
Unet [3] is widely used due to its excellent multi-layer information
fusion capability. Different feature layers possess different feature in-
formation, deeper feature maps contain richer semantic information
and focus more on the location and shape of the target object, while
shallow feature maps contain more detailed information, facilitating
accurate boundary determination [4]. Unet fuses feature information
from different layers using skip connections to generate precise pre-
diction results [3]. Combined with various modules that enhance the
feature extraction capability of the network, such as transformer [5,6],
MLP [7], and attention mechanism [8,9], various types of medical
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image segmentation models with Unet-based architecture have been
frequently proposed.

However, conventional medical image segmentation models have
two limitations. Firstly, as shown in Fig. 1, there are high redundancy
and similarity in feature information across channels. The channel
dimension of the feature map continuously expands throughout the
encoder stage, leading to an increase in redundant information. Fre-
quent cross-level feature fusion operations in Unet-shape also amplify
the impact of redundancy, diluting important details of information
and affecting the ability to detect the precise location of the target
object. The multi-scale subtraction unit (MSU) is designed to reduce the
impact of redundant information and obtain rich multi-scale difference
information [4]. Nevertheless, this approach does not explicitly address
the issue of reducing redundant information at the source. Secondly,
single-scale convolutional kernels limit the network’s ability to obtain
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Fig. 1. Redundant information across channels.

target contextual information [10]. Based on the scale-space theory,
the superposition of convolutional kernels of multiple sizes can collect
subtle size variations and detailed information, bringing better feature
extraction capability to the network. Therefore, some studies [11–14]
have designed parallel multi-branch networks to introduce multi-scale
information to the network, while others [3,15] have used serial skip
connection networks to accomplish the fusion of multi-scale informa-
tion data. However, these methods generally use standard convolution
within a single scale, which may limit the feature extraction capability
of multi-scale structures.

To address the aforementioned issues, a new multi-scale detail
enhanced network (MSDEnet) was proposed. First, for redundant in-
formation, the channel multi-scale (CMS) module was improved from
Res2net module. CMS employs independent multi-scale branch con-
volution operations for feature extraction to reduce the impact of
redundant feature information. To enhance the ability of the network
to extract multi-scale details, the detail enhanced (DE) module was
designed, inspired by human visual features. The peripheral informa-
tion can help determine the relative position of the observation target,
and can also be contrasted with the central information to highlight
features such as the detailed information of the observation target. In
this study, two different directions of asymmetric convolution and a
standard convolution superposition are used to enhance the skeleton
of the convolution kernel. The structure is characterized by a strong
central and weak peripheral distribution within the convolutional ker-
nel, which is similar to the distribution of the central and peripheral
receptive fields in humans. This characteristic is beneficial to the
feature extraction ability of the multi-scale structure. Based on this, we
extend the structure to the multi-scale level, and the multi-scale detail
enhanced (MSDE) module was constructed. By collecting information
at different scales, better segmentation performance can be further
achieved.

The main contributions of this study are summarized as follows:

(1) We present the Multi-scale detail enhanced network (MSDEnet).
The MSDEnet benefits from a unique coding structure and de-
tail enhancement mechanism, which improves the network’s
sensitivity to detailed information and achieves higher preci-
sion medical image segmentation. Our experiments across four
datasets showcase optimal performance, with achievements on
15 out of 20 metrics.

(2) We present the Multi-scale detail enhanced module (MSDE).
The MSDE module contains multiple DE modules at different
scales, and the structure creates diffuse comparison of center
and periphery information, which can capture small feature
information changes more acutely.

(3) We present the Channel multi-scale module (CMS). The CMS
module reduces the generation of redundant information from
the encoder stage by means of an independent and parallel
multi-scale structure within the channel. This structure improves
the utilization efficiency of redundant information while reduc-
ing the number of times of feature information reuse, avoid-
ing the redundant information in the subsequent addition or
concatenation, the important information of the boundary is
seriously diluted, thus leading to boundary blurring.
2

2. Related work

2.1. Medical image segmentation network

In the field of medical image segmentation, Unet [3] is proposed
to solve the problem that medical images usually contain noise and
have blurred boundaries. The structure proves to be the most efficient
and versatile medical image segmentation backbone network available.
Since then, there has been a proliferation of improved and complemen-
tary network structures based on the Unet. Unet++ [16] uses dense
connections to link all layers in the network together, and the decoder
feature information is progressively enriched before being passed into
the encoder, which can effectively capture the fine-grained details of
foreground objects.

The attention mechanism draws on the characteristics of human vi-
sion to assign more weight to more important information. Thereafter,
researchers have continued to propose multiple network models based
on Unet that incorporate various types of attention mechanisms [8,17–
19]. For example, Att-Unet [8] incorporates an attention module to
filter the feature information from the encoder before the decoder fuses
the shallow feature information, suppressing irrelevant regions in the
input image while highlighting salient features in specific local regions
to improve the sensitivity of the model and the accuracy of prediction.

After that, the Transformer [20] changes the situation of CNN dom-
ination in the field of computer vision. Because of the receptive field
limitation, CNN cannot make good use of global information but has
excellent local information extraction ability, while the Transformer is
the opposite of CNN. TransU-net [5] combines both, using CNN for shal-
low feature extraction, and then converting the feature map into token
for global information encoding. After transformer, MLP-mixer [21] is
introduced to bring fully connected structures into the field of computer
vision once again, with lower inductive bias. Unext [7] introduces
and re-engineers the MLP to maintain performance while reducing the
number of parameters.

Simultaneously, the novel research based on the fusion of CNNs,
transformer and MLP as, combined with cloud computing, image statis-
tical feature information and other techniques, provides reference and
thinking for the field [22–25].

2.2. Multi-scale structure

In the real world, many objects and structures have multi-scale
characteristics, meaning they exhibit different properties or features at
different scales or levels of detail [26]. To better capture these multi-
scale characteristics in computer vision models, scale space theory has
been proposed and employed. This theory suggests that incorporating
multi-scale convolution kernels into models can help better capture
the key characteristics of images at multiple scales [27]. There are
many types of multi-scale structures that have been developed based
on this theory. These structures can be divided into intra-layer multi-
scale structures and inter-layer multi-scale structures based on their
form. Intra-layer multi-scale structures are usually in the form of plug-
in modules that can be integrated into existing models to allow them to
extract features at multiple scales, such as Inception [12], ASPP [28],
DenseASPP [29] and RFB [30]. The latter is mainly reflected in the
codec network for end-to-end feature fusion, such as the Unet family [3,
5,7,10,16,31,32].

Res2net [26] introduces a multi-scale structure to the channel level,
which is different from previous multi-scale structures and does not
increase the computational cost significantly. However, the multi-scale
branches in the Res2net module are not independent of each other,
which can lead to redundant information reuse in different branches.
To address this limitation, CMS was proposed in this study. CMS
separates the different multi-scale branches and increases the size of
the convolution kernel.
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Fig. 2. Comparing the effect about number of layers and size of kernel.

2.3. Effective receptive field

For segmentation tasks, the receptive field is a concept of great
interest. Just like the human visual field, the receptive field reflects
the perceived range of the convolutional kernel for the current input
feature map. If the range is small, then the information received is one-
sided and localized. If the receptive field is increased, then more global
information can be obtained, which is more conducive to the judgment
of the current situation [15,33–37].

Most existing CNN models expand the size of the receptive field
by stacking convolutional kernels with pooling layers. However, the
size of the effective receptive field (ERF) is related to the size of the
convolutional kernel 𝐾 and the depth of the model 𝐿, which is propor-
tional to 𝐾 and inversely proportional to 𝐿 [38]. In Fig. 2, the ERF is
more sensitive to the size of the convolutional kernel, and increasing
the depth is not as intuitive as increasing the size of the convolutional
kernel. In addition, increasing the depth causes optimization issues.
Although the residual mechanism solves the limitation of network
degradation, the ERF of stacking small convolutional kernels is still
not necessarily large [39]. Thus, this study replaced the superposition
of 3 × 3 convolution in the Res2net module with a large convolution
kernel to obtain a larger ERF. To reduce parameters and a floating
point operations per second (FLOPS) associated with large convolution
kernels, the deeply separable convolution was used in this study.

3. Method

As shown Fig. 3, the MSDEnet architecture includes five CMS as en-
coder for multi-level feature extraction. The output feature information
is then input into MSDE. In the MSDE, the feature information is first
passed through 𝑛 (𝑛 is the number of multi-scale scales) independent
and different scale DE. The results are concatenated and passed to the
decoder.

The decoder gradually performs end-to-end feature fusion from
bottom-up, and the bilinear interpolation method is selected for up-
sampling throughout the procedure. The output of each layer at the
decoding end is supervised during training. In Fig. 3, the Decoder
consists of two parts: (i) bilinear interpolation of the output charac-
teristic maps of the lower layers, which are then concatenated with the
output characteristic maps of the jump connections of this layer; (ii)
two consecutive 3 × 3 convolutions.

Due to the characteristics of medical image segmentation tasks,
there are usually large differences between different datasets, such
as data distribution or background differences. In order to adapt to
the those, we choose to use Bce-Dice Loss functions. Because Bce
Loss has better stability at the beginning of training and helps to
speed up the convergence of the model. Dice Loss, on the other hand,
focuses more on pixel-level similarity, which can motivate the model to
generate smoother and continuous segmentation results, and Bce-Dice
loss function combines the advantages of both. This function is listed as
follows:

𝐽 (𝐰) = − 1
𝑁
∑

[

𝑦𝑛 log �̂�𝑛 +
(

1 − 𝑦𝑛
)

log
(

1 − �̂�𝑛
)]

(1)
3

𝑁 𝑛=1
The loss of prediction maps and real labels in each layer is used as the
total loss, and weights are assigned to the prediction results of different
depths according to the ratio of 1 : 0.5 : 0.25 : 0.125, and the deeper
the depth, the smaller the weighting coefficients are.

Finally, the output results of the final 4-layer decoder are jointly
passed into the loss function for supervision.

3.1. Channel multi-scale module

In medical image segmentation network, there are frequent ad-
ditions or concatenations, which may amplify the impact of the re-
dundant information generated during feature extraction. Excessive
redundant information can dilute important boundary information and
lead to blurred boundaries in segmentation results.

The channel multi-scale module structure is shown in Fig. 4(b). We
make targeted improvements to the Res2net module with the aim of
optimizing the reuse of redundant information and increasing ERF in
it. As in the Res2net module, we divide the input feature map into input
subsets, denoted as 𝑥𝑖, where 𝑖 ∈ {1, 2,… , 𝑠}. The difference is that no
information fusion between subsets is performed in the CMS. Each 𝑥𝑖 is
convolved by 𝐶𝑜𝑛𝑣(2𝑖−1)×(2𝑖−1) to obtain the corresponding output subset
𝑦𝑖. The process can be expressed as:

𝑦𝑖 = 𝐶𝑜𝑛𝑣(2𝑖−1)×(2𝑖−1)
(

𝑥𝑖
)

𝑖 = 1, 2, 3,… , 𝑠. (2)

The advantage of CMS is that it not only reduces the generation
of redundant information, but also makes full use of the existing
redundant information for multi-scale feature extraction as much as
possible. The cascaded 3 × 3 convolution is replaced with a larger
convolution kernel that is more favorable for segmentation, which gives
the backbone a larger ERF. The introduction of depthwise separable
convolution, which consists of depthwise convolution (DW) and point-
wise convolution (PW), reduces the increase in computational cost
associated with large convolution kernels while ensuring accuracy.

3.2. Multi-scale detail enhanced module

People have two types of vision, central vision and peripheral
vision. Central vision is used to look directly at things to observe
details, while peripheral vision shows other areas of the visual field,
that is, the peripheral area that the human eye can see [40]. Brain
imaging studies have found that input from the peripheral visual field
can be decoded in the primary visual cortex, which characterizes the
central visual field, suggesting the existence of a top-down peripheral-
central feedback mechanism in visual discrimination tasks such as
shape, color, and object category judgments [41]. The study found that
the use of asymmetric convolution in different directions and standard
convolution superimposed in parallel can produce different degrees of
attention inside and outside on the receptive field, which is very similar
to human central and peripheral vision. As a result, the detail enhanced
module is designed.

Usually in most studies, the superposition of (2𝑖 − 1) × 1 and 1 ×
(2𝑖 − 1) asymmetric convolution replace standard convolution in order
to improve the inference speed without reducing the representational
power, as in Inception-V3 [42]. On the other hand, the use of 3 × 1,
1 × 3, and 3 × 3 superimposed to enhance the skeleton of convolution
kernel to improve feature extraction has been shown to be effective
compared to 3 × 3 convolution [39]. We then extend it to (2𝑖 − 1) ×
[2 (𝑖 − 1) − 1] and [2 (𝑖 − 1) − 1] × (2𝑖 − 1) as the skeleton reinforcement
of the large convolution kernel. For several 2D convolutional kernels
acting on the same input, with the same stride and compatible size, we
can add the parameters of these kernels at the corresponding positions
to obtain an equivalent convolutional kernel to obtain the same output.
This is the additivity of 2D convolution kernels [43],

𝐼 ∗ 𝐾1 + 𝐼 ∗ 𝐾2 +⋯ + 𝐼 ∗ 𝐾𝑛 = 𝐼 ∗
𝑛

⨁

𝐾𝑖 (3)

𝑖=1
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Fig. 3. Overview of the MSDEnet architecture.
Fig. 4. Comparison between the Res2net module and CMS module.

where 𝐼 is a input matrix, 𝐾𝑖 is compatible sizes 2D convolution
kernels, 𝑛 is the number of 𝐾, and ⊕ is the corresponding positions
element-wise addition of the kernel parameters. Here compatible means
that we can ‘‘padding’’ or ‘‘patch’’ the smaller convolutional kernels into
larger ones. Formally, We denote the larger convolutional kernel by 𝐿
and the smaller convolutional kernel by 𝑆, so

𝐻𝐿 ≥ 𝐻𝑆 , 𝑊𝐿 ≥ 𝑊𝑆 , 𝑀𝐿 = 𝑃𝑎𝑡𝑐ℎ
(

𝑀𝑆
)

(4)

where 𝐻 and 𝑊 represent the height and width of the convolution
kernel, respectively, and 𝑀 represents the shape of the convolution
kernel. E.g., 3 × 1 and 1 × 3 kernels are compatible with 3 × 3.

We split 𝐷𝐸 into three separate and parallel branches. For (2𝑖 − 1)×
(2𝑖 − 1) convolution branch, we call it an 𝐸𝐵 (Enhanced Base). Simi-
larly, For (2𝑖 − 1) × (2𝑖 − 1) and (2𝑖 − 1) × (2𝑖 − 1) convolution branches,
we call them 𝐸 (Enhanced Horizontal) and 𝐸 (Enhanced Vertical)
4

𝐻 𝑉
respectively. For 𝐷𝐸, 𝐹𝑖𝑛 ∈ R𝐶×𝐻×𝑊 as input and we can express it as
follows:

𝐷𝐸 = 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐸𝐵
(

𝐹𝑖𝑛
)

, 𝐸𝐻
(

𝐹𝑖𝑛
)

, 𝐸𝑉
(

𝐹𝑖𝑛
))

(5)

It is obvious that the output of 𝐷𝐸 consists of three parts, the 𝐶𝑃
(the Central Part), 𝑃𝑆𝑃 (the Peripheral Skeleton Part) and 𝐸𝑃 (the
Edge Part). 𝑃𝑆𝑃 contains 𝑃𝑆𝑃𝐻 in the horizontal direction and 𝑃𝑆𝑃𝑉
in the vertical direction.

𝐶𝑃 = 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐸𝐵
(

𝐹𝑖𝑛
)

𝐶𝑃 , 𝐸𝐻
(

𝐹𝑖𝑛
)

𝐶𝑃 , 𝐸𝑉
(

𝐹𝑖𝑛
)

𝐶𝑃
)

,

𝑃𝑆𝑃𝐻 = 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐸𝐵
(

𝐹𝑖𝑛
)

𝑃𝑆𝑃 , 𝐸𝐻
(

𝐹𝑖𝑛
)

𝑃𝑆𝑃
)

, (6)
𝑃𝑆𝑃𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡

(

𝐸𝐵
(

𝐹𝑖𝑛
)

𝑃𝑆𝑃 , 𝐸𝑉
(

𝐹𝑖𝑛
)

𝑃𝑆𝑃
)

,
𝐸𝑃 = 𝐸𝐵

(

𝐹𝑖𝑛
)

𝐸𝑃

From Eq. (6), it can be seen that the closer the edge part is, the less
information enhancement is obtained. And both 𝑃𝑆𝑃 and 𝐶𝑃 that are
on the convolutional kernel skeleton gain different degrees of enhance-
ment. The advantage of this is that not only the skeleton of the large
convolution kernel is strengthened, but also the central enhancement
part of each scale contains the entire receptive field of the previous
scale. From Fig. 5 we can find a clear difference between the MSDE and
the commonly used multi-scale structures. In the MSDE, this structure
allows the central receptive field to show a gradual enlargement and
outward contrast process, which can make the structure more sensitive
to detailed information.

Typically, Unet-shape accomplishes end-to-end feature information
fusion by jumping connections between the encoder and decoder, grad-
ually replenishing the missing detail information from shallow to deep.
In order to obtain better texture information for detail refinement, we
insert MSDE in the skip connection. Multi-scale texture enhancement
is performed on the output features of each encoder layer. The flow is
shown in Fig. 5(b), where the output results of DE at different scales
are concatenate, and then the number of channels is adjusted and
information is exchanged between channels by a 1 × 1 convolution,
which can be expressed as:

𝑀𝑆𝐷𝐸𝑚𝑜𝑑𝑢𝑙𝑒 = 𝐶𝑜𝑛𝑣 𝐶𝑜𝑛𝑐𝑎𝑡
1×1 { (
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Fig. 5. The common multi-scale structure and MSDE.
𝐷𝐸𝑚𝑜𝑑𝑢𝑙𝑒
(

𝐹𝑖𝑛
)

𝑠𝑐𝑎𝑙𝑒=1 ,

𝐷𝐸𝑚𝑜𝑑𝑢𝑙𝑒
(

𝐹𝑖𝑛
)

𝑠𝑐𝑎𝑙𝑒=3 , (7)
𝐷𝐸𝑚𝑜𝑑𝑢𝑙𝑒

(

𝐹𝑖𝑛
)

𝑠𝑐𝑎𝑙𝑒=5 ,

𝐷𝐸𝑚𝑜𝑑𝑢𝑙𝑒
(

𝐹𝑖𝑛
)

𝑠𝑐𝑎𝑙𝑒=7
)}

On the other hand, as the scale increases, we can find that the 𝐶𝑃
of each scale contains all the receptive fields of the previous scale. It
can be seen as taking the convolution kernel of the previous scale as a
whole as 𝐶𝑃 , and then ‘‘Patch’’ 𝑃𝑆𝑃 and 𝐸𝑃 around it.

𝐷𝐸𝑖 = 𝑃𝑎𝑡𝑐ℎ
(

𝐷𝐸𝑖−1
)

𝑖 > 1 (8)

In the process of scale expansion, CP, PSP and EP obtain different
degrees of information enhancement, which enhances the contrast of
information at the scale level and is more conducive to the network to
capture differences in detailed information and achieve higher accurate
segmentation.

4. Experiments

4.1. Datasets

ISIC (2018) [44] This dataset, published by the International Skin
Imaging Collaborative (ISIC) in conjunction with leading computer
vision conferences, is the largest dermoscopic image dataset of its
size in the world. The dataset is acquired using a dermatoscope from
different sites on patients who underwent skin cancer screening at
different institutions. There is a great diversity in the data in terms of
color and size. Some of the samples also have the effect of hair masking
and boundary blurring, which adds difficulty to the training. For the
segmentation task, the dataset contains three parts: (i) a training set
comprising 2594 sample images; (ii) a test set with 1000 sample
images; and (iii) a validation set consisting of 100 sample images.

CHAOS-T1 [45] This dataset is derived from CHAOS challenge,
the CT images are acquired from the upper abdominal region of the
patient after contrast injection. The main challenges contained in this
dataset are: adjacent organs having similar Hounsfield value ranges,
differences in Hounsfield value ranges for the same tissue, significant
shape differences in samples obtained from different patients, and the
presence of some atypical liver samples. The dataset contains 647
training samples with a native resolution of 256 × 256 pixels. Since
the test set labels in the dataset are not publicly available, in this
experiment we use 20% of the original training set for testing and
validation, and the remaining part is used for training.

Clinical Face The dataset is collected by Shanghai University of
Traditional Chinese Medicine, Shanghai, China. The dataset contains
a total of 180 human facial images collected in an open environment
using the same equipment. The face image samples contain multiple
complex backgrounds, such as multiple people in the same frame.
5

Moreover, the lighting, shooting angle and shooting distance vary,
which poses a considerable challenge for accurate segmentation. The
original data resolution is 1728 × 2592, which is uniformly adjusted
to 256 × 256 due to computational limitations. We select 80% of
them as the training set, and the remaining 20% is used for validation
and testing. Informed consent has been obtained for the publication of
identifying images, ethics approval granted by Shanghai Uni TCM Hu-
man Research Ethics Committee (approval number:2021-1039-114-01),
with data sharing approval.

FaceImage This data is collected by the Smart Medicine research
team at Wuyi University, Guangdong, China. The dataset is collected
using a quadruple diagnostic instrument and contains a total of 755
standard human face examination image samples. The background
environment of this facial diagnosis image sample is simple, focusing
on the human face, and the main purpose is to improve the research
sample for the image study of TCM facial diagnosis. The resolution
of the original dataset is 1728 × 2592, which we uniformly adjusted
to 256 × 256 to reduce the computational cost. The original data are
divided into 80% and 20%, the first part is used for training and the
second part is used for validation and testing. Human Research Ethics
Committee Ethics approval granted (approval number: [2019]18), this
dataset has been previously studied in different areas and relevant
publications listed in references.

4.2. Segmented evaluation metrics

To quantitatively demonstrate and evaluate the performance of the
network model, five segmentation evaluation metrics are used in this
paper, including 𝑚𝐼𝑜𝑢 (mean Intersection over Union), 𝑚𝐹1 (mean F1
score), 𝑃𝐴 (Pixel Accuracy), 𝐻𝐷 (Hausdorff Distance) and 𝑚𝑃𝑟𝑒 (mean
Precision). 𝑚𝐼𝑜𝑢, 𝑚𝐹1, 𝑃𝐴 and 𝑚𝑃𝑟𝑒 all indicate the overall similarity
between the predicted result and the ground truth, and larger values
indicate higher similarity. 𝐻𝐷 is more sensitive to the segmented
boundary, and smaller values indicate higher similarity of the edge.

𝑚𝐼𝑜𝑈 = 1
𝑘

𝑘
∑

𝑖=1

𝑝𝑖𝑖
∑𝑘

𝑗=1 𝑝𝑖𝑗 +
∑𝑘

𝑗=1 𝑝𝑗𝑖 − 𝑝𝑖𝑖
(9)

𝑚𝐹1 = 1
𝑘

𝑘
∑

𝑖=1

2 × 𝑝𝑖𝑖
∑𝑘

𝑗=1 𝑝𝑖𝑗 +
∑𝑘

𝑗=1 𝑝𝑗𝑖
(10)

𝑃𝐴 =
∑𝑘

𝑖=1 𝑝𝑖𝑖
∑𝑘

𝑖=1
∑𝑘

𝑗=1 𝑝𝑖𝑗
(11)

𝑚𝑃𝑟𝑒 = 1
𝑘

𝑘
∑

𝑖=1

𝑝𝑖𝑖
∑𝑘

𝑗=1 𝑝𝑖𝑗
(12)

𝐻𝐷 = max
(

max
{

min ‖𝑎 − 𝑏‖
}

,max
{

min ‖𝑏 − 𝑎‖
}

)

(13)

𝑎∈𝐴 𝑏∈𝐵 𝑏∈𝐵 𝑎∈𝐴
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Table 1
Experimental results (mean ± standard deviation) on ISIC (2018).

Network mIou mF1 PA mPre HD

FCN [15] 72.97 ± 0.61 84.37 ± 0.44 91.40 ± 0.59 85.86 ± .010 5.46 ± 0.20
Unet [3] 74.81 ± 0.45 85.59 ± 0.35 91.96 ± 0.43 85.91 ± 1.37 5.43 ± 0.14
Unext [7] 77.07 ± 0.39 87.05 ± 0.53 92.77 ± 0.87 87.35 ± 0.96 5.20 ± 0.15
Att-Unet [8] 75.42 ± 0.77 85.99 ± 0.70 92.13 ± 0.91 85.70 ± 1.64 5.30 ± 0.23
MSNet [46] 76.76 ± 0.43 86.85 ± 0.45 92.68 ± 0.63 87.34 ± 0.76 5.20 ± 0.12
DANet [47] 76.84 ± 0.57 87.02 ± 0.51 92.60 ± 0.94 85.51 ± 1.23 5.38 ± 0.11
EGE-UNet [48] 78.57 ± 0.38 87.25 ± 0.61 92.12 ± 0.63 87.45 ± 0.85 5.21 ± 0.14
AMSUnet [49] 76.96 ± 0.53 85.68 ± 0.71 91.58 ± 0.65 86.85 ± 1.12 5.33 ± 0.14
MSDEnet (ours) 78.49 ± 0.52 87.95 ± 0.38 93.20 ± 0.37 87.35 ± 0.87 5.08 ± 0.11
Relative gainsa −0.08 0.70 0.43 −0.10 0.12

a The smaller the HD value, the better the performance, and the larger the better for all other metrics.
here 𝑝𝑖𝑗 denotes the number of pixels for which the true category 𝑖
s predicted to be 𝑗 and is the number of segmented target categories.
⋅ ‖ denotes the distance paradigm between the pixel sets 𝐴 and 𝐵. In

his paper, the Euclidean distance is used.

.3. Implementation details

The model used in this paper was based on the PyTorch framework
nd the hardware condition is a single Nvidia RTX A5000. In the
raining process, the input sample size was adjusted to 256 × 256 and
he mini-batch size was 8. For ISIC (2018) and CHAOS-T1, Random
orizontal flip, random vertical flip and random 90-degree rotation
ere used as data enhancement to avoid overfitting. While for Clinical
ace and FaceImage, the data enhancement was changed to 15-degree
andom rotation and random horizontal flip. Adam with decoupled
ecay (AdamW) was selected as the optimizer. The initial learning rate
nd weight decay were set as 0.001 and 0.0005, respectively. Warm-up
nd CosineAnnealingLR was used as the learning strategy and adjust
he learning rate according to epoch. Since different models cannot
onverge at the same rate on the same dataset, the epoch is not set
niformly. Except for epoch, the above parameters are kept consistent
uring all model training.

.4. Experiments results

To ensure the rigor of the experimental comparison, the training
arameters and data sets of all network structures are kept consistent.
he experimental models for the comparison are derived from open
ource code, and all models are retrained.

We experimentally compare the MSDEnet proposed in this paper
ith currently use medical image segmentation models, which include
CN, Unet, ATT-Unet, Unext, MSNet, DANet, EGE-UNet and AMSUnet.
he experimental quantitative results are shown in Tables 1, 3, 5, and 7,
nd optimal results are indicated by bold. It can be seen that MSDEnet
ut of a total of 20 metrics on all 4 datasets 15 optimal performances
re obtained. The qualitative presentation of the experimental results
s shown in Fig. 7.

The data in Tables 1, 3, 5, and 7 represent absolute gains. Relative
ains, on the other hand, refer to the relative gap between the perfor-
ance of MSDEnet and the optimal performance, as well as the relative
ifference gain to the sub-optimal performance. In Tables 2, 4, 6 and 8,
he minimum, median and maximum values were selected from all the
xperimental results in this dataset after removing outliers. As shown
n Fig. 6, we plotted violin boxes for the experimental results on the
wo publicly available datasets, which allows for a quantitative and
ntuitive comparison of model performance. It is clear to see that our
odel performs optimally on several metrics.

Compared with the classical Unet, we have achieved a very excellent
erformance in all data, which show that the multi-scale capability
f CMS’s backbone enhancement and MSDE’s detail enhancement has
ignificantly improved the segmentation ability of the model. Although
net++ perceptual field fusion at different scales is performed, the
6

Table 2
Maximum, median and minimum value on ISIC (2018).

Network mIou mF1 PA mPre HD

Max 80.11 88.54 95.30 89.24 5.83
Med 76.74 86.55 92.15 86.73 5.28
Min 71.79 83.47 89.98 81.70 4.79

negative effect from excessive feature information fusion makes it not
perform well. The attention structure of Att-Unet and DANet can effec-
tively suppress the activation in irrelevant regions, reduce the effect of
redundant information, and significantly improve the segmentation re-
sults. UNext designs the lightweight and efficient Tok-MLP, which adds
local information to the model by window-based attention. However,
compared with MSDEnet, the single-scale structure of Att-Unet, DANet
and UNxet make them less sensitive to detailed information and less
capable of cpturing information of similar colors and fuzzy boundaries
to accomplish accurate boundary definition. MSNet proposes a simple
and efficient multi-scale subtraction unit (MSU) and uses pyramidal
stacking to use features at different levels, and finally obtains rich
multi-scale information. Whereas, MSDEnet reduces the generation of
redundant feature information and increases the ERF at the source of
redundant information generation, i.e., decoding process, which makes
MSDEnet obtain better performance compared to MSNet.

The performance comparison between MSDEnet and EGE-UNet on
ISIC (2018) and CHAOS-T1 indicates minimal differences. This simi-
larity is attributed to both networks incorporating an optimized multi-
scale structure, proving effective in boundary resolution. However, on
the Clinical Face and FaceImage datasets, MSDEnet has better perfor-
mance. EGE-UNet is optimized by Group multi-axis Hadamard Product
Attention module and Group Aggregation Bridge module, which utilizes
lesion information from multiple views and various types of feature
information fusion masks to obtain more complex and effective feature
information. MSDEnet, on the other hand, utilizes CMS to reduce the
dilution of boundary detail information by feature redundancy informa-
tion in the channel. On this basis, MSDE is utilized for dimensionally
extended peripheral information to compare with central information,
which makes MSDEnet more sensitive to changes in texture, color, and
location information.

4.5. Contrast and ablation study

The results of the various comparative ablation experiments are
shown in Tables 9 and 10. We test each structure in the MSDEnet
to understand the contribution of each structure to the model. We
also include the Res2net module and three common multi-scale struc-
tures (Inception, ASPP and RFB) for comparison experiments. The
advantages of CMS and MSDE are verified by comparing different
combinations of the modules.

Firstly, starting from the Original Unet structure, we replace the
encoder with Res2net module and CMS to test them separately. The

replaced structure improve in all metrics compared with Original Unet,
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Table 3
Experimental results (mean ± standard deviation) on CHAOS-T1.

Network mIou mF1 PA mPre HD

FCN [15] 83.51 ± 0.85 90.97 ± 0.71 99.41 ± 0.11 92.92 ± 0.55 1.45 ± 0.20
Unet [3] 87.58 ± 0.71 91.35 ± 0.69 98.40 ± 0.28 91.62 ± 0.50 1.29 ± 0.15
Unext [7] 88.65 ± 0.73 93.75 ± 0.70 99.57 ± 0.12 90.82 ± 0.80 1.31 ± 0.14
Att-Unet [8] 87.03 ± 0.91 93.04 ± 1.17 99.54 ± 0.10 94.98 ± 1.20 1.34 ± 0.16
MSNet [46] 89.67 ± 0.79 93.99 ± 0.92 99.56 ± 0.13 94.94 ± 0.75 1.28 ± 0.13
DANet [47] 84.83 ± 0.64 91.77 ± 1.11 99.45 ± 0.15 92.81 ± 0.87 1.39 ± 0.18
EGE-UNet [48] 89.11 ± 0.72 93.74 ± 0.86 99.82 ± 0.08 96.22 ± 0.49 1.24 ± 0.11
AMSUnet [49] 88.62 ± 0.75 92.68 ± 0.87 99.21 ± 0.19 95.18 ± 0.75 1.33 ± 0.19
MSDEnet (ours) 90.35 ± 0.65 94.94 ± 0.74 99.78 ± 0.07 95.90 ± 0.49 1.18 ± 0.11
Relative gains 0.68 1.20 −0.04 −0.32 0.06
Fig. 6. Quantitative presentation of experimental results.
Fig. 7. Qualitative comparison of segmentation results.
and the gap between them is not large. Next, we compare the effect
of the combination of the Res2net module and the four multi-scale
modules. The model performance is improved after the introduction of
7

the multi-scale structure, but the improvement is not obvious, and the
performance of the four combinations is basically not much different.
Finally, we compare the effect of the combination of CMS and the
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Fig. 8. Visualization of decoder output feature maps.
Table 4
Maximum, median and minimum value on CHAOS-T1.

Network mIou mF1 PA mPre HD

Max 91.76 96.52 99.93 97.64 1.56
Med 88.25 93.03 99.01 94.20 1.30
Min 81.33 89.48 97.87 89.16 1.16

four multi-scale modules. It is obvious that the CMS brings more
improvement compared to the combination of Res2net module and
the four multi-scale structures. We believe that the combination of
the Res2net module and the four multi-scale structures does not bring
significant improvement because the redundant information generated
by the Res2net module is more to the CMS, and the frequent addi-
tion or concatenation in the multi-scale structure amplifies this factor,
and the detailed boundary information is diluted. While independent
multi-scale branching of the CMS reduces the generation of redundant
information and the introduction of large convolution kernels brings a
larger ERF, which is beneficial for segmentation tasks.

5. Discussion

5.1. Encoder

In order to reduce the generation of redundant information during
feature extraction and to increase the ERF of the encoder backbone,
the CMS is designed as encoder. Fig. 8 shows the output feature
maps from decoder of different model, each model contains different
encoder backbone. Since the encoder produces relatively large number
of feature map channels, usually 256, 512, 1024 or even 2048, it
is difficult to show all comparisons. The difference of the encoder
backbone is presented, and the comparison of the output feature maps
at the decoder after changing the encoder are shown. To facilitate
the presentation, we insert a Channel adjustment block on the jump
connection of Original Unet, through which the number of feature map
channels passed into the decoder by the three models is guaranteed to
8

be 64, and the output channel of each decoder are equal to the input
channels.

In order to visualize the effect of redundant information and multi-
scale structure on detail segmentation, we visualized the channel fea-
ture maps for different decoders. The closer the black part is to the
ground truth, the more accurate the segmentation effect is. From Fig. 8,
it can be seen that the segmentation effect of different channel feature
maps is better with the increase of the number of decoder layers. At the
same time, we can clearly see that Model 1 almost only segments the
darker regions, and cannot segment the less obvious regions accurately;
Model 2 is able to segment the lighter regions compared to Model 1,
but the segmentation accuracy is not high; Model 3 compares with the
other two models, the boundary recognition of the lighter regions is
more accurate, and the segmentation results are closer to the ground
truth. Model 3 is more accurate in identifying the boundary of the
light-colored region and the segmentation result is closer to the ground
truth. While Model 1 can accurately segment regions with distinct
color differences and clear boundaries, it struggles with accurately
segmenting regions with colors similar to skin and blurred boundaries.
Model 2 benefits from the incorporation of multi-scale structure, as the
model becomes more sensitive to detailed information and can capture
more subtle changes, leading to better segmentation results than Model
1. Compared to Model 2, Model 3 reduces the influence of redundant
information and enables more accurate boundary segmentation. Addi-
tionally, the use of large scale convolution kernel expands the ERF for
the model, further enhancing its segmentation performance.

5.2. Multi-scale structure

Unet-shape networks utilize jump connections to reduce the seman-
tic gap between different depth feature maps, thereby achieving higher
quality prediction results. Typically, shallow feature maps contain more
detailed information. By incorporating multi-scale structures on the
jump connections, it is possible to extract even more detailed feature
information. In Fig. 9, three commonly used multi-scale structures are
compared with MSDE and present the output results visually. It is
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Table 5
Experimental results (mean ± standard deviation) on Clinical Face.

Network mIou mF1 PA mPre HD

FCN [15] 77.69 ± 1.76 87.40 ± 1.00 98.60 ± 0.08 88.96 ± 0.68 3.18 ± 0.27
Unet [3] 82.74 ± 0.77 90.48 ± 0.47 98.98 ± 0.08 91.01 ± 0.89 2.85 ± 0.13
Unext [7] 83.01 ± 0.85 90.70 ± 0.43 98.93 ± 0.11 91.69 ± 1.08 2.88 ± 0.16
Att-Unet [8] 84.57 ± 0.82 91.61 ± 0.94 99.07 ± 0.06 91.72 ± 0.75 2.80 ± 0.19
MSNet [46] 82.91 ± 0.89 90.63 ± 0.56 98.95 ± 0.10 91.09 ± 0.92 2.96 ± 0.14
DANet [47] 79.93 ± 1.08 88.83 ± 0.41 98.75 ± 0.11 89.78 ± 0.60 3.07 ± 0.20
EGE-UNet [48] 83.98 ± 0.79 90.52 ± 0.48 97.18 ± 0.08 90.42 ± 0.79 2.79 ± 0.18
AMSUnet [49] 83.31 ± 0.83 89.25 ± 0.61 97.92 ± 0.11 89.45 ± 1.16 3.09 ± 0.26
MSDEnet (ours) 85.79 ± 0.85 92.33 ± 0.59 99.10 ± 0.07 92.74 ± 0.66 2.82 ± 0.18
Relative gains 1.22 0.72 0.03 1.02 −0.03
Fig. 9. Comparison of multi-scale structure detail extraction capability.
Table 6
Maximum, median and minimum value on ISIC Clinical Face.

Network mIou mF1 PA mPre HD

Max 87.74 93.73 99.27 94.25 3.68
Med 83.26 90.54 98.88 90.87 2.91
Min 72.59 85.53 97.76 87.36 2.42

evident that the output results of Inception and MSDE contain more
detailed feature information when compared to ASPP and RFB, which
have a larger number of zero values (represented by black pixels).
Further analysis indicates that the output feature maps of Inception
are quite similar and less rich in detailed information. In contrast,
the output feature map of MSDE contains a diverse range of feature
information and exhibits better ability to extract boundary and texture
information.

6. Conclusions

A simple and effective multi-scale detail enhanced network (MS-
DEnet) was constructed in order to achieve more accurate medical
image segmentation. To address the problem of redundant informa-
tion being generated in the decoding process, targeted adjustments
were made to the Res2net module, allowing the model to perform
multi-scale operations independently. The DE inspired by human visual
characteristics was then designed, and this enhanced the sensitivity to
texture information by superimposing the asymmetric convolution and
standard convolution to increase the convolution skeleton and form
a distribution with a strong center and weak periphery. We further
extended the DE to more scales and designed MSDE. This structure can
9

be viewed as an exploration process of comparing detailed information
at different scales, where the central receptive field of each scale con-
tains all the receptive fields of the previous scale. We experimentally
compared MSDEnet with commonly used medical image segmentation
models on four medical image datasets, and the results show that the
model proposed in this paper outperforms other models.
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Table 7
Experimental results (mean ± standard deviation) on FaceImage.

Network mIou mF1 PA mPre HD

FCN [15] 87.60 ± 0.47 92.81 ± 0.34 95.72 ± 0.47 92.72 ± 0.49 3.93 ± 0.47
Unet [3] 88.53 ± 0.36 93.90 ± 0.34 96.72 ± 0.35 91.65 ± 0.82 3.90 ± 0.36
Unext [7] 88.87 ± 0.47 94.10 ± 0.29 96.91 ± 0.40 92.60 ± 0.52 3.82 ± 0.29
Att-Unet [8] 89.42 ± 0.34 94.41 ± 0.26 97.16 ± 0.45 94.23 ± 0.60 3.82 ± 0.30
MSNet [46] 89.60 ± 0.28 94.51 ± 0.23 97.15 ± 0.55 94.47 ± 0.57 3.78 ± 0.22
DANet [47] 88.88 ± 0.40 94.11 ± 0.26 96.96 ± 0.39 93.95 ± 0.76 3.87 ± 0.25
EGE-UNet [48] 88.76 ± 0.36 93.72 ± 0.24 96.38 ± 0.32 93.85 ± 0.46 3.88 ± 0.31
AMSUnet [49] 87.16 ± 0.64 93.75 ± 0.30 95.87 ± 0.42 94.32 ± 0.56 3.89 ± 0.43
MSDEnet (ours) 90.82 ± 0.31 94.69 ± 0.18 97.21 ± 0.28 95.57 ± 0.41 3.74 ± 0.31
Relative gains 1.22 0.18 0.05 1.10 0.04
Table 8
Maximum, median and minimum value on FaceImage.

Network mIou mF1 PA mPre HD

Max 91.26 95.18 98.51 99.06 4.90
Med 88.84 94.22 96.72 94.55 3.84
Min 85.89 92.15 94.35 90.23 3.00
Table 9
Contrast and ablation experiments on ISIC (2018).

Network Encoder Skip connection mIou mF1 PA mPre HD

Original Une
3 × 3conv / 74.81 ± 0.07 85.59 ± 0.05 91.96 ± 0.03 85.91 ± 0.13 5.43 ± 0.02
Res2net / 76.34 ± 0.05 86.58 ± 0.03 92.44 ± 0.12 86.07 ± 1.24 5.31 ± 0.03
CMS / 76.24 ± 0.09 86.80 ± 0.44 92.77 ± 0.01 85.72 ± 0.88 5.29 ± 0.03

MSDEne

Res2net ASPP 76.62 ± 0.66 86.76 ± 0.42 92.68 ± 0.33 87.99 ± 1.93 5.19 ± 0.09
Res2net Inception 76.37 ± 0.18 86.75 ± 0.29 92.58 ± 0.07 86.67 ± 1.90 5.24 ± 0.04
Res2net RFB 76.68 ± 0.49 86.80 ± 0.31 92.68 ± 0.25 87.70 ± 1.56 5.18 ± 0.03
Res2net MSDE 77.18 ± 0.18 86.90 ± 0.12 92.68 ± 0.15 88.55 ± 1.78 5.16 ± 0.03
CMS ASPP 77.07 ± 0.10 86.93 ± 0.07 93.26 ± 0.17 87.63 ± 1.73 5.12 ± 0.08
CMS Inception 76.96 ± 0.38 87.28 ± 0.24 92.76 ± 0.20 87.61 ± 1.65 5.17 ± 0.07
CMS RFB 76.98 ± 0.19 87.20 ± 0.15 92.83 ± 0.16 88.76 ± 1.20 5.16 ± 0.05
CMS MSDE 78.49 ± 0.19 87.95 ± 0.12 93.20 ± 0.12 87.35 ± 1.01 5.08 ± 0.02
Table 10
Contrast and ablation experiments on CHAOS-T1.

Network Encoder Skip connection mIou mF1 PA mPre HD

Original Une
3 × 3conv / 87.58 ± 0.26 91.35 ± 0.25 98.40 ± 0.13 91.62 ± 0.31 1.29 ± 0.02
Res2net / 88.17 ± 0.02 93.70 ± 0.01 99.56 ± 0.01 94.55 ± 0.23 1.30 ± 0.01
CMS / 88.18 ± 0.03 93.72 ± 0.09 99.55 ± 0.02 93.81 ± 0.33 1.29 ± 0.02

MSDEne

Res2net ASPP 88.54 ± 0.04 93.91 ± 0.02 99.57 ± 0.08 93.58 ± 0.85 1.31 ± 0.03
Res2net Inception 88.59 ± 0.06 93.94 ± 0.03 99.56 ± 0.01 94.80 ± 0.17 1.31 ± 0.03
Res2net RFB 88.64 ± 0.15 93.97 ± 0.08 99.58 ± 0.01 94.49 ± 0.37 1.31 ± 0.01
Res2net MSDE 88.77 ± 0.03 94.04 ± 0.02 99.58 ± 0.01 94.63 ± 0.29 1.31 ± 0.02
CMS ASPP 89.37 ± 0.12 94.38 ± 0.07 99.60 ± 0.01 94.98 ± 0.12 1.27 ± 0.01
CMS Inception 89.62 ± 0.34 94.52 ± 0.19 99.61 ± 0.01 94.99 ± 0.33 1.26 ± 0.01
CMS RFB 89.47 ± 0.39 94.48 ± 0.29 99.67 ± 0.09 95.21 ± 0.18 1.25 ± 0.03
CMS MSDE 90.35 ± 0.23 94.94 ± 0.12 99.78 ± 0.03 95.90 ± 0.40 1.18 ± 0.02
of Guangdong Province, China (Grant No. 2020A1313030021); and the
Scientific Research Project of Wuyi University (Grants No. 2018TP023
and 2018GR003).
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