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Abstract: Understanding the complexities of Advanced Driver Assistance Systems (ADAS) and
Autonomous Vehicle (AV) technologies is critical for road safety, especially concerning their adoption
by drivers. Effective training is a crucial element in ensuring the safe and competent operation of these
technologies. This study emphasises the critical role of training methodologies in shaping drivers’
mental models, defined as an individual’s cognitive frameworks for understanding and interacting
with ADAS and AV systems. Their mental models substantially influence their interactions with
those technologies. A comparative analysis of text-based and video-based training methods has
been conducted to assess their influence on participants’ performance and the development of their
mental models of ADAS and AV functionalities. Performance is evaluated in terms of the accuracy
and reaction time of the participants as they interacted with ADAS and AV functions in a driving
simulation. The findings reveal that video-based training yielded better performance outcomes, more
accurate mental models, and a deeper understanding of ADAS functionalities among participants.
These findings are crucial for policy makers, automotive manufacturers, and educational institutions
involved in driver training. They underscore the necessity of developing tailored training programs
to facilitate the proficient and safe operation of increasingly complex automotive technologies.

Keywords: ADAS; AV; driver training; mental model; text-based learning; video-based learning

1. Introduction

Road Traffic Accidents remain a persistent public health challenge, significantly con-
tributing to injuries and loss of life worldwide. The World Health Organization (WHO)
approximates that 1.35 million individuals are victims of road traffic fatalities globally each
year [1]. Even in developed nations like Australia, where the road infrastructure is robust
and well maintained, the threat of road accidents remains. Recent statistics reveal that more
than 1200 lives are tragically lost annually on Australian roads [2,3]. Over 90% of these
accidents have been identified by the National Road Safety Partnership Program (NRSPP)
in Australia as being caused by human factors, highlighting a substantial behavioural di-
mension to the prevailing road safety issues [4]. The primary contributors to road accidents
include speeding [5], distracted driving, intoxicated driving [6], and driver fatigue [6,7]. To
address these challenges, Advanced Driver Assistance Systems (ADAS) such as Adaptive
Cruise Control (ACC) have been developed. ACC assists in maintaining a safe distance
from the vehicle ahead, reducing the driver’s workload and mitigating issues like speeding
and the risk of rear-end collisions [8–10]. Similarly, Lane-Keeping Assist (LKA) aids in
maintaining the vehicle within its lane, providing corrective steering inputs to prevent
unintentional lane departures, thereby enhancing road safety [11].

In recent years, the introduction of ADAS and Autonomous Vehicles (AV) has served as
a development milestone in the automotive industry, offering the potential to revolutionise
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global transportation systems [12,13]. Among the most promising advantages of AVs is their
potential to substantially enhance road safety by reducing human-related driving errors,
thereby potentially leading to a decrease in accidents [14]. ADAS and AV technologies
have the potential to reduce road accidents, with certain studies projecting a reduction of
up to 90% [15].

Moreover, the benefits of ADAS and AV technologies extend beyond just enhancing
safety. They have the potential to reshape urban planning paradigms, mitigate traffic
congestion [16], and improve traffic flow, laying the groundwork for innovative solutions
like efficient parking strategies [17–19] and platooning [20,21]. The subsequent effects of
ADAS and AV technologies indicate a significant impact on our existing transportation
infrastructure and methods [18,22]. These technological advancements are expected to
greatly benefit arterial road networks, which are essential channels for the distribution of
goods, service delivery, and human mobility. Utilising a data-driven approach to educate
drivers about the functionalities of ADAS and AV could play a key role in reducing accident
rates, thereby enhancing the efficiency and safety of these networks [14,23].

The public has shown a positive response to the enhanced safety features provided by
ADAS and AV technologies, as seen in a survey conducted in the USA, where a notable
92% of respondents expressed a preference for ACC function, and 90% showed interest
in Collision Avoidance (CA) functions for their future vehicles [10]. Despite this growing
interest, the adoption rates for some of the main functions remain low. For instance, ACC,
a mature ADAS function, has only had a 26% adoption rate since its introduction in 1998.
Similarly, the adoption rate for LKA, available since 2001, stands at a mere 9.8% [24]. Given
the technology’s potential to reduce road accidents, identifying effective training methods
for drivers of vehicles equipped with ADAS functions is crucial.

Recognising the gap in practical training methods, our study introduces a novel
approach by utilising a carefully designed virtual environment that mirrors real-world
driving conditions. Features such as realistic traffic patterns, road markings, and detailed
surroundings elevate the authenticity of the simulated environment. This provides par-
ticipants with an immersive experience that closely parallels actual driving scenarios. In
the rapidly evolving field of automated transportation, effectively training users on ADAS
and AV functions is extremely important because it directly affects the effectiveness of
drivers in using those functions. This is especially beneficial for policy makers, educators,
and industry leaders in developing policies and standards for educating drivers. Our
research undertakes a comprehensive comparison of paper-based/text-based and video-
based training methods. Our objective is to determine the most efficacious techniques for
providing a clear understanding of these complex systems. By identifying the optimal
training methods, our study can help drivers have a better understanding of ADAS and AV
functions, thus can help to enhance their adoption rates. Proper training ensures that users
construct accurate mental models, leading to the correct and optimal utilisation of these
systems. Informed interaction reduces the likelihood of user errors and misunderstandings.
Therefore, this study underscores the importance of proficient training methodologies in
enhancing road safety. With thorough education and awareness, the adoption of automated
transportation can foster safer roads and the potential to save lives.

The structure of this paper is as follows: Section 2 presents a comprehensive literature
review, emphasising the challenges and significance of training users in ADAS and AV,
with a focus on the development of mental models and the evaluation of current training
methodologies. Section 3 presents the research methodology, experimental setup, and
simulated driving environment. Section 4 outlines the participant recruitment process and
demographic composition. Section 5 conducts a comparative analysis between video-based
and text-based training methods, focusing on their respective influences on participant
accuracy and response times during interactions with ADAS functions. Section 6 provides
a comprehensive discussion comparing the efficacy of various training approaches, with
particular emphasis on the merits of video-based instruction and its potential applications.
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Concluding remarks and recommendations for stakeholders are presented in Section 7,
based on the insights and analyses garnered throughout this study.

2. Literature Review

The rapid advancement in automotive technology, particularly in ADAS and AV,
is changing the landscape of vehicle operation and safety. These sophisticated systems
offer promises of enhanced safety and efficiency, but their effectiveness is contingent upon
proper user training and understanding [14]. The complexity and diversity of ADAS and
AV technologies underscore the importance of effective training methodologies to ensure
seamless interaction and user proficiency.

One of the primary challenges in this domain is the lack of standardisation across
manufacturers regarding ADAS and AV functionalities [24]. This lack of uniformity can
lead to inconsistencies in user experience and potentially compromise safety. For example,
the differences in the activation and deactivation processes of the same ADAS function
across different manufacturers may lead to confusion for users [24]. Furthermore, the
absence of specialised training and evaluation mechanisms for users adds to the complex-
ity, highlighting the need for a more unified approach to training [14,23]. However, the
literature lacks comprehensive studies that compare the efficacy of these diverse training
methodologies. Central to the user’s interaction with ADAS and AV technologies is the
concept of mental models. Mental models in the context of ADAS and AV are critical for the
safe and competent operation of these systems, due to the increased automation and com-
plexity [25,26]. For example, the CA function plays a crucial role in reducing the driver’s
workload. It alerts the driver and can automatically apply brakes when an imminent
collision is detected, thereby contributing to accident prevention. Gaining a comprehensive
understanding of the CA system’s capabilities and limitations is essential. Such knowledge
is critical for drivers, helping them to avoid excessive dependence on technology while that
they are prepared for timely manual intervention when necessary [9–11].

A mental model, in the context of automotive technology, refers to a driver’s under-
standing and conceptualisation of a system’s capabilities and limitations. It forms the
basis for how drivers interact with and utilise the vehicle’s advanced features safely and
effectively [14]. A well-defined and robust mental model correlates with the precision in
activating ADAS functionalities and the promptness of their activations. When considering
mental models in the automotive technology domain, two primary dimensions emerge.
(i) Understanding ADAS functions: drivers need to understand the various features of
ADAS and how they work in different scenarios. This includes knowing what the system
can do and recognising when it might not work as expected [27]. (ii) Recognising system
status: drivers need to be aware of whether the ADAS is currently active. This means
knowing if one or more of its functions are on or if they are turned off or not in use [27].
To evaluate the robustness of these mental models, methodologies such as scoring-based
assessments and simulation tests can be employed. For instance, a scoring system based on
the accuracy of responses to questions about ADAS functions can serve as a quantifiable
measure. Here, accurate responses represent a “strong” mental model, while incorrect or
incomplete responses indicate a “weak” mental model [27,28]. In practical implications, a
precise or ‘strong’ mental model can enhance the safe and effective deployment of ADAS
and AV technologies. Conversely, a weak mental model can lead to higher risks of misuse,
excessive reliance, and potentially hazardous situations [27,29].

In the context of evaluating the effectiveness of ADAS and AV training methodologies,
it is crucial to select an appropriate simulation platform that aligns with this study’s
objectives. In the realm of ADAS and AV technology training, various simulation platforms
offer distinct advantages each with its unique features. For example, CARLA is renowned
for its comprehensive automotive simulations and extensive capabilities in environmental
modelling [30,31]. While CarSim is widely recognised for its realistic automotive and
vehicle dynamics simulations [32,33]. The primary focus of CARLA and CarSim is on the
comprehensive modelling of vehicular dynamics and the driving environment. While this is
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beneficial for various research contexts, it does not closely align with the specific objectives
of our study. Our research emphasises understanding driver behaviour and interaction
with ADAS and AV functions. Therefore, the York driving simulation software version
6.61, developed by York Computer Technologies Inc., Kingston, Canada, was chosen,
specifically for its strengths in facilitating driver interaction with these functionalities
and simulating human factors, which are paramount for assessing the development of
accurate mental models in drivers. The York simulator includes built-in functions such
as Autopilot, LKA, and CA, making it particularly suited for studies focusing on driver
training and behaviour. This choice aligns with our research objectives, concentrating on
evaluating different training methodologies’ effectiveness on participants’ comprehension
and performance in ADAS and AV technologies.

The automotive sector presents diverse training methodologies, ranging from paper-
based and video-based to demonstration-based and trial-and-error techniques [12,14,34–38].
Globally, billions are spent annually on skill and safety training, highlighting the impor-
tance of developing an effective training curriculum [39]. The essential question arises: are
current training practices effective, or is there an imperative need to research and iden-
tify desirable methodologies according to the transport industry’s requirements? Studies
across various fields, including healthcare, education, construction, sports, and computer
science, have indicated a trend toward the superior efficacy of video-based training which
could hold valuable insights for automotive training methodologies [40–47]. Studies across
various fields suggest the efficacy of video-based training, but the transport industry lacks
specific research on how these findings translate to ADAS and AV training. This transition
is theoretically grounded in the cognitive load theory of multimedia learning, suggesting
that video-based training could improve information absorption and its meaningful com-
prehension, thus potentially transforming the automotive training landscape [35,48]. This
study significantly contributes to the field by providing empirical evidence on the effec-
tiveness of video-based training over text-based methods in developing accurate mental
models of ADAS and AV functionalities, thereby enhancing driver performance and safety.

This literature review underscores the criticality of comprehending the intricacies of
ADAS and AV technologies, along with the significance of tailored training methodologies
for their effective adoption and safe usage. Emphasising the diversity of users and the
varying complexity of these systems, this review highlights the growing need for specific
training approaches that accommodate different learning styles and preferences.

3. Materials and Methods
3.1. Experiment Setup

The experiment was carried out using a York driving simulator, integrated with a
Logitech G27 racing wheel system, equipped with a set of pedals and a shifter module. A
wide range of ADAS and AV functions, as detailed in Table 1, were allocated to distinct
buttons located on both the steering wheel and the shifter module to replicate a realistic
driving environment.

Table 1. Instructions for each trigger.

Trigger No Instruction Function Type

T1 Turn on the Autopilot function AV

T2 Turn on the Lane-Keeping Assist function ADAS

T3 Turn on the Collision Avoidance function ADAS

T4 Turn on the Adaptive Cruise Control function ADAS

The experimental design involved manoeuvring an AV within a three-dimensional
virtual environment. Participants had the option to control the vehicle manually or allow it
to function autonomously. Additionally, the ADAS features could be switched between
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activated and deactivated states. The simulated AV featured automatic transmission,
allowing the panel on the shifter module to be utilised exclusively for activating and
deactivating ADAS functions. As a result, the shifter lever was intentionally disabled for
the entirety of the experiment to avoid any operational confusion.

To enhance the ecological validity of the research, meticulous attention was devoted
to the design elements, aimed at simulating a highly immersive and authentic driving
scenario. This arrangement is graphically represented in Figures 1 and 2. Figure 1 illustrates
components “a” through “c” as the steering wheel, driving seat, and pedals, respectively.
Figure 2 showcases the driving environment and components “d” through “h”, each
corresponding to specific ADAS functions.
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In reference to Figure 2, component “e” indicates the location of the LKA button,
which is situated on the shifter module. In the simulation, when LKA is activated, its
corresponding indicator is illuminated in green on the virtual dashboard, as illustrated in
Figure 3. This function steers the vehicle, guiding it towards the centre of the lane. It will do
the necessary steering. However, it has no control over the accelerator and brake and thus
has no control over the velocity of the vehicle. Component “f” illustrates the positions of the
ACC features on the side panel. When engaged, the ACC system autonomously modifies
the vehicle’s speed to maintain a safe distance from preceding vehicles, thereby promoting
both driver convenience and safety. The Autopilot-On (AP-On) feature is represented by
component “g” and is conveniently located on the steering wheel. When the AP function is
enabled, the system assumes full control of the vehicle, necessitating no driver intervention.
It governs both the lateral movements and modulates the acceleration and deceleration of
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the vehicle. Finally, component “h” denotes the CA function integrated into the steering
wheel. When activated, the CA system intervenes to mitigate potential frontal collisions.
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According to the SAE J3016 standard [49,50], the LKA, ACC, and CA systems in
our simulation are categorised as Level 2 (partial driving automation). These systems
require the driver to remain engaged with the driving task and to monitor the environment,
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although they assist in both lateral and longitudinal vehicle motion control. The Autopilot
feature, designed to represent more advanced AV functionalities, simulates aspects of Level
5 (full driving automation), aiming to demonstrate a future scenario where the vehicle
achieves full automation, requiring no driver intervention.

3.2. Driving Scenario and Environment

The interface of the driving simulator is illustrated in Figure 3, with the red box rep-
resenting the vehicle’s front section or bonnet. Immediately below this, the dashboard is
displayed, incorporating both a speedometer and status indicators for the ADAS and AV
functions. These indicators illuminate in green when the corresponding ADAS functions are
activated; for example, as presented in Figure 3, the LKA is active. The three-dimensional
virtual environment incorporates key elements commonly encountered on actual roadways.
This includes varying traffic flows, which feature a representative mix of vehicle types
such as passenger cars, commercial vehicles, and emergency vehicles in motion, which
contribute to the realistic traffic pattern as demonstrated in Figure 4. Specifically, the traffic
density within the urban areas is depicted as higher than that of freeway driving, reflecting
the frequent encounters with emergency vehicles and pedestrian crossings. The presence
of streetlights and road markings is designed to mirror urban and suburban settings, pre-
senting a spectrum of driving scenarios. Pedestrians are strategically placed within the
environment to emulate real-life pedestrian behaviours and interactions, prompting partici-
pants to make more sophisticated driving choices. Designated speed limits, architectural
features, and natural scenery are also accurately depicted, contributing to the ecological
validity of the simulator. These elements serve to enhance the ecological validity of the
simulator, aiding participants in navigating their virtual surroundings [51].
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Figure 5 provides an aerial perspective of the designated driving path, with a red
circle indicating the vehicle’s starting point. The route consists of low-speed (60 km/h)
and high-speed (120 km/h) segments, highlighted by red and green arrows, respectively.
These segments serve to simulate the transition between urban and freeway driving con-
ditions, offering participants a diversified driving experience. Participants commence
in the low-speed area, passing through an intersection to enter the high-speed segment,
then cross another intersection before returning to the initial low-speed zone. A series
of pre-programmed triggers (T1 to T4) are strategically positioned along the route, each
initiating specific events when the vehicle passes. The audio instructions associated with
these triggers are outlined in Table 1 and are played to prompt participant actions.
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In the current investigation, we conduct a comprehensive analysis of multiple vari-
ables, including steering angles (degree), patterns of acceleration and braking (m/s2), event
trigger timestamps, and the specifics of button activations including their timing. In this
study, the accuracy of participants in using ADAS and AV functionalities was quantified as
a percentage. This percentage represents the proportion of participants who successfully
executed the required actions with these systems during the experiment. Additionally,
we assess participants’ response latencies, captured in seconds, following the initiation of
triggered events.

4. Recruitment of Participants

The objective of this research was to engage a heterogeneous group, comprising both
students and faculty of RMIT University, that reflects diversity in terms of age and gender.
A multimodal recruitment strategy was employed, leveraging digital avenues through
the university’s online platforms, while supplementing this with traditional paper-based
advertisements strategically located throughout the RMIT Bundoora campus.

The resultant sample comprised 48 adult participants aged 20 to above 40 years old,
as detailed in Table 2. These participants had varying levels of driving experience, ranging
from one to more than six years. They were categorised into three different groups based
on established road safety and insurance benchmarks for defining driver expertise [52,53],
as demonstrated in Table 3. It was a prerequisite for participation that individuals hold
a valid driving license. Efforts were made to ensure gender balance within the cohort;
the final composition consisted of 26 males and 22 females. However, it is important to
note that despite these efforts, the distribution of participants across age groups was not
even. This uneven distribution in age groups represents a limitation of our study as it
may have influenced this study’s findings related to age-related interactions with ADAS
technologies. In addition to these considerations, we acknowledge a potential bias in our
participant selection, as our sample primarily consisted of students and faculty members.
This demographic focus might limit the generalisability of our findings to the broader
population of ADAS and AV users.
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Table 2. Participant division—age group.

Training Type Number of
Participants

Age Group
(20–30 Years)

Age Group
(30–40 Years)

Age Group
(Above 40 Years)

Video/Text-based 48 21 15 12

Table 3. Participant division—driving experience.

Training Type Number of
Participants

Driving Experience
Novice Driver

(1–3 Years)

Driving Experience
Intermediate Driver

(4–6 Years)

Driving Experience
(Experienced Driver

(Above 6 Years)

Video/Text-based 48 15 13 20

To further control extraneous variables, the student participants were recruited from a
diverse range of academic disciplines, thus achieving a heterogeneous sample in terms of
educational background. While the overall sample size of 48 participants was adequate,
the uneven age distribution limits our ability to draw conclusive results about age-specific
patterns or impacts. This limitation should be considered when interpreting our findings.

Before their involvement in this study, all participants were comprehensively briefed
regarding the research objectives and methodologies. Informed consent was duly obtained
following ethical standards. The experimental protocol presented in this work was subject
to a thorough review process and subsequently approved by the RMIT University Human
Research Ethics Committee (Approval Number: EC 25022). This ensured adherence to
established ethical guidelines and academic research standards.

Participant Registration and Training Session at RMIT Bundoora Campus

Participants arrived at the Autonomous Vehicle Lab located on the RMIT Bundoora
Campus to begin the experiment. They first underwent a standard registration process,
during which they were provided with an overview of this study’s objectives, methods,
and significance. Everyone was then given a “Participant Information and Consent Form”
that had been pre-approved by the RMIT University Human Research Ethics Committee.
After carefully reading the details of the form, participants confirmed their willingness to
participate by signing it.

In our study design, we strategically selected two vehicular functions for video-based
training and two for paper-based instruction to ensure a comprehensive and equitable
comparison. Specifically, we chose the AP-On function located on the steering wheel
and the LKA positioned on the shifter module for video-based training. For paper-based
training, we selected the CA function on the steering wheel and the ACC function found
on the shifter module.

This approach was deliberate; by selecting one function from each location (the steer-
ing wheel and the shifter module) for each type of training, we fostered a balanced rep-
resentation of functionalities in each training modality. This decision guarantees that our
comparative analysis between the video and paper-based training results remains fair,
maintaining an impartial reflection of the efficacy of each training method without being
influenced by the functionalities’ locations on the simulator or inherent characteristics.

Following registration, participants watched an instructional video that presented
a concise overview for this study. This video served multiple purposes: it provided
a comprehensive overview of this study’s objectives, hardware setup, virtual driving
environment, driving route, and served as a training module demonstrating two (out of
four) key ADAS and AV functions; AP-On and LKA. The video further elaborated on the
participants’ expected actions and necessary responses while navigating the simulated
environment and responding to specific triggers. In doing so, it effectively communicated
this study’s primary objectives and served a dual role as both an informative guide and a
practical training tool.
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Next, participants were given a comprehensive user manual resembling a real car
owner’s guide. This user manual, extending across 4 pages and comprising approximately
1100 words in total, was organized into three sections. The first section introduced the
features and operations of the driving simulator. The second provided in-depth information
about all available ADAS functions, including procedures for activation and deactivation.
The third section described the limitations of each ADAS feature. A time slot of 15 min
was allotted for participants to read the manual, with a focus on understanding two
of the ADAS functions namely, CA and ACC. According to [54], a non-native English
speaker reads at an average rate of 139 words per minute. Therefore, the manual, being
approximately 1100 words, could be comfortably read in around 8 min. This calculation
allowed us to set a reading time of 15 min, giving participants ample opportunity to review
the manual thoroughly, especially the two ADAS functions not covered in the instructional
video. The decision to allocate 15 min for this activity was consistent with existing research
recommendations [55]. Upon completion of the training, participants were invited to
engage in a practical driving session within a simulated AV environment.

5. Results

The objective of this study is to reveal the critical importance of effective training for
end-users of ADAS and autonomous driving functions. With the increasing complexity
and diversity of these systems, user familiarity and proficiency become vital in realising
their full potential and ensuring safety. The data are analysed to compare the effectiveness
of two distinct training methods: video-based instruction and text-based user manuals. Per-
formance measurements in this study focused on two key areas. The first was participants’
accuracies, which were determined by evaluating the percentage of times they correctly
activated or deactivated an ADAS function following instructions. These instructions were
associated with pre-programmed triggers (T1 to T4) along the driving route, as detailed in
Table 1. Participants’ accuracy was assessed based on their ability to correctly respond to
these specific audio instructions by activating or deactivating the relevant ADAS function.
The second was response latencies, or the time taken by the participants to respond to an
audio instruction by either turning on or turning off the correct ADAS function. Together,
these metrics provide insights into how effectively participants understood and remem-
bered the ADAS/AV functions and utilised them properly and promptly in responding to
the simulated events.

5.1. Accuracy Analysis

This study aimed to compare the effectiveness of two different training methods for
participants learning the functionalities of ADAS. Two functions, AP-On and LKA, were
taught through video-based training, while two others, CA and ACC, were explained
through user manuals.

Steering wheel controls (AP-On and CA): The results indicate a significant difference
in the accuracy levels between the two functions located on the steering wheel. The
AP-On function, taught through video, achieved a perfect accuracy rate of 100%, while
the CA function, taught through the user manual, demonstrated a lower accuracy of
79%, as demonstrated in Table 4. This variation in results may indicate that visual and
interactive teaching methods such as videos may enhance comprehension and retention of
the functionality, leading to higher accuracy in identifying and using the control.

Table 4. Participants’ average accuracies after being trained using different methods.

Group Division—
Training Method

No. of
Participants in

Each Group

AP-On Response
Accuracy in %

LKA Response
Accuracy in %

CA Response
Accuracy in %

ACC Response
Accuracy in %

Video based 48 100 77 NA NA

User manual 48 NA NA 79 68
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Shifter module controls (LKA and ACC): Similarly, the two functions located on the
shifter module, LKA and ACC, showed accuracy levels of 77% and 68%, respectively. This
pattern follows the trend observed with the steering wheel controls, where the function
taught through video, LKA had a higher accuracy rate compared to the one taught through
the user manual, ACC, as shown in Table 4.

The consistent trend observed across both sets of controls suggests that the video-
based training method may be more effective in instructing participants on the specific
ADAS functions when compared to the user manual method. This suggests that the more
interactive and visual nature of the video tutorials may foster a better understanding and
may ease the learning curve.

5.2. Reaction Time Analysis

The initial step in our data analysis involved conducting a normality assessment to
determine if the data follows a normal distribution. For this purpose, we utilised both the
Shapiro–Wilk and Anderson–Darling tests. The Shapiro–Wilk test, introduced by [56], is
widely recognised for its efficacy in evaluating the normality of a dataset. The Anderson–
Darling test, developed by [57], assesses the data’s alignment with a specific distribution (in
this instance, the normal distribution) by placing added emphasis on the tails. This phase
was crucial as it directed our subsequent choice of either parametric or non-parametric
statistical tests, based on the data’s distributional properties.

Data for the ADAS functions trained through video (AP-On and LKA) and those
trained through the paper-based user manual (CA and ACC) were both found to deviate
from a normal distribution, as confirmed by both normality tests. Given these results,
traditional parametric tests like Analysis of Variance (ANOVA), which require data to
follow a normal distribution, were not suitable for this study. Therefore, we chose to use the
Mann–Whitney U test, a non-parametric method recommended for analysing datasets that
do not meet the normality assumption [58]. The null hypothesis for this test asserts that
the distributions of the two groups are identical, meaning there is no difference between
them. When the null hypothesis is not true, it suggests that there is a statistically significant
difference between the two groups. A p-value below a predetermined threshold p < 0.05
would lead us to reject the null hypothesis, indicating that one group tends to have higher or
lower values than the other. Thus, a statistically significant result from the Mann–Whitney
U test suggests that the observed differences between the groups are not attributable to
random variability, but rather signify an underlying disparity between them [58]. These
conclusions are drawn with careful consideration of the methodological choices employed
and the distributional characteristics inherent to the data.

5.2.1. Comparison of AP-On and CA Functions

In this section, we compared the response times of Auto AP-On and CA. Both functions
are activated via controls on the steering wheel, but they were trained through different
methods. AP-On through video-based training and CA through a paper-based user manual.
Our findings reveal significant patterns in response times, as observed through both
descriptive statistics and inferential analysis.

For the AP-On function, the median response time was recorded at 3.16 s, with a
relatively narrow range of 1.60 to 5.22 s. Furthermore, the data demonstrate a standard
deviation of 0.96 s, indicating less variability in the response times among participants
for this function. On the contrary, the CA function displayed a median response time
of 4.22 s and had a broader range, ranging from 2.02 to 8.84 s. The standard deviation
for the CA function is also high at 1.78 s. As illustrated in Figure 6, these descriptive
statistics suggest a more consistent and potentially more rapid responsiveness for the
AP-On function compared to the CA function.
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Figure 6. AP-On and CA reaction time comparison between the video vs. user manual training
methods. “+” shows the outliners.

To robustly substantiate these observations, we conducted a Mann–Whitney U test,
comparing the response times for AP-On and CA. The analysis revealed statistically signif-
icant differences between the two functions (p < 0.05), with a resulting p-value of 0.0135.
This outcome confirms that the difference in response times between AP-On and CA is
statistically significant, which also implicates the training method as a contributing factor
to this variation.

5.2.2. Comparison of LKA and ACC Functions

In this section, we compared the response times of LKA and ACC. Both functions
are activated via buttons located on the shifter module. However, LKA was trained
through video instruction, whereas ACC was taught using a text-based user manual. This
divergence in training methods set the groundwork for examining their potential impact
on user responsiveness.

The descriptive analysis reveals that, the LKA function demonstrated a median re-
sponse time of 4.04 s, with a range from 2.82 to 7.88 s and a standard deviation of 1.22. The
ACC function, in comparison, showed a higher median response time of 5.32 s, extending
over a range from 2.93 to 8.34 s, with a greater standard deviation of 1.59. As illustrated in
Figure 7, responses to the LKA function were generally faster and more consistent among
participants compared to the ACC function.

To validate the significance of the observed differences in response times between LKA
and ACC, we conducted a Mann–Whitney U test. This analysis resulted in a p-value of 0.02,
indicating that the variations in response times are statistically significant. This finding
provides concrete evidence supporting the hypothesis that different training methods can
significantly affect user interaction efficacy with ADAS functions.

The significance of these results is manifold. Firstly, the observable difference in
median response times between LKA and ACC highlights the importance of investigating
the most effective training modalities for each specific ADAS function. Secondly, the
variance in standard deviations suggests that the training method may influence the speed
and the uniformity of responses among participants.
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6. Discussion

This research contributes valuable insights into the field of automotive technology,
particularly in training users to interact with complex vehicle systems. Through a care-
fully and rigorously designed experimental framework, we evaluated the effectiveness
of video-based and text-based instructional approaches on user interaction with complex
vehicle systems.

Our findings indicate that using video-based methods to train on ADAS and AV
functions led to faster and more consistent response times compared to using user manuals.
These findings are consistent with previous research that highlighted the effectiveness of
video-based training for understanding complex tasks [35,59]. The superiority of video-
based training over paper-based instruction is evidenced by measurable improvements in
accuracy and reaction time, indicating a more robust mental model among participants.
This observation aligns with [27], which asserts that stronger mental models contribute to
more effective and efficient user performance.

Despite the distinct nature of the functions under study, such as AP-On versus CA
or LKA versus ACC, the activation mechanism was uniform across pairs: a straightfor-
ward single-button press. This consistent methodology of operation, combined with their
comparable placements (either on the steering wheel or the shifter module), ensured a
level comparison ground. Thus, even though the functions were distinct, the fundamental
process for activation remained consistent. This similarity ensures that our comparisons
remain valid, as the primary variable in our experiment was the training method, not
the operational complexity or location of the functions. Therefore, our findings offer a
credible assessment of the training methods’ efficacy, eliminating potential biases arising
from varied function complexities or placements.

While text-based manuals provide a comprehensive depth of information, they come
with inherent challenges. Consistent with existing literature, our results showed that
user manuals often require a higher level of pre-existing technical knowledge and can be
cumbersome to study effectively [38,60]. This was reflected in a broader distribution of
response times and, in some instances, lower accuracy for the CA and ACC functions.
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Statistical rigour was added to these observations through the Mann–Whitney test, as
presented in Figures 5 and 6. These statistical findings further emphasise the need for train-
ing methods specifically tailored to the complexities and demands of each ADAS function.

In the context of the growing adoption of ADAS technologies in modern vehicles, our
study highlights the importance of selecting the appropriate training methodologies. The
advantages of video-based training, as shown in this research, offer promising avenues
for creating more effective and safer user training programs. However, it is important to
consider the limitations of this study. The results may be specific to the ADAS functions
assessed and the applied experimental conditions. Therefore, future research should focus
on establishing the applicability of these findings to other control systems and ADAS
functions. Explorations into hybrid, interactive, or artificial intelligence-driven training
methodologies could also be beneficial for refining training techniques.

Additionally, it is important to consider that our study was conducted under well-lit
daytime conditions, which did not consider the potential impacts of fatigue and different
lighting conditions, such as those encountered during nighttime driving. These factors are
significant in real-world scenarios and merit further investigation. Future studies should
aim to investigate a variety of environmental conditions, including those that induce
different levels of fatigue, to provide a more comprehensive understanding of how these
variables affect interactions with ADAS technologies. Another important limitation to
consider is the influence of participants’ prior experience with in-car systems. While our
study analysed the effect of different training methods, we did not focus on the impact of
pre-existing familiarity with such systems. This factor could affect the results and should
be more explicitly addressed in future research.

Moreover, while our research lays foundational groundwork for understanding how
different training mediums impact user interactions with ADAS and future AV functions,
other variables should not be overlooked. These include the inherent complexity of the
functions, technological familiarity among users, and other uncontrolled factors that may
impact the observed outcomes. Addressing these variables forms an avenue for future
research to further optimise training methods for improving both user performance and the
safety of advanced automotive technologies. Lastly, it is crucial to recognise that this study
was executed within a simulated environment. Therefore, the real-world applicability
of these findings necessitates further research involving practical, on-road conditions to
validate the outcomes observed in a controlled setting.

7. Conclusions

This study provides valuable contributions to the automotive technology sector, specif-
ically in training users for ADAS and AV. Our empirical data demonstrate that, compared to
traditional text-based manuals, video-based training methods improved user performance
both in terms of response time and accuracy. While video-based methods were more
effective for quick comprehension and application, text-based manuals showed limitations,
especially in terms of user engagement and the breadth of response times.

The results highlight the need for a tailored approach to ADAS and AV training
methods, given the unique demands of different functionalities. While our study provides
foundational insights into how training methods affect user interaction with complex
vehicle systems, it also indicates the necessity for future research to confirm these findings,
particularly in real-world settings. This research sets the stage for future investigations into
optimising training modules to enhance user performance and automotive safety.
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