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Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease characterised by the deposition of aggregated 
proteins including TAR DNA-binding protein 43 (TDP-43) in vulnerable motor neurons and the brain. Extracellular vesicles 
(EVs) facilitate the spread of neurodegenerative diseases and can be easily accessed in the bloodstream. This study aimed 
to identify a panel of EV miRNAs that can capture the pathology occurring in the brain and peripheral circulation. EVs 
were isolated from the cortex (BDEVs) and serum (serum EVs) of 3 month-old and 6-month-old TDP-43*Q331K and TDP-
43*WT mice. Following characterisation and miRNA isolation, the EVs underwent next-generation sequencing where 24 
differentially packaged miRNAs were identified in the TDP-43*Q331K BDEVs and 7 in the TDP-43*Q331K serum EVs. 
Several miRNAs, including miR-183-5p, were linked to ALS. Additionally, miR-122-5p and miR-486b-5p were identified 
in both panels, demonstrating the ability of the serum EVs to capture the dysregulation occurring in the brain. This is the 
first study to identify miRNAs common to both the serum EVs and BDEVs in a mouse model of ALS.
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Abbreviations
ALS  Amyotrophic lateral sclerosis
TDP-43  TAR DNA-binding protein 43
EVs  Extracellular vesicles
BBB  Blood-brain barrier
AD  Alzheimer’s disease
PD  Parkinson’s disease
BDEVs  Brain-derived EVs
NGS  Next-generation deep sequencing
PK  Proteinase K
BH  Brain homogenate
NTA  Nanoparticle tracking analysis
BCA  Bicinchoninic acid
TMM  Trimmed mean of M values
PCA  Principal component analysis
RPM  Reads per million
ANOVA  Analysis of variance
EAAC1  Excitatory amino acid carrier 1
ARPC3  Actin-related protein 2/3 complex subunit 3
MISEV  Minimal Information for Studies of Extracel-

lular Vesicles
KEGG  Kyoto Encyclopedia of Genes and Genomes

Introduction

Amyotrophic lateral sclerosis (ALS) is an incurable motor 
neuron disease characterised symptomatically by the pro-
gressive loss of motor function resulting from the deposi-
tion of aggregated proteins including TAR DNA-binding 
protein 43 (TDP-43) in motor neurons, spinal cord, and the 
motor cortex [1, 2]. Despite being the most common motor 
neuron disease, ALS is notoriously difficult to diagnose, 
relying on the elimination of other conditions that present 
overlapping symptoms to achieve a diagnosis [3, 4]. ALS is 
currently diagnosed based on the Revised El Escorial crite-
ria and Awaji criteria which require upper and lower motor 
neuron degeneration, disease spread, and disease progres-
sion to be observed [5–8]. This stringent criterion results 
in a length of 10 to 16 months for an average patient to be 
diagnosed [9], and the requirement for disease progression 
leads to delayed treatment initiation in many patients [10]. 
Therefore, there is a need for a faster, more effective, and 
definitive diagnostic tool, which can be achieved through 
a blood based liquid biopsy. However, the blood contains 
many degradative enzymes, requiring specific biomarkers to 
be protected from cleavage and destruction through encapsu-
lation in small extracellular vesicles (EVs) [11]. Small EVs 
are a heterogenous population of double lipid-membraned 
vesicles released from all cells which are involved in cell-
cell communication [12, 13]. Their unique biogenesis pro-
cess which allows them to represent the physiological state 
of their parental cells, coupled with their ability to cross 

the blood brain barrier (BBB), enables them to be a source 
of biomarkers [14, 15]. Furthermore, the BBB is known to 
deteriorate in response to neuroinflammation, a feature of 
ALS [16]. Additionally, the preferential CSF uptake and 
drainage via meningeal lymphatic vessels open a new avenue 
for brain-derived EVs to enter the bloodstream [16, 17].

Isolation of EVs from the bloodstream enables for the 
capture of changes being communicated between cells in 
a disease setting. Importantly, interception of these EVs 
can reveal pathways being deregulated during the progres-
sion of the disease. Plasma EVs from ALS patients exhibit 
altered size distribution and decreased levels of the heat 
shock protein HSP90 and miR-494-3p, a negative regulator 
of semaphorin 3A [18, 19]. CSF EVs have been found to 
contain downregulated levels of the proteosome like protein, 
bleomycin hydrolase, and other proteosome core proteins, in 
addition to enrichment of genes involved in oxidative stress, 
the unfolded protein response, and the ubiquitin-proteasome 
pathway [20, 21]. However, a caveat of these studies is the 
sampling of biofluids from patients at varying stages of their 
disease. Given EV protein and miRNA expression vary 
throughout disease progression, the detection of a particu-
lar group of markers may not be representative at a different 
stage in the disease. Therefore, to better diagnose patients 
at any stage in their disease, and to better understand the 
role of EVs throughout the disease, a panel of prognostic 
blood-based EV biomarkers is required, which have not 
been investigated thus far. Recently, a new application for 
prognostic EV biomarkers was implemented in Alzheimer’s 
disease (AD) and Parkinson’s disease (PD). By monitoring 
changes in their cargo, these EV biomarkers were able to 
determine the physiological effects selected treatments were 
having on patients [22–24]. Therefore, the need for a panel 
of prognostic EV biomarkers is imperative for understanding 
and managing ALS.

In this study, we isolated serum EVs and cortex 
brain-derived EVs (BDEVs) from TDP43*Q331K and 
TDP-43*WT mice, at 3-months-old and 6-months-old, 
which represented the early-symptomatic stage and the 
stage which corresponds with prominent motor neuron 
degeneration [25, 26]. The miRNA cargo of the EVs 
underwent next-generation deep sequencing (NGS), and 
panels of differentially packaged miRNAs found in the 
BDEVs and serum EVs were identified.

Materials and Methods

Animals

Transgenic TDP43*Q331K (Jackson Labs Line 103) and 
TDP-43*WT (Jackson Labs Line 96) mice were bred on a 
C57BL/6J background, in accordance with La Trobe animal 
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ethics (AEC20014). These mice express either human TDP-
43 with a lysine substituting a glutamine at position 331 
or human wild-type TDP-43, both under the mouse prion 
protein promoter which ensured transgenic expression was 
restricted to the brain, spinal cord, and central nervous sys-
tem [25–27]. Both female and male mice were used in this 
experiment to eliminate sex bias. Tissues were collected at 
3-months (early-symptomatic stage), 6-months (sympto-
matic stage), and 10-months (advanced symptomatic stage) 
of age [25, 26, 28]. All mice were anesthetised with isoflu-
rane for terminal blood collection via the inferior vena cava, 
and brain cortical tissues were isolated, immediately frozen 
on dry ice, and stored at −80 °C prior to analysis.

Genotyping

Mouse ear clips were vortexed and incubated overnight 
at 55 °C in Extraction Solution (E7526 Sigma-Aldrich) 
containing proteinase K (PK) at a final concentration of 0.2 
mg/ml. Samples were then vortexed and incubated at 95 °C 
for 3 min before centrifugation at 200 × g for 5 min. The 
supernatants were precipitated with isopropanol for 5 min 
at room temperature before being mixed and centrifuged at 
maximum speed for 5 min. The DNA pellets were washed 
with 80% (v/v) ethanol and centrifuged at maximum speed 
for 5 min, air-dried, and resuspended in nuclease-free 
 dH2O. DNA samples were added to GoTaq Green Master 
Mix, 2× (Promega, M7122) with 10 µM of the upstream 
and downstream primers for the human TARDBP gene and 
underwent PCR using the following conditions: 95 °C for 30 
s; 95 °C for 30 s; 51 °C for 1 min; 68 °C for 1 min; repeated 
for 30 cycles; 68 °C for 5 min. The samples were then run 
on a 1.5% (w/v) agarose gel containing SYBRsafe DNA 
stain (Invitrogen, S33102), and the results were imaged and 
analysed on the Syngene G:Box Instrument.

Extracellular Vesicle Isolation from the Cortex Brain 
Region

A previously published EV isolation protocol was utilised, 
with minor amendments [29, 30]. Brains collected from 3- or 
6-month-old mice were sectioned on ice into 2–3-mm slices. 
The sliced brain tissue was incubated at 37 °C in a shaking 
water bath for 10 min in a solution consisting of Collagenase 
Type III solution (50 U/ml of collagenase (Worthington) 
in DPBS). The collagenase solution was then deactivated 
through the addition of ice-cold 10× inhibition solution (5× 
PhosSTOP (Sigma-Aldrich), 1× cOmplete ULTRA pro-
tease inhibitor (Sigma-Aldrich), 2 mM EDTA in DPBS) at 
a final concentration of 1×. The tissue was then centrifuged 
at 300 × g for 5 min at 4 °C, and an aliquot of the pellet 
was saved to use as a total brain control sample. This total 
brain control sample was treated with 5× its weight of 1× 

inhibition solution, homogenised, sonicated for 20 min, and 
centrifuged at 10,000 × g for 5 min at 4 °C, from which the 
supernatant was saved and referred to as the brain homogen-
ate (BH). The 300 × g supernatant was centrifuged at 2000 
× g for 10 min at 4 °C and them at 10,000 × g for 30 min 
at 4 °C. The supernatant was overlaid on a sucrose gradient 
consisting of fraction 4 (F4); 1 ml of 2.5 M sucrose, fraction 
3 (F3); 1.2 ml of 1.3 M sucrose, fraction 2 (F2); and 1.2 ml 
of 0.6 M sucrose, in an ultra-clear thin wall 13.2-ml tube 
(344059, Beckman Coulter). The gradient was centrifuged at 
200,000 × g for 180 min at 4 °C in a SW41 rotor (15U12301, 
Beckman Coulter). The fractions were resuspended in ice 
cold DPBS and centrifuged at 128,000 × g for 80 min at 
4 °C in 26.3-ml polycarbonate centrifuge bottles (355618, 
Beckman Coulter) in a Type 70 Ti rotor (15U6647, Beckman 
Coulter). Pellets containing BDEVs were resuspended in 80 
µl of DPBS and stored at −80 °C.

Extracellular Vesicle Isolation from Serum

EVs were isolated from serum samples collected from 3- or 
6-month-old mice using the Norgen Plasma/Serum Exosome 
Purification Mini Kit (NOR-57400, Norgen) according to the 
manufacturer’s instructions. Briefly, the serum samples were 
made up to 1 ml prior to addition of ExoC buffer, nuclease 
free water, and Slurry E. Following incubation for 5 min at 
room temperature, the samples were centrifuged at 400 × g 
for 2 min. The pellet was resuspended in ExoR buffer, incu-
bated at room temperature for 5 min and centrifuged at 100 
× g for 2 min. The supernatant was added to a Mini Filter 
Spin column and spun at 1000 × g for 1 min, with the EVs 
eluting in the flowthrough.

Size and Concentration Analysis

Size and concentration of the isolated vesicles were deter-
mined using nanoparticle tracking analysis (NTA). Follow-
ing a dilution of 1 in 1000 in filtered and degassed DPBS, 
the samples were injected through a 1-ml syringe into the 
ZetaView© Quatt PMX-420 (Particle Metrix). Eleven posi-
tions within the instrument’s cell were scanned, each captur-
ing 30 frames per position using the following parameters: 
maximum particle size, 1000; minimum particle size, 10; 
minimum brightness, 25; focus, autofocus; sensitivity, 80.0; 
shutter, 100; and cell temperature, 25 °C. These were then 
analysed using the in-built ZetaView Software 8.05.14-SP7 
to determine the vesicles’ size and concentration.

Transmission Electron Microscopy

Size and morphology of the isolated vesicles were observed 
using transmission electron microscopy. Briefly, a formvar-
copper coated grid (ProSciTech) was glow discharged for 
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60 s, loaded with 5 μl of undiluted sample and incubated at 
room temperature for 30 s. Excess sample was blotted off 
and the grid was incubated in 5 μl of Uranyl acetate (Agar 
Scientific) for 10 s, twice. The grid was then imaged using 
the JEM-2100 Transmission Electron Microscope (Jeol).

Western Blotting

Protein concentration of the samples was determined using 
a bicinchoninic acid (BCA) protein assay (Pierce, Thermo 
Fisher Scientific) according to the manufacturer’s protocol. 
Equivalent quantities of protein were then incubated in 1× 
lysis buffer (5 M NaCl, 1M Tris, Triton X-100, 1% (w/v) 
sodium deoxycholate, 1× cOmplete ULTRA protease 
inhibitor) at 4 °C for 20 min and subsequently centrifuged at 
2500 × g for 5 min. The supernatant was mixed with Nupage 
4× LDS sample buffer (Thermo Fisher Scientific, NP0007), 
containing 5% β-mercaptoethanol, and denatured at 70 °C for 
10 min. The samples were then loaded into a 4–12% Bis-Tris 
Plus Gel (NuPAGE or Bolt, Invitrogen) with 1× MES SDS 
running buffer (NuPAGE, Invitrogen), transferred to a PVDF 
membrane, and probed with the desired antibody (Actin, 
Cell Signalling 8H10D10; Calnexin, Abcam ab22595; 
Flotillin-1, BD Bioscience 610821; Syntenin-1, Abcam 
ab133267; Tsg101, Abcam ab83; ApoB, Abcam ab139401; 
CD9, Abcam ab92726; GM130, BD Bioscience 610822; 
total TDP-43, Proteintech 10782-2-AP; human specific 
TDP-43 Proteintech 60019-2-IG-150UL; phosphorylated-
TDP-43, Proteintech 800007-1-RR-100UL; C-terminal 
TDP-43, Proteintech 12892-1-AP) diluted in 2.5% skim milk 
in PBS-T or TBS-T (0.05%, Tween). Membranes were then 
washed, incubated in the desired secondary antibody (mouse 
IgG HRP or rabbit IgG HRP), and developed using Clarity 
ECL reagent (Bio-Rad) for imaging with the ChemiDoc 
Touch imaging system (Bio-Rad).

miRNA Isolation

An Exosomal RNA Isolation Kit (Norgen, 58000) was 
used according to the manufacturer’s instructions to isolate 
miRNA from the samples. Briefly, lysis buffer A, lysis addi-
tive B, and ExoR buffer were added to the serum or cortex 
EVs and incubated at room temperature for 10 min. Ethanol 
was then added, and samples were centrifuged in a Mini 
Spin column at 3300 × g for 30 s. Wash solution A was then 
added, and the samples were centrifuged twice at 3300 × g 
for 30 s, centrifuged empty at 13,000 × g for 1 min, and sub-
sequently transferred to a fresh Elution tube where Elution 
Solution A was added to the Mini Spin column. This was 
centrifuged at 400 × g for 1 min followed by two centrifuga-
tions at 5800 × g for 2 min. Upon elution of the RNA, the 
Savant DNA 120 SpeedVac concentrator was used to con-
centrate the samples to 5–10 µL (Thermo Fisher Scientific).

Ion Torrent Small RNA Sequencing

The QIAseq miRNA library kit (Qiagen) was used to construct 
the small RNA libraries according to the manufacturers pro-
tocol. Briefly, the Agilent Small RNA Chip and the Agilent 
2100 Bioanalyser (Agilent Technologies) were used to assess 
the small RNA concentration of the samples and 10 ng of small 
RNA was used for library construction. Library construction 
involved ligation of sequencing adapters and unique molecu-
lar indices for each sample. Libraries were measured using the 
Agilent DNA 1000 Chip and the Agilent 2100 Bioanalyser 
(Agilent Technologies) to determine the size distribution and 
concentration of the cDNA. The Ion Chef System (Ion Torrent, 
ThermoFisher Scientific) was used to load the indexed libraries 
onto an Ion 540 Chip (Ion Torrent, Thermo Fisher Scientific) 
which were then sequenced on the Ion GeneStudio S5 Series 
(Ion Torrent, Thermo Fisher Scientific).

Small RNA Sequencing Data Analysis

Adaptor sequences were trimmed and removed from the una-
ligned sequences using CLC Genomics Workbench (Version 
23.02, QIAGEN). The sequences underwent quality control 
(FASTQC) analysis where the number of sequence reads and 
size of the fastq files were measured, and per-sequence and 
per-base analysis were conducted to determine the quality 
of the sequenced reads. The reads were then aligned to the 
mouse genome and subsequently mapped to miRBase ver-
sion 22 [31]. The maximum mismatches between reads and 
miRBase was set to 2, and length-based isomiRs were allowed 
with the following criteria: additional upstream bases = 2, 
additional downstream bases = 2, missing upstream bases 
= 2, and missing downstream bases = 2. Variability in the 
sequencing depth per sample generated required a per-sample 
library size normalisation to be performed using Trimmed 
Mean of M values (TMM) normalisation [32]. Principal com-
ponent analysis (PCA) was then performed to measure the 
quality of expression data and remove outliers using CLC 
Genomics Workbench (Version 23.02, QIAGEN). The effect 
of ALS represented by the TDP-43*Q331K mice on control 
represented by the TDP-43*WT mice was performed using 
attribute weighting. Attribute weighting was performed using 
a seven-attribute weighting algorithm including Info Gain 
Ratio, Rule, Chi Squared, Gini Index, Uncertainty, Relief, and 
Info Gain, using RapidMiner version 9 (Rapid-I GmbH, Sto-
chumer Str. 475, 44,227, Dortmund, Germany), as previously 
described [33–35]. Weights of each model were normalised to 
a range between 0 and 1, with 0 corresponding to non-impor-
tant and 1 signifying high importance (responding to Q331K 
mutation). The miRNAs that received the highest weights 
(sum of the weights of all models) were selected as the repre-
senting ALS serum or ALS BDEV miRNA signature.
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Differential Expression Data Analysis

The mapped reads with at least a mean of 5 reads per 
million (RPM) across all samples underwent differential 
analysis and analysis of variance (ANOVA) resulting 
in the generation of Venn diagrams, volcano plots, 
and hierarchal clustering. The panel of miRNAs 
underwent pathway analysis using DIANA TOOLS, 
TargetScanMouse, and FunRich 3.1.3 [36–38]

Results

BDEVs Were Successfully Isolated and Classified 
as Small EVs

BH isolated from 3-, 6-, and 10-month-old TDP-43*WT, 
TDP-43*Q331K, and WT were probed with TDP-43 
antibodies to assess TDP-43 expression as the mice 
aged (Fig. 1A). The TDP-43*WT and TDP-43*Q331K 

Fig. 1  Characterisation of TDP-43 mouse brain homogenate (BH) 
and brain-derived extracellular vesicles (BDEVs). A BH isolated 
from 3-, 6-, and 10-month-old mice suggests an accumulation of 
human and phosphorylated TDP-43 with age in the TDP-43*Q331K 
expressing mice. BDEVs isolated from the brains of 6-month-old 
wildtype (WT), TDP-43*WT, and TDP-43*Q331K expressing 
mice appear to exhibit characteristics consistent with that of small 
EVs. B The isolated vesicles were positive for small EV enriched 
markers tsg101, flotillin, CD9 and actin, and negative for small EV 

non-enriched markers: calnexin and ApoB. The TDP-43*Q331K 
expressing mice were also found to contain more total TDP-43 but 
not human TDP-43 in their BDEVs. C Nanoparticle tracking analy-
sis, performed on the ZetaView© Quatt PMX-420, demonstrates the 
vesicles appear to be between 80 and 150 nm in diameter, consistent 
with small EVs. This result is representative of n = 11. D Transmis-
sion electron microscopy images exhibit a population of vesicles 100 
to 200 nm in diameter with depressed cup-like structures, consistent 
with that of small EVs
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mice appeared to exhibit accumulation of human and 
phosphorylated TDP-43 with age, which appeared greater 
in the TDP-43*Q331K mice. As we are only focusing 
on potential biomarkers for an early diagnosis of the 
disease and investigating early disease changes facilitated 
through EV communication, BDEVs and serum EVs from 
3- and 6-month-old mice were isolated from the TDP-
43*WT (n = 12) and TDP-43*Q331K mice (n = 12), the 
demographics for which are detailed in Table 1. Quality 
control assessments were conducted on the BDEVs to 
ensure they met the Minimal Information for Studies of 
Extracellular Vesicles (MISEV)’s minimum criteria to be 
classified as small EVs [39]. The BDEVs isolated from the 
brains of 6-month-old male TDP-43*WT, TDP-43*Q331K, 
and WT mice were enriched in small EV markers with 
minimal expression of non-small EV markers (Fig. 1B). 
The BDEVs additionally underwent NTA analysis, 
performed on the ZetaView© Quatt PMX-420 (Particle 
Metrix), and exhibited a size consistent with that of 
small EVs (Fig. 1C) [40, 41]. Furthermore, TEM images 
demonstrated the BDEVs isolated from the TDP-43*WT, 
TDP-43*Q331K, and WT mice consisted of homogenous 
cup-shaped vesicle populations, ranging from 40 to 200 
nm in diameter (Fig.  1D) [42]. Following successful 
characterisation, RNA was extracted, and the nucleotide 
lengths and concentration of the RNA were determined in 
preparation for NGS analysis (Supplementary Fig. 1A and 
Supplementary Fig. 1B).

A Panel of Differentially Packaged miRNA 
was Identified in the BDEVs and Serum EVs When 
Comparing TDP‑43*Q331K to TDP‑43*WT

The attribute weighting model revealed that the timepoint and 
sex of the mice had no effect on the miRNAs differentially 
expressed between the TDP-43*Q331K EVs and TDP-
43*WT EVs (Supplementary Table 1 and Supplementary 
Table  2). Therefore, for further downstream analysis, 
differential expression using only the miRNAs detected as 
features was carried out. It was revealed that several miRNAs 
appeared to be significantly differentially expressed in both 
the BDEVs (Fig. 2A; Supplementary Table 3) and serum 
EVs (Fig. 2B; Supplementary Table 4). Upon refinement of a 
cut-off p-value < 0.05 and a fold change < −1.5 or > 1.5, 24 
significantly differentially expressed miRNAs were identified 
in the TDP-43*Q331K BDEVs compared to the TDP-43*WT 
BDEVs and 7 significantly differentially expressed miRNAs 
were identified in the TDP-43*Q331K serum EVs compared 
to the TDP-43*WT serum EVs (Tables 2 and 3). Interestingly, 
in both the serum EVs and BDEVs, the majority of these 
differentially packaged miRNAs appeared to be up-regulated 
in the TDP-43*Q331K samples (Fig. 3A and B). Specifically, 

Table 1  Sample demographics of TDP-43*Q331K and TDP-43*WT 
brain-derived extracellular vesicles (BDEVs) and serum extracellular 
vesicles (EVs)

Sample Genotype Timepoint and sex

BDEV 1 TARDBP*Q331K 3m female
BDEV 2 TARDBP*Q331K 3m female
BDEV 3 TARDBP*Q331K 3m female
BDEV 4 TARDBP*Q331K 3m male
BDEV 5 TARDBP*Q331K 3m male
BDEV 6 TARDBP*Q331K 3m male
BDEV 7 TARDBP*WT 3m female
BDEV 8 TARDBP*WT 3m female
BDEV 9 TARDBP*WT 3m female
BDEV 10 TARDBP*WT 3m male
BDEV 11 TARDBP*WT 3m male
BDEV 12 TARDBP*WT 3m male
BDEV 13 TARDBP*Q331K 6m female
BDEV 14 TARDBP*Q331K 6m female
BDEV 15 TARDBP*Q331K 6m female
BDEV 16 TARDBP*Q331K 6m male
BDEV 17 TARDBP*Q331K 6m male
BDEV 18 TARDBP*Q331K 6m male
BDEV 19 TARDBP*WT 6m female
BDEV 20 TARDBP*WT 6m female
BDEV 21 TARDBP*WT 6m female
BDEV 22 TARDBP*WT 6m male
BDEV 23 TARDBP*WT 6m male
BDEV 24 TARDBP*WT 6m male
Serum EV 1 TARDBP*Q331K 3m female
Serum EV 2 TARDBP*Q331K 3m female
Serum EV 3 TARDBP*Q331K 3m female
Serum EV 4 TARDBP*Q331K 3m male
Serum EV 5 TARDBP*Q331K 3m male
Serum EV 6 TARDBP*Q331K 3m male
Serum EV 7 TARDBP*WT 3m female
Serum EV 8 TARDBP*WT 3m female
Serum EV 9 TARDBP*WT 3m female
Serum EV 10 TARDBP*WT 3m male
Serum EV 11 TARDBP*WT 3m male
Serum EV 12 TARDBP*WT 3m male
Serum EV 13 TARDBP*Q331K 6m female
Serum EV 14 TARDBP*Q331K 6m female
Serum EV 15 TARDBP*Q331K 6m female
Serum EV 16 TARDBP*Q331K 6m male
Serum EV 17 TARDBP*Q331K 6m male
Serum EV 18 TARDBP*Q331K 6m male
Serum EV 19 TARDBP*WT 6m female
Serum EV 20 TARDBP*WT 6m female
Serum EV 21 TARDBP*WT 6m female
Serum EV 22 TARDBP*WT 6m male
Serum EV 23 TARDBP*WT 6m male
Serum EV 24 TARDBP*WT 6m male



Molecular Neurobiology 

in BDEVs, the vast majority of differentially expressed 
miRNAs were enriched in the TDP-43*Q331K samples 
compared to the TDP-43*WT samples, with the exception 

of mmu-miR-370-3p, mmu-miR-770-3p, mmu-miR-341-3p, 
and mmu-miR-122-5p. The two miRNA panels were then 
compared to identify common miRNAs.

Fig. 2  Volcano plot depicting the most abundant miRNAs in the 
brain-derived extracellular vesicles (BDEVs) and serum extracellu-
lar vesicles (EVs). A Volcano plot revealing the differential expres-
sion of the most abundant miRNAs in the TDP-43*Q331K BDEVs vs 
TDP-43*wildtype (WT) BDEVs. TDP-43*WT n = 12 (3 month-old 
and 6-month old combined), TDP-43*Q331K n = 11 (3-month-old 
and 6-month-old combined). B Volcano plot revealing the differen-

tial expression of the most abundant miRNAs in the TDP-43*Q331K 
serum EVs vs TDP-43*WT serum EVs. TDP-43*WT n = 12 (3 
month-old and 6-month old combined), TDP-43*Q331K n = 11 (3 
month-old and 6-month old combined). Differential expression is pre-
sented as normalised read counts based on counts per million (CPM), 
p-value = 0.05, fold change < −1.5 and > 1.5. Images created with 
Partek Genomic Suite

Table 2  Significant miRNA in brain-derived extracellular vesicles (BDEVs)

miRNA name Total counts Maximum counts Geometric mean Arithmetic mean P-value FDR step up Ratio Log2(ratio) Fold change

mmu-miR-199a-3p 3358.78 334.02 133.8 146.03 0.00002 0.0056 1.82 0.87 1.82
mmu-miR-29c-3p 85,509 9360.88 3354.67 3717.78 0.00035 0.032 1.74 0.8 1.74
mmu-miR-136-5p 39,359.5 7158.8 1288.53 1711.28 0.00063 0.041 2.34 1.23 2.34
mmu-miR-361-3p 3335.76 364.41 130.9 145.03 0.001 0.041 1.73 0.79 1.73
mmu-miR-425-5p 7718.57 751.23 313.45 335.59 0.001 0.041 1.58 0.66 1.58
mmu-miR-29a-3p 333,859 37810.8 13,325.8 14515.6 0.001 0.041 1.62 0.7 1.62
mmu-miR-96-5p 11,021.6 2016.63 195.07 479.2 0.0022 0.051 4.1 2.04 4.1
mmu-miR-200a-3p 69,763.5 13231.1 1065.51 3033.2 0.003 0.06 4.37 2.13 4.37
mmu-miR-19b-3p 2891.52 260.1 113.63 125.72 0.0032 0.06 1.61 0.69 1.61
mmu-miR-142a-5p 1503.92 111.34 58.02 65.39 0.0033 0.06 1.69 0.76 1.69
mmu-miR-141-3p 17470.2 3787.33 138.34 759.57 0.0044 0.063 4.83 2.27 4.83
mmu-miR-199b-3p 3131.87 316.44 124.42 136.17 0.0046 0.063 1.56 0.65 1.56
mmu-miR-200b-3p 29,489.1 7265.5 430.55 1282.14 0.0047 0.063 4.24 2.09 4.24
mmu-miR-770-3p 12,717.7 1120.97 496.45 552.94 0.0048 0.063 0.62 −0.7 −1.62
mmu-miR-335-5p 19,381.3 2118.16 757.65 842.67 0.0054 0.065 1.6 0.68 1.6
mmu-miR-429-3p 41,036.3 9106.46 628.55 1784.19 0.0054 0.065 4.04 2.02 4.04
mmu-miR-194-5p 2893.38 277.05 114.94 125.8 0.0057 0.065 1.57 0.65 1.57
mmu-miR-183-5p 29,065.3 7602.77 410.34 1263.71 0.007 0.077 4.09 2.03 4.09
mmu-miR-486b-5p 1028.09 116.61 31.51 44.7 0.011 0.098 1.89 0.92 1.89
mmu-miR-122-5p 1188.32 139.1 45.12 51.67 0.012 0.098 0.62 −0.69 −1.61
mmu-miR-341-3p 4525.72 447.32 177.82 196.77 0.012 0.098 0.65 −0.61 −1.53
mmu-miR-200c-3p 13,018.4 4089.48 104.13 566.02 0.016 0.12 3.94 1.98 3.94
mmu-miR-182-5p 28,750.4 4820.24 475.58 1250.02 0.016 0.12 3.32 1.73 3.32
mmu-miR-370-3p 10,016.9 981.2 391.28 435.52 0.018 0.12 0.66 −0.61 −1.52
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Finally, the significantly differentially expressed 
BDEV miRNA were compared to the differentially 
expressed serum EV miRNA. Only two miRNAs were 
found to be common between the BDEV miRNA and 
the serum EV miRNA (Fig.  3C; Table  4). These two 
miRNAs, mmu-miR-122-5p and mmu-miR-486a-5p, 
were found to both target zinc finger protein 827, nuclear 
factor of activated T cells 5, and grainyhead-like 2 
protein (Fig. 3D; Supplementary Table 5). Interestingly, 
the UGU GAG G region of mmu-miR-122-5p targeted the 
ACA CUC C sequence located on the 3′ end of all three 
genes. Likewise, the CAU GUC C region in mmu-486a-5p 
targeted the GUA CAG G sequence located on the 3′ end 
of all three genes. Given these protein targets were not 
readily associated with neurodegeneration, the pathway 
targets of the two miRNA panels were investigated 
separately.

BDEV miRNA Panel and Serum EV miRNA Panel 
Target Protein Clearance and Cell Death Pathways

Analysis of the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways targeted by the BDEV 
miRNAs revealed novel targets. The BDEV miRNAs 
were found to target axon guidance, in addition to 
sphingolipid metabolism and signalling, a lipid known 
to compose small EVs [43] (Supplementary Table 6). 
Protein processing in endoplasmic reticulum and 
ubiquitin mediated proteolysis were also targeted 
pathways implying early protein degradation disruption 
may be occurring. Finally, the panel of miRNAs was 
revealed to be involved in prion diseases, suggesting 
some of the miRNAs may be more generally associated 
with neurodegeneration. Gene Ontology analysis revealed 
the BDEV miRNAs were also involved in cell death and 
vesicle-mediated transport (Supplementary Table 7). The 
latter of which was observed as a target of the serum EV 
miRNAs (Supplementary Table 9). Interestingly, KEGG 
pathway analysis of the serum EV miRNAs revealed 
the miRNAs to be involved in lysine degradation and 
TGF-β signalling pathway, two pathways that overlap 

with the BDEV miRNA targets (Supplementary 
Table 8). Identification of the miRNA gene targets was 
then conducted to reveal whether these mRNAs encode 
proteins involved in neurodegeneration.

The miRNA Gene Targets Are Involved in Regulation 
of Transcription

Initially, the targeted mRNA list generated through 
TargetScan was refined to only include those targeted 
by two-thirds or more of the miRNA in the BDEV 
miRNA panel or serum EV miRNA panel (Fig.  4A; 
Supplementary Table  10; Fig.  5A; Supplementary 
Table 11). Gene Ontology analysis using FunRich was 
then applied to the mRNA lists revealing that both the 
genes targeted by the BDEV miRNA panel, and the 
serum EV miRNA panel are involved in DNA and RNA 
binding activity, in addition to the negative regulation of 
transcription by RNA polymerase II (Figs. 4B and 5B). 
Interestingly, the gene targets of the BDEV miRNA panel 
were also found to be involved in the positive regulation 
of transcription by RNA polymerase II and miRNA 
regulation, suggesting a feedback mechanism may be 
facilitated through EVs (Fig. 5B).

Discussion

The BDEVs and serum EVs were successfully isolated 
from 3-month and 6-month-old male and female 
TDP-43*Q331K and TDP-43*WT mice, representing 
the initial early-symptomatic stage and prominent 
symptomatic stage of the disease. Following EV isolation 
and characterisation, sequencing was performed. 
Through attribute weighting, the age and sex of the 
mice were not found to influence the mutation status 
nor influence the differential expression of miRNAs. 
Therefore, identification of the miRNA biomarker panels 
was achieved through differential expression analysis. 
The lack of an effect due to age suggests that the early-
symptomatic TDP-43*Q331K animals have progressed 

Table 3  Significant miRNA in serum extracellular vesicles (EVs)

miRNA name Total counts Maximum counts Geometric mean Arithmetic mean P-value FDR step up Ratio Log2(ratio) Fold change

mmu-miR-122-5p 796,858.00 264,294.00 3438.70 34,646.00 0.00088 0.10 0.24 −2.03 −4.08
mmu-miR-671-5p 128,563.00 98,039.20 17.02 5589.69 0.011 0.59 6.21 2.63 6.21
mmu-miR-486a-5p 1,073,030.00 175,619.00 29,390.70 46,653.50 0.030 0.67 1.94 0.96 1.94
mmu-miR-486b-5p 1,036,590.00 167,072.00 13,981.20 45,069.10 0.033 0.67 1.97 0.98 1.97
mmu-miR-451a 179,719.00 48,373.60 283.56 7813.86 0.039 0.67 2.37 1.25 2.37
mmu-miR-5119 742,395.00 230,104.00 4465.54 32,278.10 0.042 0.67 0.49 −1.02 −2.03
mmu-miR-21a-5p 762,960.00 72,664.80 5977.85 33,172.20 0.044 0.67 0.67 −0.58 −1.50
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far enough into the disease at a molecular level that 
their EV cargo is indistinguishable from that of the 
prominently symptomatic 6-month-old mice [25, 26, 28]. 
This may indicate these markers appear very early in the 
disease prior to symptomatic onset and the initiation of 
molecular changes associated with them [25].

Differential expression analysis revealed miRNA panels in 
both the BDEVs and serum EVs from TDP-43*Q331K and 
TDP-43*WT mice. In BDEVs, 24 miRNAs were differentially 
packaged in the TDP-43*Q331K BDEVs compared to the 
TDP-43*WT BDEVs. The enrichment of miR-96-5p in the 
BDEVs is consistent with the literature where miR-96-5p 

Fig. 3  Heatmap depicting the statistically significantly differen-
tially expressed miRNAs in the brain-derived extracellular vesicles 
(BDEVs) and serum extracellular vesicles (EVs). A Heatmap of the 
24 statistically significantly differentially expressed miRNAs found 
in TDP-43*Q331K BDEVs compared to the TDP-43*wildtype (WT) 
BDEVs. TDP-43*WT n = 12, TDP-43*Q331K n = 11. B Heatmap 
of the seven statistically significantly differentially expressed miR-
NAs found in TDP-43*Q331K serum EVs compared to the TDP-

43*WT serum EVs. TDP-43*WT n = 12, TDP-43*Q331K n = 11. 
Differential expression is presented as normalised read counts based 
on counts per million (CPM), p-value = 0.05, fold change < −1.5 and 
> 1.5. C Venn Diagram depicting the intersection between the BDEV 
miRNA panel and the serum EV miRNA panel. D The two miRNAs 
found to be common between the BDEVs and serum EVs appear to 
target three genes. Images created with Partek and GraphPad Prism
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has been found to post-transcriptionally regulate Excitatory 
amino acid carrier 1 (EAAC1), a protein vital for neuronal 
glutathione production, which is known to be decreased in 
neurodegeneration [44]. Similarly, though the expression of 
miR-200a is up-regulated by FUS through a feed-forward 
regulatory loop, familial associated mutations in the 3′-end 
of the mRNA render it insensitive to miR-200a regulation 
[45]. This suggests the increase in miR-200a detected in 
the BDEVs may be an attempt to regulate an ALS disease-
specific pathway dysregulated by ALS-associated proteins 
such as mutated FUS. miR-199a-3p and miR-183-5p have 
previously been found to be upregulated in circulating EVs 
and spinal cords of ALS patients [46, 47]. Although miR-
183-5p, miR-451a, and miR-425-5p are found to be down 
regulated in the peripheral blood of sporadic ALS patients, 
this may be due to the selective packaging of these miRNAs 
into EVs or the retainment of these miRNAs in the parental 
cells [48, 49]. This may be the case for miR-451a, which is 
upregulated in the leukocytes of sporadic ALS patients where 
it was implicated in targeting MAPK signalling and apoptosis 
pathways [50, 51]. Both pathways were found to be targets 
of the BDEV and serum EV miRNA panels, suggesting an 
attempt to alleviate the pathogenesis and spread of the disease.

Interestingly, an overlap with other neurodegenera-
tive diseases was observed in this panel of miRNAs 
with up-regulation of miR-136-5p being detected in the 
synaptosomes of mice exhibiting pre-clinical prion dis-
ease [52]. Prion diseases were identified as a pathway 
targeted by this miRNA panel through KEGG pathway 
analysis. The up-regulation of miR-136-5p in the BDEVs 
may therefore be a general marker for the initial stages 
of neurodegeneration. Conversely, miR-200b, miR-200c, 
miR-182-5p, miR-429-3p, and miR-141-3p were found 
to exhibit decreased expression in synaptosomes of mice 
in the late stages of prion disease [52]. Therefore, the 
enrichment of these miRNAs in the TDP-43*Q331K 
BDEVs may be an early sign of general neurodegenera-
tive processes, with the miRNA expression changing as 
the disease progresses. In support of this, during the 
early stages of the disease, prion-infected mice display 
an up-regulation of miR-29a-3p in hippocampal neurons 
[53]. miR-29a-3p is known to target Actin-related pro-
tein 2/3 complex subunit 3 (ARPC3) which regulates 
the morphology of dendritic spines and attenuates syn-
aptic overstimulation [53, 54]. Given excitotoxicity is 
a hallmark of ALS, the upregulation of this miRNA so 
early in the disease’s progression may be an attempt to 
prevent neuronal death [55]. Furthermore, miR-141-3p 
modulates protection of BBB integrity in intracerebral 
haemorrhage [56]. Additionally, miR-335-5p and miR-
29a-3p are down-regulated in the peripheral blood of PD 
patients, with miR-335-5p also being a critical regulatory 
miRNA in AD [57–59]. This suggests that although these Ta
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miRNAs may be more generally associated with neuro-
degenerative diseases, their selective packaging into EVs 
may be specific to ALS.

Specifically in ALS, the up-regulation of miR-183-5p 
has previously been detected in plasma EVs and spinal 
cords of ALS patients, where it was found to suppress 
p62 expression and lead to an increased expression of 
TDP-43 [47, 60]. miR-183-5p is a neuron-enriched 
miRNA whose overexpression is suggested to increase 
neuron survival under stress conditions by silencing 
apoptotic and necroptotic pathways [61]. Antagomirs of 
TDP-43 have been found to repress formation of stress 
granules and aggregated TDP-43 under cellular stress 
[47]. Interestingly, GO analysis of the gene targets of 
the BDEV miRNA panel revealed association with 

the ribonucleoprotein complex and cytoplasmic stress 
granules. These stress granules and aggregated forms of 
TDP-43 have previously been detected in ALS BDEVs 
suggesting stress granule formation may be initiated 
earlier in the disease than expected through miRNA 
modulation [30]. Likewise, the targeting of protein 
processing in endoplasmic reticulum and ubiquitin-
mediated proteolysis by the BDEV miRNAs suggests 
protein degradation disruption which is associated with 
the late stages of ALS may be initiated earlier in the 
disease [62]. Interestingly both sets of genes targeted 
by the miRNA panels were determined to be involved in 
DNA and RNA binding activity, negative regulation of 
transcription by RNA polymerase II, and gene silencing, 
suggesting the EVs are potentially modulating a feedback 

Fig. 4  Genes targeted by the brain-derived extracellular vesicles 
(BDEV) miRNA panel appear to be involved in regulation of tran-
scription by RNA polymerase II. A TargetScanMouse revealed the 
BDEV miRNA panel targeted 66 common genes. Cut-off >8 miRNA 
per gene. Blue squares represent a miRNA targeting the correspond-

ing gene. B Gene Ontology analysis revealed the 66 targeted genes 
are involved in transcriptional and post-transcriptional regulation and 
are located in the ribonucleoprotein complex and cytoplasmic stress 
granules. Images created with GraphPad Prism and FunRich
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loop. Furthermore, KEGG pathway analysis revealed 
lysine degradation and the TGF-β signalling pathway to 
be common targets between the BDEV and serum EV 
miRNA panels. This further suggests that the serum EV 
miRNAs are capable of capturing EV-mediated pathways 
dysregulated in ALS.

This is the first study to identify common miRNAs in 
both the serum EV and BDEVs in ALS, revealing two 
miRNAs with the potential to assist in the diagnosis of 
ALS. Despite the timepoint of sampling exhibiting no 
effect on the miRNA panels and a conservative sample 
size, 24 statistically significant differentially packaged 
miRNAs were identified in the BDEVs and 7 in serum 
EVs. Some miRNAs have previously been associated 
with ALS or other neurodegenerative diseases, with only 
miR-183-5p previously being detected in EVs of ALS 
patients. Furthermore, the detection of miR-122-5p and 
miR-486b-5p in both panels of miRNAs, isolated from the 
same animals, demonstrates the potential of serum EVs 
to recapitulate the dysregulation occurring in the motor 
cortex. In the future, a larger sample size and analysis 
in human samples should be performed to validate these 
miRNA panels and confirm their association with ALS 
disease pathogenesis.
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