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ARTICLE

Identifying and profiling structural similarities
between Spike of SARS-CoV-2 and other viral or
host proteins with Machaon
Panos Kakoulidis 1,2, Ioannis S. Vlachos3,4,5,6,7, Dimitris Thanos2, Gregory L. Blatch8,9,10,11,

Ioannis Z. Emiris1,12 & Ema Anastasiadou 2✉

Using protein structure to predict function, interactions, and evolutionary history is still an

open challenge, with existing approaches relying extensively on protein homology and

families. Here, we present Machaon, a data-driven method combining orientation invariant

metrics on phi-psi angles, inter-residue contacts and surface complexity. It can be readily

applied on whole structures or segments—such as domains and binding sites. Machaon was

applied on SARS-CoV-2 Spike monomers of native, Delta and Omicron variants and identified

correlations with a wide range of viral proteins from close to distant taxonomy ranks, as well

as host proteins, such as ACE2 receptor. Machaon’s meta-analysis of the results highlights

structural, chemical and transcriptional similarities between the Spike monomer and human

proteins, indicating a multi-level viral mimicry. This extended analysis also revealed rela-

tionships of the Spike protein with biological processes such as ubiquitination and angio-

genesis and highlighted different patterns in virus attachment among the studied variants.
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Protein structure strongly dictates function, with minimal
changes often dramatically affecting major properties1,
localization2, binding partners3, and structure stability4.

Protein tertiary structure can be up to ten times more conserved
than genomic sequence5 and can reveal a greater genomic simi-
larity. Currently, access to protein structures unprecedentedly
increased due to advances in experimental and in silico approa-
ches, such as refined Cryo-EM6 and AlphaFold7. This progress
stresses the need for improved methodologies that can efficiently
identify structurally similar proteins beyond distinct domains or
common families and origins. Such approaches could connect
structure to molecular and cellular function and/or genomic
information with structural and chemical properties. These
methods can also be applied to assess structural mimicry
mechanisms employed by viruses to control host systems8 or to
quickly functionalize proteins of newly discovered viruses or
variants, supporting biomarker discovery, drug design or
repurposing.

The currently available methods span a wide gamut of
approaches, focusing on primary, secondary, or tertiary protein
structure. Sequence-based search methods, such as BLAST9, rely
on high sequence similarity, which is often inadequate for
revealing distant relationships. Established structure-based
approaches, such as the Dali server10 and Research Collabora-
tory for Structural Bioinformatics Protein Data Bank’s (RCSB
PDB)11 search based on BioZernike12, emphasize the high rate of
structural similarity with fixed thresholds. From a performance
perspective, most standardized metrics for structural
comparison13, such as the Template Modeling Score (TM-
Score)14, require prior superposition of whole structures, which is
a computationally intensive task. It is becoming apparent from
the above that there is an unmet need for new methods to per-
form structural comparisons.

Structure comparison by multiple criteria has been previously
proposed, such as pyMCPSC15. However, to our knowledge, no
existing method combines features such as torsion angles16,17,
residue distances10,18,19 or representations like alpha shapes20 to
a unified framework. In this study, we present Machaon, a
methodology that relies on hypothesis-free clustering and ranking
proteins by concurrently calculating and utilizing comparative
protein differences of torsional angles (B-phipsi), inter-residue
distances (W-rdist), and surface complexity (T-alpha). These
metrics are not linked with the length or the orientation of a
structure, and alignments are utilized solely in constrained
comparisons to prune the search space21. Machaon not only
identifies structurally similar proteins to a reference protein but
also performs meta-analysis, building a profile with extended
comparisons and analysis of the results. The meta-analysis
module assesses the genomic or transcriptomic sequence and
protein 1D/2D/3D/chemical structural similarities. It also pro-
poses evolutionary relationships, indicating functions of the
reference protein, by highlighting areas of its secondary structure.

As a proof-of-concept study, we applied Machaon on the Spike
protein monomer of Severe Acute Respiratory Syndrome Cor-
onavirus 2 (SARS-CoV-2) in both its native form and its Delta
and Omicron variants. SARS-CoV-2 virus greatly impacts the
host respiratory system causing excessive inflammation
response22 and affects the cell compositions and biological
pathways of vital organs23. It carries transmembrane trimeric
spike glycoproteins (S protein) on its envelope, binding to the
Angiotensin-Converting Enzyme 2 (ACE2) receptor on the cel-
lular membrane, allowing cell entry24. Machaon enabled us to
efficiently and accurately identify structurally similar proteins
from different proteomes by comparing the monomer of the S
protein with three large datasets: a viral PDB dataset, a human
PDB dataset and a predicted human proteome by AlphaFold. We

extended our comparisons with the viral dataset on the domain
level for a more fine-grained search. We also combined the
metrics with mixed representation alignments for an in-depth
constrained search to find structurally similar protein segments to
binding sites. The accompanied meta-analysis allowed us to form
hypotheses on distant evolutionary paths, potential functional
structural motifs and associations between functions or pathways
and the reference protein. Finally, we were able to investigate
structural differences between the native, Delta and Omicron
Spike monomer variants by comparing Machaon’s results for
each monomer on the viral dataset.

Results
Overview of the method. Machaon is an in silico analysis suite
that identifies and selects the most structurally similar proteins
from a user-specified pool of candidates, having a protein of
interest as a reference (Fig. 1). This operation relies on torsion
angles, residue distances and atomic coordinates from PDB data.
It computes distribution distances of the multivariate phi-psi
angle pair (B-phipsi), Wasserstein intra-molecular distances (W-
rdist) and surface complexity difference (T-alpha), either for a
whole structure or a part of it (see “Methods”). The three metrics
are combined into vectors that represent the proteins in a 3D
search space, which is pruned by keeping a set of top points for
each metric. The method assigns each candidate protein to a
cluster by its metric vector and chooses a cluster by considering a
mixed ranking of the metrics. Machaon builds a profile of each
finalist protein with metadata from established third-party ser-
vices (Supplementary Fig. 1) and performs filtering by the coding
gene. The method extends this profile by computing established
metrics for tertiary and chemical structure similarity and by
performing sequence alignments between the transcripts and
protein secondary structures of each identified protein and the
reference molecule. Finally, Machaon provides indications of the
reference protein’s functions based on the accumulated infor-
mation of the selected proteins, pinpointing potentially related
areas in the reference protein 2D structure.

Validation of the method’s accuracy. To validate the method,
we appraised the accuracy and limitations of Machaon on tasks
of whole structure comparisons on different cases and datasets
(Table 1). We retrieved the datasets from public repositories to
avoid biased results. Machaon compares two proteins in an
alignment-free manner and a varying granularity that extends
to smaller/dispersed common fragments beyond matching
domains. This property applies to cases where the protein does
not have large common consecutive parts with the target
dataset. Thus, our proposed method cannot be directly com-
pared with methods focusing on structural alignment or being
evaluated on restricted domain searches. The interpretation of
our tests emphasizes the structural similarity of the identified
proteins, which is an effective validation strategy, given the
absence of a universal ground truth18. We measure 3D simi-
larity with TM-Score25, an established metric that is indepen-
dent of protein length, and 2D sequence identity from 2D fold
sequence alignments (see “Methods: Enrichment and assess-
ment of the selected candidate entries”). For validation pur-
poses, the results are pseudo-labeled based on the specific
criteria of each task.

We initially investigated Machaon’s detection scope on
identifying proteins of the same CATH26 (class, architecture,
topology, homology) family utilizing BioZernike’s validation set.
This dataset is a non-redundant set of 2685 structures belonging
to 151 CATH families. We employed Machaon for a random
protein per family in the set (Fig. 2a) for families with more than
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one occurrence. We labeled the final entries that belong to the
CATH family of the reference protein as true positives. The
method found the true positives with high recall/specificity, low
precision and f1-scores close to zero since many more structurally
relevant proteins were included in the final results (Table 1). We
treated the latter entries as false positives for the sake of the task’s
measurements. The true and false positives had high and
medium-to-low TM-Scores, respectively, which conveyed that
Machaon operates outside the CATH system (Fig. 2b). A subset
of proteins with different superfamilies/families in the final
cluster exhibited higher structural similarity than some proteins
of the target CATH hierarchy, which is in accordance with
previously reported observations21. These identified proteins
would have been overlooked if our method had a search criterion
restricted to the CATH classification.

The second task involved the dataset of SHREC 2018
challenge27 (2267 structures deriving from the conformational
space of 107 proteins) and a series of comparisons between every
protein represented more than once and the rest of the proteins in
the set (Fig. 2c, d). The true positives in this task were the
proteins in the results that were alternative conformations of the
reference protein, as noted in the public data of the SHREC
challenge. The method detected the majority of conformations
with high recall/specificity, and the results were not limited to one
protein including other similar structures in the set (Table 1).
This resulted in a low F1 score and precision on the limited scope
of the task. Whole structure comparisons had low accuracy in
cases like a flexible short protein loop (9 residues, named ‘1982’)
as a reference that had conformations with low TM-Score (0.33).
We employed constrained search to address this edge case by

Fig. 1 The workflow of Machaon and its perspective on the protein structure. a A protein of choice is assigned as a reference for the comparisons with a
selected dataset. The metrics are computed independently between the features extracted for each protein in the dataset and the reference ones. For
segment comparisons, there is an additional initial step where the segments are defined based on mixed sequence alignments, which represent similarity in
secondary structure and protein sequence-derived hydrophobicity level. The final set of candidate proteins is determined by ranking aggregation and
clustering. There is an intermediate pruning step that samples the top 1% entries per metric order in case of a large dataset. The final cluster is enriched
with Uniprot/Gene Ontology (GO) data and evaluated in protein, transcript and chemical levels. The method performs GO meta-analysis to reveal novel
relationships and functions by aggregating the properties of the output set. b Machaon relaxes the structure alignment problem to a non-pairwise
comparison of angles, distances and surface complexity through metrics that are not linked with the orientation of a structure; there is no requirement for
prior alignment.
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setting the loop as a reference segment, resulting in the detection
of 16 of the 19 conformations in the top 250 entries yielded by the
method.

We extended our evaluation to a third task involving the non-
redundant dataset PDB70 (~15,211 structures) of SCOP140
benchmark28, which represents the classified proteins in extended
Structural Classification of Proteins (SCOPe) 2.07 from a
snapshot of the entire PDB (2018). The provided dataset
consisted merely of ATOM records, so we kept just the first
conformation in each file for compatibility (1867 PDB files were
edited). We also excluded the d2zjq51/q105A domain that
contained only the coordinates of alpha-carbons (no angle
information available), updating the ground truth table. Fmax

scores were computed with the benchmark’s publicly available
code for the untruncated final cluster per query domain,
evaluating the ranking of the proteins in the results against the
target SCOP classification (Table 1). The low scores suggested
that Machaon identifies structurally similar proteins beyond
SCOP folding classes (Fig. 2e, f).

Identifying structurally similar proteins to SARS-CoV-2 Spike
monomer. The aforementioned tests provide evidence that the
proposed technique was adaptive and fuzzy enough to be applied
to a previously unknown viral protein for which no a priori
information was available at the time. We applied Machaon to
perform a large number of structural comparisons between Spike
protein monomers of SARS-CoV-2 variants (native29, Delta30

and Omicron31) and a dataset of ~12,500 PDB files containing
~40,000 structures (median resolution: 2.64 Å) belonging mostly
to proteomes of viruses (Fig. 3). We compared the proteins
considering their whole available structure but also in a more
localized scope such as domains or parts resembling the binding
sites of the reference molecule. We also performed whole struc-
tural comparisons between the native Spike monomer and two
datasets in separate sessions: a large dataset of ~160,000 struc-
tures, primarily consisting of human proteins (median resolution:
2.4 Å, Fig. 3) and a human proteome dataset as predicted by
AlphaFold. Then, we investigated the properties of the Spike
protein and its domains based on the emerging information by
the viral dataset’s comparisons.

As expected, whole structural comparisons between each of the
three Spike variants (native, Delta, Omicron) and the viral dataset

revealed several viral proteins belonging to the family of
Coronaviridae in the top similarity results. However, viruses
with great taxonomic distance, such as Human Immunodefi-
ciency and Dengue32,33 viruses from the Riboviria realm, the
highest taxonomic rank of SARS-CoV-2 (Fig. 4a, Supplementary
Figs. 2 and 3), also appear in the results. Moreover, Machaon
detects proteins from viruses outside this viral realm, such as
Herpesvirus, a virus that has been reported to be possibly
reactivated by COVID-1934. Phage viruses belonging to the gut
virome, such as Enterobacteria Phage T4, have a wide presence in
the identified set as their expression is altered during COVID35.
Non-viral proteins from host organisms ranging from bacteria to
Homo Sapiens (Fig. 4b, c) also appear in the output set. We
obtained entries of human proteins which have previously
documented relationships with SARS-CoV-2, such as Comple-
ment (C3)36, Dipeptidyl peptidase-4 (DDP4)37 (related to
Hypoxia) and Aminopeptidase N (ANPEP)38,39 but also
molecules without reported association such as Cleavage and
Polyadenylation Specific Factor 1 (CPSF1), which is involved in a
T cell pathway40. All mentioned proteins share structural
similarities with Spike monomer in the 2D and 3D level as well
as chemical and/or genomic/transcriptomic similarities—in 5’-
end/3’-end Untranslated Regions (5’-UTR, 3’-UTR) and coding
regions (CDS) (Supplementary Table 1, Fig. 5, Supplementary
Figs. 4 and 5). These findings might indicate a potential viral
mimicry of associated host proteins in genomic level41, in
addition to structural mimicry, forming a hypothesis for a multi-
level manipulation of the host by the virus.

Following global comparisons, we conducted in-depth com-
parisons of domain and binding sites, using the native Spike
monomer as a reference. We employed Machaon to identify
proteins with structurally similar segments to the S1 N-terminal
(NTD), S1 C-terminal (CTD), S1 receptor-binding (RBD)
domains and to pre-computed binding sites, wherever it was
applicable and possible by the available data. The results include a
broader range of viral families, both distant and close, compared
to those obtained from whole structure comparisons, like
Papillomaviruses and Ebolaviruses (Supplementary Figs. 6–8).
Additional non-viral proteins from eukaryotic organisms were
encountered in the output sets, such as host receptors. On the
binding site-targeted search, we observed that Spike protein has
common structural elements with Angiotensin-converting
enzyme 2 (ACE2), the known receptor of SARS-CoV-2 Spike
protein (Fig. 6). Prior to their metrics-based ranking, these
elements were aligned on mixed representations that encapsulate
hydrophobicity and protein secondary structure information (5
levels of agreement in total). These associated areas belong to the
predicted binding sites of Spike protein, and the corresponding
correlated areas of ACE2 extended to its extracellular part. On a
global scope, ACE2 PDB structure has 15.68% 3D similarity and
15.8% 2D sequence identity with the reference Spike protein PDB
of native strain, meaning that they share common short structural
areas that could include functional structural motifs. Addition-
ally, the transcripts of ACE2 and Spike protein exhibit remarkable
similarity (38.79% 5’-UTR, 37.72% CDS and 17.59% 3’-UTR
sequence identities), supporting a potential correlation/co-
regulation between Spike and ACE2 gene expressions.

The results on whole structural comparisons with two human
protein datasets further highlight the mimetic nature of Spike’s
monomer structure toward the host proteins. The top results on
the human experimental dataset enlist proteins related to the
host’s immune responses, such as Complement 5 (C5)36,
Apoptotic protease-activating factor 142 and Dicer143,44. Proteins
related to insulin45, histones46 and teneurins47 are also included
at high-ordered places in the final set. Regarding the results of
the AlphaFoldDB dataset, macrophage mannose receptor 1

Table 1 The accuracy metrics for the three testing tasks of
Machaon’s assessment.

Accuracy metrics TM-Score
(%)

2D-Identity
(%)

Recall: 0.73 TP: 78.2 TP: 60.4
Task 1 (CATH) Specificity: 0.91 FP: 30.4 FP: 35.3

F1-Score: 0.05 FN: 76.6 FN: 56.5
Recall: 1.0 TP: 90.2 TP: 86.4

Task 2
(SHREC)

Specificity: 0.90 FP: 28.8 FP: 38.3

F1-Score: 0.14 FN: 70.3 FN: 86.4
Fmax (Fold): 0.02

Task 3 (SCOP) Fmax (Family): 0.03 P: 29.8 P: 37.3
Fmax (Superfamily):
0.19

The displayed values correspond to median of medians per search session for a task. The Fmax

values of the Task 3 were calculated with SCOP140 benchmark’s publicly available scripts. The
pseudo labels TP (True Positive), FP (False Positive), FN (False Negative), P (Positive) are
determined by the different criteria per each task: first task’s true positives were the proteins
that belong to a specific CATH family, second task’s true positives were the proteins that were
alternative conformations of a specific protein and the third task’s true positives were the
proteins that belong to a specific SCOP class.
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Fig. 2 Results on CATH, SHREC and SCOP datasets, each of them used in a different testing task. a A barplot depicting the detection rate of the proteins
belonging to the same CATH family in the first task for each session of the reference proteins. Each CATH family is represented by a variable number of
proteins in the dataset. b A boxplot per search session about the variability of 3D structure similarities of the proteins in the results (measured by TM-
Align) on the first task. c An area plot that illustrates the amount of the conformations present in the second task’s results for each referenced protein in
the set (2251 search sessions total). d A violin plot that refers to the 3D structure similarity of the proteins in the second task’s results as measured by TM-
Align. The median TM-Score is above 0.17, which is the minimum value for a meaningful relationship between two structures. e, f Violin plots visualizing
the 2D folds sequence identity and 3D similarity (TM-Score) for the proteins in the third task’s results, respectively.
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(MRC1)48, Thyroglobulin (TG)49, contactin-associated protein-
like 3 (CTNNAP3)50, Hypoxia up-regulated protein 1
(HYOU1)51 are top entries with reported relationships to the
virus. The method again ranks members of alpha-2-macroglo-
bulin/complement 3 protein family (A2M/C3)52 in high order:
pregnancy zone protein (PZP)53, CD109 antigen and Alpha-2-
macroglobulin54, which appears in the results of both human
protein datasets. The selected candidates from these datasets
share similarities in protein 2D/3D/chemical structure and
transcript sequence, as observed in the results of the viral dataset

(Supplementary Figs. 9 and 10). Aggregating the connected Gene
Ontology (GO) terms to the finalist proteins from both searching
sessions on the human datasets, we noticed that most proteins
were reported to reside in the nucleus, cellular membrane or
extracellular space. Top GO terms were the ones that involve
transcription with RNA polymerase II, cellular processes such as
cell adhesion and functions of binding to metal ion, ATP and
RNA. These findings enrich the indications of a multi-level and
widespread viral mimicry for the modulation of the host system
by SARS-CoV-2.

Viral

Other

a b

c

d e

Other

Human

Viral

Human

Fig. 3 The data used for the study of SARS-CoV-2 Spike protein. a The superimposed structures of Spike protein monomers of native (PDB IDs: 6VXX.A,
color: cyan), Delta (PDB ID: 7V7Q.A, color: orange) and Omicron strains (PDB ID: 7T9K.A, color: gray) in Ribbons representation as shown in VMD. b The
trimeric Spike protein structure is illustrated (closed state without glycans, PDB ID: 6VXX.A) in Ribbons representation as shown in VMD. The PDB data
were prepared with Schrödinger Maestro, and the binding sites were estimated by the SiteMap module of the suite. The binding sites appear as yellow
mesh spheres in the center of the bound Spike protein monomers. c The domains of SARS-CoV-2 Spike protein by residue position. The black dotted
vertical lines represent the predicted binding sites. The gray area of the range 600–700 includes the cleavage site of the Spike protein. The total length of
the protein is 1273 amino acids. d, e The compositions of the viral and human experimental datasets of PDB files. These were utilized as search spaces by
Machaon, looking for structurally relevant proteins with SARS-CoV-2 Spike protein monomer in separate sessions. Each search space includes ‘viral’ as
well as ‘human’ and ‘other’ sections, comprised, among others, of mammalian and bacterial proteins.
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a

Viruses

b c

Bacteria Eukaryota

Herpesvirus

Bacteriophage

Riboviria

Coronaviridae

Homo Sapiens

Fig. 4 The lineage trees of the proteins in the final set of the whole structural comparisons of Spike (native strain) with the viral dataset. These trees
are generated by Machaon’s presentation module. Each family name also carries a population number if there is more than one protein categorized under
it. The root of the tree starts with thicker branches, and the colors designate the branch levels. The tree in (a) refers to the viral proteins that were found
most structurally relevant, and the ones in (b, c) are generated for the correlated eukaryotic and bacterial proteins. These trees could also be treated as
distant evolutionary trees according to the structural traits of the proteins in the results. The lineage information is retrieved from UniProt.
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Investigating the biological properties of the SARS-CoV-2
Spike protein. Gathering information on protein structure
similarities, in combination with meta-analysis, can unravel
hidden molecular relationships and provide meaningful hypoth-
eses for cellular functions. The meta-analysis module can aggre-
gate proteins in the search results by a common Gene Ontology
property and localize it on the protein secondary structure
(Figs. 7 and 8). From the meta-analysis of viral dataset compar-
isons, we identified that the three versions of the Spike monomers
(native, Delta, Omicron) have common structural elements with
proteins related to ubiquitination55,56, a process that has been

reported to be vital for virus replication57 (Fig. 7a–c, Supple-
mentary Table 2). This is in accordance with the findings from
the comparisons of Spike monomer with the predicted human
dataset as structural similarities with E3 ligases were unveiled,
further enhancing the Spike protein’s relationship with ubiquiti-
nation. We also performed whole structure comparisons with
customized versions of the PDB files corresponding to the three
variants of the Spike proteins (native, Delta, Omicron) to identify
potential binding differences (Supplementary Data 2). These PDB
files contain data on the intersection of the residue positions
present in the three original PDB files and therefore each one

Fig. 5 Interpretation of whole structure comparison results for Spike (native strain) with the viral dataset. a–c Each protruding bar from the center of
each radial plot represents a protein entry from the final set yielded by Machaon for whole structure comparisons between Spike (native strain) and the
dataset. The plots are generated by the presentation module. The measurements were carried out by the evaluation module wherever the underlying data
allowed it (missing or malformed relevant data). 2D folds sequence identities are depicted in (a), gene coding region identities in (b) and chemical
similarities (Tanimoto Index) in (c). d This visualization is based on the comparison data between SARS-CoV-2 S protein (monomer, native strain) and
separate sorted subsets for each metric (~7000 structures), sampled by the dataset (row position mod 5 of each metric’s processed entries list). The
figure illustrates the inverse relationship between the metric values and the identity/similarity percentages. Sequence identities for protein sequence
retrieved from UniProt (1D), protein secondary structure estimated by PDB (2D), 5’-end Untranslated Region (5UTR), coding (CDS) and 3’-end
Untranslated Region (3UTR) sequences from NCBI RefSeq, protein tertiary structure similarity computed by a modified TM-Align version from PDB (3D),
and chemical similarities estimated from PDB. The identities were computed on global sequence alignments which were conducted with BioPython. All
alignments followed the scoring of matches= 5, mismatches=−4, open gap penalty=−10, gap extension penalty=−0.5, except for the 1D alignments
where matches/mismatches scores were based on the BLOSUM62 matrix. The values plotted are the EWMAs (span= 500) of the comparison metrics,
which were pruned by absolute z-score (zscore < 0).
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covers the same residue positions. Meta-analysis of the results
concerning the virus attachment process conveys an altered
binding pattern between the three proteins that could relate to the
different infection rates (Fig. 7d–f). Additionally, this difference
can be attributed to structural differences between the proteins, as
we observed by comparing their secondary structures (Supple-
mentary Fig. 11). Meta-analysis on the results of the NTD, CTD
and RBD domains of the native Spike protein demonstrated links
with host biological processes: angiogenesis58 and CTD, blood
coagulation59 and RBD, heart-related60 processes and NTD
(Fig. 8). Similar secondary structural elements were identified
with short protein domains in the dataset that could potentially
pose as structural equivalents to short linear motifs (SLiMs)61.
Outputs of whole and constrained comparisons are available in
Supplementary Data 3 and 4 for the viral dataset and Supple-
mentary Data 5 and 6 for whole structure comparisons with
human datasets.

Seeking biases in the results for SARS-CoV-2 Spike. We tested
how different setups would alter the previously presented results
on Spike protein by showcasing the robustness of the metrics.
First, we computed the metrics on different versions of SARS-
CoV-2 Spike protein: alternative resolutions, conformations,
lengths and variations (516 PDB chains). The measurements
suggested that most of these versions would have been identified
if they were present as unknown proteins in the whole structure
comparisons results for Spike and viral dataset. The median

values of the metric vector [B-phipsi, W-rdist, T-alpha] in the
final cluster were [0.0180, 0.9410, 0.0378] and for the Spike
proteins set were [0.0025, 0.7334, 0.0666] (Supplementary
Data 7). We also performed an alternative search session with
Machaon having a preprocessed version of Spike’s protein PDB
structure (see “Methods: Prediction of Spike protein’s binding
sites”) as a reference. This version extends to 102 more amino
acids, and its refinements affect the conformation of the structure.
Although preprocessing crystallographic data is a common pro-
cedure of their analysis protocol, it is an overhead step that
requires high expertise and a toolchain of adequate software tools.
PDB preprocessing is not critical for Machaon’s performance
since the intersection of the identified protein sets between the
searches targeting the two PDB versions (raw and preprocessed)
included 72% of the superset (Supplementary Data 8). The search
with the raw version was fuzzier due to the shorter length of the
reference, yielding a bigger unique subset mostly of phage, host
and bacterial proteins, a pattern that was also observed in the
unique subset for the preprocessed version.

We further assessed the results on whole structure comparisons
with the viral dataset to interpret the metrics in the context of
biology. Based on the correlation matrix (Supplementary Table 3),
the metrics segregate on the same input 3D structures so their
information does not overlap. Therefore, each metric is well-
separated and targets a different aspect of the protein structure, so
there are no redundant computations (metric space: Supplemen-
tary Fig. 12). Judging from the computations carried out by the
evaluation module, the combined representation by the metrics

a b
529-536

228-230

418-428

977-980

744-774

49-53

137-141

335-345

545-572,
570-573

463-471
350-352

Fig. 6 The associated fragments of native SARS CoV-2 S and ACE2 host receptor protein monomers. Segments a in SARS-CoV-2 Spike protein (49–53,
226–230, 418–428, 529–536, 744–774, 977–980 residues, purple-colored areas, PDB 6VXX.A) were found to share structural and chemical similarities
with segments b of ACE2 receptor (137–141, 335–345, 350–352, 463–471 and 545–573 residues, purple colored areas, PDB 3D0H.B). These areas are parts
of a predicted Spike protein binding site and could potentially be parts of functional structural motifs common to both proteins. This information is derived
from the constrained search of Machaon targeting an area where a Spike protein’s binding site is associated with the ACE2 receptor via a mixed sequence
alignment.
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Fig. 7 The meta-analysis module’s visualization output for the three Spike proteins (native, Delta, Omicron) and ubiquitination, virus attachment
processes. These plots illustrate multiple protein secondary structure alignments of proteins in the results for the viral dataset. These proteins are connected
with a Gene Ontology (GO) term in question. Peaks that are annotated with colored thick dots represent the residue positions that are associated the most with
the target term. The ones with orange dots are characterized as positions that participate in binding sites (as calculated by SiteMap). The area where the
exponentially weighted moving average (EWMA, yellow line, span: 30% of the reference sequence length) increases provides an indication of possible
connections with the target property. Areas with missing residues in the reference PDB file are annotated with black boxes on the x-axis. a–c Plots are
generated for the identified proteins with GO properties matching to the ‘ubiquit’ search term, in whole structure comparisons, with a native, b Delta or
c Omicron Spike proteins as reference; d–f refer to the identified proteins in whole structure comparisons, with native (d), Delta (e) or Omicron (f) Spike
proteins as reference, that are associated with ‘receptor-mediated virion attachment to host cell’ and/or ‘virion attachment to host cell’ GO terms. On (d–f),
reference PDB files contain data on the same residue positions as a means toward a direct comparison of the Spike variants.
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commonly associates with protein secondary structure and
chemical similarity (Fig. 5). The 3D similarity of the selected
proteins is lower than the 2D (Supplementary Table 1),
showcasing the effectiveness of the method in a strict setting of
searching distant structures. These structures would have been
ignored, missing potentially important results if a conventional
search was applied with a high minimum structural setting, e.g.,
>80%. We confirm this difference by conducting searches with
alternative existing methods operating on protein sequence9 or
structure10,11,26,62,63 (Supplementary Table 4). However, a direct
comparison with Machaon is not possible since these methods
differ in scope and approach. Also, the 2D pairwise alignments
between the Spike monomer and all finalist proteins do not form

a specific pattern on a 2D folding type, e.g., alpha helices, but the
matches are spread out (Fig. 9) and follow the content of the
Spike monomer (Supplementary Figs. 13–15) including loops,
alpha helices and beta-sheets. Therefore, the proposed method is
not biased toward a specific secondary structure motif.

Discussion
Machaon is a methodology that identifies structurally similar
proteins to a reference protein but also performs meta-analysis by
extended comparisons and examination of the results. The
novelty of our approach is that it regards each protein as an
assembly of flexible moving parts and not a rigid hollow solid
structure. It considers the arrangement of the protein’s inner
components (B-phipsi, W-rdist) and how this is reflected in the
resulting surface (T-alpha). Machaon perceives angles and residue
distances as unstructured data and emphasizes the shape of their
respective distributions. B-phipsi and W-rdist metrics quantify
the structural similarity of the two compared proteins according
to the same occurrence of phi-psi angle pair or inter-residue
values in their peptidic chains. T-alpha serves as a geometrical
filter and efficiently quantifies surface complexity in a smooth-
ened unit that is decoupled in size. The feature selection leans
toward the side of the secondary protein structure, and this is
verified by the results. Each of the features has the convenient
property of being human-interpretable and carries meaningful
information. The method attempts to reduce the structures in
dimension, complexity and proportion, bringing them to the
same scale and smoothing out minor differences (e.g., data irre-
gularities). To our knowledge, Machaon is the first structural
comparison methodology that combines these three features
under two different settings: whole structure and mixed-
alignment-informed segment scanning. This is linked with
meta-analysis that can offer hints for biological properties via
multiple secondary structure alignments. This module also
interfaces with various well-established data sources and meth-
ods, enriching further the resulting output with extended com-
parisons to genomic, proteomic and chemical levels.

The results are derived from the structures available in the PDB
file. Thus, it is possible that some protein structures might be
incomplete and partially represented, a common fundamental
obstacle found in these datasets. Data preparation is a labor-
intensive and resource-intensive process that could insert biases.
Through Machaon, many of the above-mentioned limitations are
overcome due to the fundamental principles of the methodology.
More specifically, Machaon analyzes the experimental data in
their raw form without any preprocessing or refinement, such as
treating missing residues. Also, each protein may participate with

Fig. 8 Meta-analysis for the results on the viral dataset and native Spike
protein’s CTD, NTD and RBD domains. Positions with dotted peaks are
selected by Machaon as the ones that are associated the most with the
property in question. Selected peaks that fall into positions marked by the
user are orange dotted, while green dotted peaks are uncharacterized. Here
the marked sites are predicted binding sites of native Spike protein by
SiteMap. The yellow line is the exponentially weighted moving average
(EWMA, span: 30% of the reference sequence length) which visualizes the
aggregated mean intensity of the positions’ relation to the searched GO
term. Areas with missing data in the reference PDB file are annotated with
black boxes on the x-axis. These global alignments are on the protein
secondary structure of the proteins that populate the final set and link with
GO terms that match a search term. a is for the CTD domain and ‘angiogen’
search term, b is for the NTD domain and ‘heart’ term, and c is for the RBD
domain and ‘coagulation’ term. We see that the S1 domain contains short
structural elements that are similar to host proteins related to angiogenesis,
heart process/development and blood coagulation.
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several structures in the dataset due to the incompleteness of the
available data, as two different PDBs of the same protein might
contain different parts of the structure in different conformations
and resolutions. This is highly desired since the ideal dataset for

this kind of task would comprise information on different reso-
lutions, conformations, protonation states, isoforms, etc. The
metrics appear to be robust against a degree of noise, as
demonstrated by the high overlap observed between the results
for the raw and preprocessed version of the Spike monomer.

We thoroughly tested Machaon on public datasets and three
individual tasks. The median TM-Score for whole structure
comparisons in all tasks was well above 0.17, accounting for a
meaningful relationship between a pair of compared structures25.
The presented results confirm that the method operates beyond
domains or folding classes and retrieves similar structures in a
wider scope, balancing between secondary and tertiary structure
similarities. Machaon’s constrained searches offer fine-grained
scanning with a manageable performance cost, identifying alter-
native conformations of the same protein that have very low TM-
Scores. This particular case attests to the difficulty of structural
search since there is no perfect solution or indisputable ground
truth. An alternative conformation of the same protein having a
TM-Score lower than 0.5 would be overlooked in favor of a
protein from the nearest CATH or SCOP class64. Machaon is not
relying on prior knowledge or hard cutoffs and does not dis-
criminate candidates during scanning. Its data-driven manner,
combined with its fuzzy metrics, is suitable for the investigation
of challenging cases such as the novel Spike protein of SARS-
CoV-2.

Identifying proteins with common folds could reveal distant
evolutionary relationships or common traits from convergence
evolution since structure is more conserved than sequence. This,
in turn, provides further justification or indication about existing
or novel common functions, cellular locations, protein interac-
tions, structural motifs and pathways. The knowledge of struc-
turally similar proteins could form hypotheses for intrinsically
disordered proteins (IDPs) that belong to the dark proteome65

and lack a defined 3D structure. The power and interest in such
approaches became obvious with the appearance of the Alpha-
Fold model7. The latter models distributions of dihedral angles
and paired residue distances to predict the secondary structure,
an intermediate step for the prediction of the tertiary structure.
Our proposed method could be used with predicted data, such as
the Human Proteome data from AlphaFold DB66 or the meta-
genomic proteins from ESM Metagenomics Atlas67 and decipher
previously unknown relationships. Machaon’s metric values
extend to the set of real positive numbers and close to zero, which
are attractive traits for their potential adoption as objective
functions in Machine Learning tasks. The suggested metrics could
also be included ad hoc into Virtual Screening pipelines or pro-
vide known targets in drug repurposing studies by finding similar
sites belonging to proteins that have been previously validated
using ligand-binding studies.

We used Machaon to identify proteins that have structural
similarities with SARS-CoV-2 Spike monomer. The results on the
viral dataset further validate the accuracy of the method since
many proteins with a high order belong to the Coronaviridae
family. The generated viral taxonomy trees could initiate a further
investigation of SARS-CoV-2’s distant evolutionary paths. Jud-
ging from the lower median values of the gap included identities
concerning the domain scanning, it is most possible that some of
the identified domain similarities would have been missed in a
global sequence or a maximum structural alignment context. The
method ignores any sequence or structural gaps and considers
similarity in a manner of local feature alignment. Therefore, it is
suitable for finding less obvious, intermediate structural rela-
tionships, probably revealing valuable genomic similarity infor-
mation or potential functional motifs, as in the case of the
segment-scanning between Spike monomer and ACE2. Further-
more, the extended comparisons on sequence, structural and

Fig. 9 Plots on the aggregated 2D folding sequence alignments between
the Spike protein monomer (native) and the final sets of whole structure
comparisons. 2D sequences were determined with DSSP/STRIDE and the
matches derive from global pairwise alignments between each of the
proteins in each dataset and the reference protein, the Spike monomer.
a depicts the matches for the viral dataset, b refers to the comparisons with
the experimental human dataset and c with the AlphaFold’s human
proteome dataset. Areas with missing residues in the reference PDB file are
annotated with black boxes on the x-axis.
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chemical levels reveal more areas of relevance. The results for the
viral and human datasets demonstrate such multi-level simila-
rities between the Spike monomer and human proteins. This
could hint at linked expression patterns with host genes, sharing
or hijacking41,44,68–70 regulatory relationships like transcription
factors, miRNAs and immune system evasion or regulatory
mechanisms62,71–73. For instance, it was recently reported that
the SARS-CoV-2 virus hijacks host processes related to ubiqui-
tination and that Spike protein participates in such a process74.
These findings are in accordance with our indications of a
potential Spike-ubiquitination relationship which could be
researched further as a possible case of antagonism in the
immune system’s responses71.

In brief, we investigated three structural metrics and combined
them to establish a comparative analysis method. Machaon was
shown to effectively encompass the suggested measurements in
the context of global and segmented comparisons seeking struc-
turally similar proteins. The proposed method was applied to
investigate the SARS-CoV-2 Spike protein uncovering prominent
similarities with different sets, including viral and host proteins.
Some of the revealed proteins had previously documented rela-
tionships, further validating this technique. However, there were
also novel findings involving the interactions or pathways of the
proteins in the host organism that require further investigation.

Conclusively, we demonstrated that Machaon is a powerful
approach that operates beyond conventional structural com-
parative methods. As structural comparison appears to provide
more information than linear sequence comparison, it will be
interesting to extend Machaon to other molecular structures apart
from proteins, including DNA and RNA. Using an innovative
comparative structure method, in addition to the conventional
primary sequence alignments and an advanced meta-analysis
tool, will provide a fresh angle of view and a powerful new
approach for molecular studies.

Methods
Mathematical definitions. Bhattacharyya distance75 of phi-psi angles (b-phipsi) is
a metric based on the multivariate distribution distance DB between two sets of
phi-psi angle pairs PPA; PPB:

bphipsi PPA; PPB
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are the parameters of the corresponding dis-
tributions of PPA, PPB . Σ comes from the following equation:

Σ ¼ ΣPPA
þ ΣPPB

2
Wasserstein inter-residue contacts distance (w-rdist) focuses on intra-molecular

paired residue distances. This metric is the log-normalized Wasserstein (or Earth’s
Mover) distance76 between two distributions dA; dB of inter-residue distances:

wrdist dA; dB
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where DA;DB are the cumulative distributions of dA; dB.
Only the Ca atoms in the protein backbone are taken into account in b-phipsi

and w-rdist for efficiency and robustness.
Surface triangles difference of molecular alpha shapes (t-alpha) is a metric that

relies on the number of triangles found by Delaunay Triangulation that cover an
alpha shape77, which engulfs a point cloud from the normalized atomic coordinates
of a protein. The value of the alpha parameter for the computation of t-alpha is set
to 0.085 based on manual tuning on a set of homologous protein structures in
different resolutions. The number of triangles (TA , TB) that cover the surfaces of
the generated alpha shapes is the core part of this metric:

talpha ¼ e log TAð Þ�log TBð Þ
�� �� � 1 ð3Þ

Constrained mode search on domains. The protein domain comparisons rely on
available domain information from UniProt78 and RCSB PDB data. These data
include the range of the residue positions of each present domain in a candidate

protein structure. Each of the domains is compared with the ones of the reference
protein in separate paired sessions. The results contain information on the com-
pared domains.

Constrained mode search on binding sites. This mode requires the segments of
interest as input. The positions of the reference protein’s interacting residues are
converted into multiple contiguous residue ranges by Gaussian Mixture Models
(GMM) clustering supported by Silhouette Analysis79. The spatial outliers are
discarded based on the interquartile range (IQR). Hydropathy Index80 is grouped
into distinct classes of neighboring values (Supplementary Table 5) whose class
labels substitute the letter codes in the protein sequence that is retrieved from PDB
data. A mixed representation is constructed by mapping a secondary structure state
(estimated with the DSSP81 method from PDB data or with STRIDE82 as a fallback
for non-standard formatted PDBs) and a hydrophobicity label to an ASCII char-
acter for both reference and candidate proteins. Separate local alignments between
the contiguous reference segment parts and the candidate’s sequence define the
areas on which the metrics are going to be computed (match score= 5, mismatch
score=−4, open gap penalty=−10, gap extension penalty=−0,5). Overlapping
aligned ranges are unified through an iterative process, eliminating any falsely over-
represented intersecting areas. The final results also include full information on the
alignment of each candidate protein for further inspection. Alternatively, there is
an option for the user to choose 1D, 2D or Hydrophobicity sequence alignments
instead.

Below there is an example of the mixed sequence alignment between a part of a
Spike protein’s predicted binding site (positions 744–774) and ACE2 (positions
545–572) based on PDB data (6VXX.A29, 3D0H.B83):

● Protein primary structure sequences:
GDSTEJSNLLLQYGSFITQLNRALTGIAVEQ,
SNSTEAGQKLFNMLRLGKSEPWTLALEN.

● Sequence of hydrophobicity group labels:
3433463411143332034145213302044,
3433423441242151343433312144.

● Protein secondary structure sequences:
TT.HHHHHHHGGGGGGTHHHHHHHHHHHHHH,
TT.HHHHHHHHHHHTTTTSS.HHHHHHH.

● The alignment of mixed representations (ASCII), mapping hydropathy
cluster labels to secondary structure states:

NO}$%’$%""7:9998 K$%"%&#"-------$$!#!%%
|||||.|| ||..|| ||.|.||
NO}$%#$%----------%"#%#"PLNOUV}$$"#"%%

Selecting the structurally similar candidates. The candidates are filtered, dis-
carding samples by the PDB metadata section (‘organism scientific’, ‘gene’) and
user-specified constraints. Depending on the dataset’s total size, 1% of the top rows
is sampled for each metric and combined into a new set with duplicates removed.
The samples are ordered by the Borda Count rank aggregation algorithm and are
clustered by HDBSCAN clustering algorithm84 (min_samples = 5 and Euclidean
distance metric) (Supplementary Fig. 16). The ordered sample set is traversed until
a non-noisy sample is encountered, whose label determines the preferred cluster,
preserving the maximum set between the top 15% of the previously ranked samples
or the previously traversed samples. On a failed attempt, the minimum cluster size
is lowered until a pre-defined number of attempts is exceeded, and the clustering
result is discarded if the cluster size is below a specified threshold. Samples clus-
tered with a probability below 0.1 are discarded as noise, and the results are re-
ranked and truncated either to a maximum of 800 top-ordered entries or to 250
entries if the dataset is non-redundant (option is configurable). All intermediate
results are stored. Visualizations are generated using the Uniform Manifold
Approximation and Projection (UMAP) method, displaying the clustered space of
the results.

Enrichment and assessment of the selected candidate entries. The resulting
list of the selected proteins is enriched with information from UniProt’s ID
mapping offline resource and from RCSB PDB GraphQL, UniProt, NCBI Entrez85

and EBI QuickGo86 online web services. Duplicate protein or gene entries are
discarded, keeping the entry with the highest order by the metrics. An evaluation
module performs global sequence alignments, determines the sequence identity,
computes the 3D similarity with a modified version of TM-Align and calculates
chemical similarity for each of the proteins in the final sample. The alignments
(match score= 5/mismatch score=−4 similar to EDNAMAT/NCBI NUC
4.2 scoring matrix, open gap penalty=−10, gap extension penalty=−0,5, no end-
gap penalty) take place between 1D/2D partial data derived from PDBs (leaving a
gap between non-consecutive residues), full 1D sequences from UniProt (matches/
mismatching scoring by BLOSUM62 matrix87) and RNA sequences from NCBI
RefSeq88. The sequence identity is calculated both with gaps excluded and included
and unless stated otherwise, the sequence identity metric displayed in the rest of the

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05076-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:752 | https://doi.org/10.1038/s42003-023-05076-7 | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


article is the one with the gaps included:

identity ¼ matches
matchesþmismatchesþ gaps

ð4Þ

and for gaps excluded identity:

identitygaps ¼
matches

matchesþmismatches
ð5Þ

Finally, these computations are appended to the results, and the combined
output, along with aggregated information on Gene Ontology terms, is exported to
a UniProt data-enriched, printer-friendly HTML report by a separate presentation
module. This module also generates lineage trees, word cloud (Supplementary
Fig. 17) visualizations, protein secondary structure alignments/content plots and
statistical radial plots based on the proteins in the results of a search session.

Structure-localized suggestions for novel properties. First, the 2D alignments
match per position of any proteins in the results, associated with user-chosen GO
properties or search terms, are summed. Alignments of 1D, mixed or hydro-
phobicity sequences can be chosen instead. The resulting curve is treated as an
information signal for whom an exponential weighted moving average (EWMA) is
calculated with a span equal to 30% of the reference protein sequence length. The
peaks (PS) are selected by the following operation:

PS ¼ PT ∪ PD; D ¼ μϵ þ σϵ ð6Þ
Where PT are the peaks with top 10% matches, PD are the peaks with a distance
greater than D; μϵ; σϵ the mean and standard deviation of the distances between all
the peaks and EWMA. This computed peak prominence leads to the correlation of
the assessed desired property with a set of residue positions in the reference protein
structure. Log files are constructed that contain information on the alignments.

Prediction of Spike protein’s binding sites. The SARS-CoV-2 S protein structure
(PDB ID: 6VXX) was manually processed via the Schrodinger Maestro Suite with
the Protein Preparation Wizard89 removing ligands and water molecules, filling
missing residues with Prime90, determining protonation states in physiological pH
(7.4) with PropKa91 and minimized with OPLS force field92 (Ramachandran and
Janin plots: Supplementary Figs. 18 and 19). The binding sites were predicted using
the SiteMap module93 (Supplementary Table 6).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data from all figures are available in Supplementary Data 1. The utilized UniProt
ID mapping resources were retrieved on 21/9/2021 at: https://ftp.uniprot.org/pub/
databases/uniprot/current_release/knowledgebase/idmapping and RefSeq resources were
retrieved on 6/11/2021 at: ftp://ftp.ncbi.nlm.nih.gov/refseq/. RCSB PDB GraphQL
(https://data.rcsb.org/graphql), UniProt (https://www.uniprot.org/uploadlists/, https://
www.uniprot.org/uniprot/ACCESSION.xml/<ACCESSION-NUMBER>) and EBI
QuickGo (https://www.ebi.ac.uk/QuickGO/services/ontology/go/terms/GO:<termid>)
online services are used as a fallback method to retrieve required data which are not
present in the local static data sources. The viral PDB dataset for the comparisons to
Spike was retrieved in December 2020 and it was the query result for viral proteins in
RCSB (https://www.rcsb.org/docs/programmatic-access/batch-downloads-with-shell-
script). The human PDB dataset was assembled in a similar way on 19/6/2022 by
querying RCSB PDB for all the available PDBs that contain human proteins. The dataset
containing PDB files of the Spike protein was obtained from the same source (RCSB).
The predicted human protein dataset corresponds to the predicted human protein by
AlphaFold v4 (https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000005640_9606_
HUMAN_v4.tar). Benchmark datasets were obtained from https://github.com/rcsb/
biozernike-validation for Task 1, http://shrec2018.drugdesign.fr/shape_retrieval_
shrec2018_pdb_files.tar.gz, http://shrec2018.drugdesign.fr/SHREC2018_ref.cla for Task 2
and http://ekhidna2.biocenter.helsinki.fi/dali/pdb_and_scope.tar for Task 3.

Code availability
Machaon’s implementation and evaluation scripts are available to the community at:
https://github.com/anastasiadoulab/machaon. MachaonWeb’s implementation is also
available at: https://github.com/anastasiadoulab/machaonweb. The computed features on
the PDB files in Spike protein structural comparisons with viral dataset are available at
https://zenodo.org/record/6654658. Machaon was implemented in Python v.3.8 (https://
www.python.org/) and uses the following packages: NumPy (https://github.com/numpy/
numpy), pandas (https://github.com/pandas-dev/pandas), SciPy (https://www.scipy.org/
), scikit-learn (https://github.com/scikit-learn/scikit-learn), Matplotlib (https://github.
com/matplotlib/matplotlib), seaborn (https://github.com/mwaskom/seaborn), BioPython
(https://github.com/biopython/biopython), RDKit (https://github.com/rdkit/rdkit),
Open3D (https://github.com/isl-org/Open3D), HDBScan (https://github.com/scikit-

learn-contrib/hdbscan), ranky (https://github.com/Didayolo/ranky), DSSPParser
(https://github.com/neolei/DSSPparser), Pebble (https://github.com/noxdafox/pebble),
protobuf (https://github.com/protocolbuffers/protobuf), lxml (https://github.com/lxml/
lxml), networkx (https://github.com/networkx/networkx), Plotly (https://github.com/
plotly/plotly.py), UMAP (https://github.com/lmcinnes/umap), word_cloud (https://
github.com/amueller/word_cloud), tqdm (https://github.com/tqdm/tqdm), beautiful
soup (https://code.launchpad.net/beautifulsoup). A modified version of TM-align
(https://zhanglab.dcmb.med.umich.edu/TM-align/, source code retrieved on 10/2/2021)
is used by the evaluation model for 3D structure similarity computation. Secondary
structures are determined by DSSP (https://github.com/PDB-REDO/dssp). The
distributed computing platform MachaonWeb was implemented in Rust v.1.68 (https://
www.rust-lang.org), React Framework v.18.2.0 (https://github.com/facebook/react) and
its storage depends on MariaDB v.10.11.2 (https://mariadb.org). It is deployed via Docker
(https://www.docker.com) and uses the following packages: Rust-based: async-stream
(https://github.com/tokio-rs/async-stream), anyhow (https://github.com/dtolnay/
anyhow), axum(https://github.com/tokio-rs/axum), axum-server (https://github.com/
programatik29/axum-server), chrono (https://github.com/chronotope/chrono), diesel
(https://github.com/diesel-rs/diesel), dotenvy (https://github.com/allan2/dotenvy),
futures (https://github.com/rust-lang/futures-rs), glob(https://github.com/rust-lang/
glob), prost (https://github.com/tokio-rs/prost), rand(https://github.com/rust-random/
rand), regex(https://github.com/rust-lang/regex), reqwest (https://github.com/
seanmonstar/reqwest), rustls (https://github.com/rustls/rustls), serde (https://github.
com/serde-rs/serde), serde_json(https://github.com/serde-rs/json), sha2 (https://github.
com/RustCrypto), tokio (https://github.com/tokio-rs/tokio), tonic (https://github.com/
hyperium/tonic), tower (https://github.com/tower-rs/tower), tracing (https://github.com/
tokio-rs/tracing), unicode-segmentation (https://github.com/unicode-rs/unicode-
segmentation), uuid (https://github.com/uuid-rs/uuid), walkdir (https://github.com/
BurntSushi/walkdir). Javascript-based: axios (https://github.com/axios/axios), bootstrap
(https://github.com/twbs/bootstrap), react-bootstrap (https://github.com/react-
bootstrap/react-bootstrap), react-copy-to-clipboard (https://github.com/nkbt/react-copy-
to-clipboard), react-ga4 (https://github.com/codler/react-ga4), react-google-recaptcha-v3
(https://github.com/t49tran/react-google-recaptcha-v3), react-router-bootstrap (https://
github.com/react-bootstrap/react-router-bootstrap), react-router-dom (https://github.
com/remix-run/react-router), react-scripts (https://github.com/facebook/create-react-
app), web-vitals (https://github.com/GoogleChrome/web-vitals). Machaon
communicates with MachaonWeb via an mTLS-based gRPC module implemented in
Python v.3.8 and uses the Python implementation of gRPC library (https://github.com/
grpc/grpc).
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