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Abstract: The main focus of this paper is on establishing inequalities for the norm and numerical
radius of various operators applied to a power series with the complex coefficients h(λ) = ∑∞

k=0 akλk

and its modified version ha(λ) = ∑∞
k=0 |ak|λk. The convergence of h(λ) is assumed on the open disk

D(0, R), where R is the radius of convergence. Additionally, we explore some operator inequalities
related to these concepts. The findings contribute to our understanding of operator behavior in
bounded operator spaces and offer insights into norm and numerical radius inequalities.

Keywords: norm inequalities; numerical radius inequalities; power series; operators; Hilbert spaces

MSC: 47B65; 47A12; 47A13; 47A30

1. Introduction and Preliminary

It is really important to understand and study operator inequalities, especially when
they include norms and numerical radii. These concepts are used in different parts of
mathematics. Previous research, including the studies referenced in [1–10], has extensively
investigated mathematical inequalities and discovered significant findings. These studies
provide a foundation for future research in this field. In particular, power series of operators
have emerged as a key topic in functional analysis and operator theory. These series are
essential for representing and studying operators systematically. In this paper, we focus on
exploring norm and numerical radius inequalities that are specifically designed for sums of
power series of operators within Hilbert spaces.

Power series are valuable tools for expressing complex mathematical ideas, and their
application to operators helps us examine these ideas more effectively. By studying the
relationship between power series and operator inequalities, we aim to uncover insights
that contribute to a deeper understanding of mathematical structures. To fully grasp these
concepts, we recommend readers explore the information available in references such
as [11–16] and the sources mentioned therein. These resources not only complement our
research but also provide valuable information for further exploration into the complexities
of operator theory. As we delve into norm and numerical radius inequalities in the context
of power series, we hope to shed light on new perspectives that could potentially influence
broader discussions in mathematics.

We begin by considering power series with complex coefficients. A power series is
an expression of the form h(λ) = ∑∞

k=0 akλk, where ak are complex numbers and λ is a
complex variable. We assume that this power series converges within a certain region
called the open disk D(0, R), which consists of all complex numbers λ with a distance
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less than R from the origin. If R is infinite, it means the power series converges for all
complex numbers.

To understand the behavior of the coefficients in the power series, we define another
series called ha(λ). This series is obtained by taking the absolute values of the coefficients
in h(λ), i.e., ha(λ) = ∑∞

k=0 |ak|λk. It has the same convergence properties as h(λ), but it
focuses on the magnitudes of the coefficients. Natural examples include:

h(λ) =
∞

∑
n=1

(−1)n

n
λn = ln

(
1

1 + λ

)
, λ ∈ D(0, 1);

g(λ) =
∞

∑
n=0

(−1)n

(2n)!
λ2n = cos λ, λ ∈ C;

l(λ) =
∞

∑
n=0

(−1)nλn =
1

1 + λ
, λ ∈ D(0, 1).

The corresponding functions with absolute values of coefficients are:

ha(λ) =
∞

∑
n=1

1
n

λn = ln
(

1
1 − λ

)
, λ ∈ D(0, 1);

ga(λ) =
∞

∑
n=0

1
(2n)!

λ2n = cosh λ, λ ∈ C;

la(λ) =
∞

∑
n=0

λn =
1

1 − λ
, λ ∈ D(0, 1).

Other important examples of functions as power series with nonnegative
coefficients are:

exp(λ) =
∞

∑
n=0

1
n!

λn, λ ∈ C;

1
2

ln
(

1 + λ

1 − λ

)
=

∞

∑
n=1

1
2n − 1

λ2n−1, λ ∈ D(0, 1).

Before delving into our study, it is important to recall some definitions and termi-
nologies. Let B(H) denote the C∗-algebra consisting of all bounded linear operators on a
complex Hilbert space H. We denote the identity operator as I. An operator T ∈ B(H) is
said to be positive, denoted as T ≥ 0, if ⟨Tx, x⟩ ≥ 0 for all x ∈ H. If T ∈ B(H) satisfies
T ≥ 0, there exists a unique positive operator T

1
2 ∈ B(H) such that T = (T

1
2 )2. The adjoint

of an operator T is denoted as T∗. Furthermore, the absolute value of T, denoted by |T|, is
given by |T| = (T∗T)

1
2 .

Let T ∈ B(H). The operator norm of T, denoted by ∥T∥, is defined as the supremum
of ∥Tx∥ over all unit vectors ∥x∥ = 1, i.e., ∥T∥ = sup

∥x∥=1
∥Tx∥. In this context, if x belongs to

H, the quantity ∥x∥ is defined as the square root of the inner product ⟨x, x⟩, where ⟨·, ·⟩
represents the inner product defined on H. The operator norm ∥ · ∥ can be alternatively
defined as ∥T∥ = sup

∥x∥=∥y∥=1
|⟨Tx, y⟩|. In this definition, if we set y = x, we obtain a smaller

quantity known as the numerical radius, denoted by ω(T). Therefore, for T ∈ B(H), the
numerical radius of T is the scalar value ω(T) = sup

∥x∥=1
|⟨Tx, x⟩|. It can be easily verified

that ω(·) also defines a norm on B(H). However, there are significant differences between
the norm properties of ω(·) and ∥ · ∥. Specifically, the numerical radius is neither sub-
multiplicative nor unitarily invariant, unlike the operator norm.
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Although the definition of ω(·) may appear simpler than ∥ · ∥, computing the numer-
ical radius ω(·) turns out to be more challenging. As a result, there has been significant
interest within the research community in approximating the values of ω(·) in terms of
the operator norm ∥ · ∥. This is often accomplished by establishing sharp upper and
lower bounds.

In this context, an important relation presented in ([17], Theorem 1.3-1) states that the
for every T ∈ B(H), we have

ω(T) ≤ ∥T∥ ≤ 2ω(T). (1)

This relation demonstrates the equivalence between the two norms, ω(·) and
∥ · ∥. However, it is important to note that there can be a significant difference between the
values on the left and right sides of (1). Consequently, researchers have devoted consider-
able efforts to finding tighter bounds for better approximations and deeper insights into
these relationships. To provide information on norm and numerical radius inequalities,
readers are encouraged to consult the following references [18–24] and the additional
references cited therein.

The primary objective of this paper is to establish inequalities involving the norms
and numerical radii of operators represented by power series. We aim to understand
the relationship between the coefficients in the power series and the properties of the
operators. By establishing norm and numerical radius inequalities for sums of power series
of operators, we contribute to the field of functional analysis and operator theory.

In Section 2, our focus will be on proving different vector inequalities for operators.
These inequalities involve the summation of power series of operators in Hilbert spaces
along with their modified versions. Various generalizations of a Kato-type inequality
for weighted sums of operators established in [25] are also provided. Among others, we
showed that if the power series with complex coefficients h(λ) = ∑∞

k=0 akλk is convergent
on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}, then for non-negative
constants pi ≥ 0 with ∑n

i=1 pi > 0, it holds that
n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H and α ∈ [0, 1].
Moving on to Section 3, we will introduce a variety of inequalities related to the norm

and numerical radius. As an excerpt, we mention the following result

ω2

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)

≤ 1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
+

1
2

ω

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2),

provided that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is convergent

on D(0, R), Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}, α ∈ [0, 1] and pi ≥ 0 with
∑n

i=1 pi > 0.
Various examples for fundamental operator functions such as the resolvent, the loga-

rithm function, operator exponential, operator trigonometric and hyperbolic functions are
given as well.



Axioms 2024, 13, 174 4 of 18

2. Power Series and Operator Vector Inequalities

In this section, we consider the power series with complex coefficients h(λ) =

∑∞
k=0 akλk with ak ∈ C for k ∈ N = {0, 1, . . .}. We assume that this power series is

convergent on the open disk D(0, R) = {z ∈ C ; |z| < R}. If R = ∞, then D(0, R) = C. We
define ha(λ) = ∑∞

k=0 |ak|λk, which has the same radius of convergence R. To prove our first
result, we need to establish the following lemma.

Lemma 1. Let T, U, V ∈ B(H) and α ∈ [0, 1]. Then, for n ≥ 1 we have

∣∣〈V∗TnUx, y
〉∣∣2 ≤ ∥T∥2n−2〈∣∣|T|αU

∣∣2x, x
〉〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉

(2)

for all x, y ∈ H.

Proof. Firstly, observe that Kittaneh derived the following Schwarz-type inequality for
powers of operators in ([26], Corollary 7). This inequality asserts that for every T ∈ B(H),
and for all x, y ∈ H, α ∈ [0, 1] and n ≥ 1, the following holds:∣∣〈Tnx, y

〉∣∣2 ≤ ∥T∥2n−2〈|T|2αx, x
〉〈
|T∗|2(1−α)y, y

〉
. (3)

Now, let x, y ∈ H; if we replace x by Ux and y by Vy in (3), then we obtain∣∣〈V∗TnUx, y
〉∣∣2 ≤ ∥T∥2n−2〈U∗|T|2αUx, x

〉〈
V∗|T∗|2(1−α)Vy, y

〉
. (4)

Observe that U∗|T|2αU =
∣∣|T|αU

∣∣2 and V∗|T∗|2(1−α)V =
∣∣∣|T∗|1−αV

∣∣∣2; then, from (4), we
obtain (2).

Now, we are able to establish the following result.

Proposition 1. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is

convergent on D(0, R) and T, U, V ∈ B(H) with ∥T∥ < R, then

∣∣〈V∗Th(T)Ux, y
〉∣∣2 ≤ h2

a(∥T∥)
〈∣∣|T|αU

∣∣2x, x
〉〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉

(5)

for α ∈ [0, 1] and x, y ∈ H. In particular,

∣∣〈V∗Th(T)Ux, y
〉∣∣2 ≤ h2

a(∥T∥)
〈∣∣∣|T| 1

2 U
∣∣∣2x, x

〉〈∣∣∣|T∗|
1
2 V
∣∣∣2y, y

〉
(6)

for x, y ∈ H.

Proof. If we take n = k + 1, k ∈ N in (2) and take the square root, then we obtain∣∣∣〈V∗TTkUx, y
〉∣∣∣ ≤ ∥T∥k〈∣∣|T|αU

∣∣2x, x
〉 1

2
〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉 1

2

for all x, y ∈ H.
Further, if we multiply by |ak| ≥ 0, k ∈ {0, 1, ...} and sum over k from 0 to m, then

we obtain∣∣∣∣∣〈V∗T
m

∑
k=0

akTkUx, y
〉∣∣∣∣∣ =

∣∣∣∣∣ m

∑
k=0

ak
〈
V∗TTkUx, y

〉∣∣∣∣∣
≤

m

∑
k=0

|ak|
∣∣∣〈V∗TTkUx, y

〉∣∣∣
≤

m

∑
k=0

|ak|∥T∥k〈∣∣|T|αU
∣∣2x, x

〉 1
2
〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉 1

2 (7)
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for all x, y ∈ H.
Since ∥T∥ < R, then series ∑∞

k=0 akTk and ∑∞
k=0|ak|∥T∥k are convergent and

∞

∑
k=0

akTk = h(T) and
∞

∑
k=0

|ak|∥T∥k = ha(∥T∥).

By taking now the limit over m → ∞ in (7), we deduce the desired result (5).

The following remark is of great importance, as it reveals significant consequences
derived from the preceding proposition.

Remark 1. (1) If we take h ≡ 1, in (5) and (6), then we obtain the following Kato-type inequal-
ity [27] ∣∣〈V∗TUx, y

〉∣∣2 ≤
〈∣∣|T|αU

∣∣2x, x
〉〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉

for α ∈ [0, 1] and x, y ∈ H. In particular,

∣∣〈V∗TUx, y
〉∣∣2 ≤

〈∣∣∣|T| 1
2 U
∣∣∣2x, x

〉〈∣∣∣|T∗|
1
2 V
∣∣∣2y, y

〉
.

(2) If we take U = V = I in (5) and (6), then we obtain for α ∈ [0, 1] that∣∣〈Th(T)x, y
〉∣∣2 ≤ h2

a(∥T∥)
〈
|T|2αx, x

〉〈
|T∗|2(1−α)y, y

〉
(8)

and ∣∣〈Th(T)x, y
〉∣∣2 ≤ h2

a(∥T∥)
〈
|T|x, x

〉〈
|T∗|y, y

〉
for x, y ∈ H.

The case h ≡ 1 provides the original Kato’s inequality [27], therefore (8) can be seen as
a functional extension of Kato’s celebrated result in the case when the function is given by a
power series.
(3) If T is invertible and we take V = I, U = T−1 in (5), then we obtain

∣∣〈h(T)x, y
〉∣∣2 ≤ h2

a(∥T∥)
〈∣∣∣|T|αT−1

∣∣∣2x, x
〉〈
|T∗|2(1−α)y, y

〉
for α ∈ [0, 1] and x, y ∈ H. In particular,

∣∣〈h(T)x, y
〉∣∣2 ≤ h2

a(∥T∥)
〈∣∣∣|T| 1

2 T−1
∣∣∣2x, x

〉〈
|T∗|y, y

〉
for x, y ∈ H.

(4) If T > 0 and we take U = T−β, V = T−1+β, β ∈ [0, 1], then we derive∣∣〈h(T)x, y
〉∣∣2 ≤ h2

a(∥T∥)
〈

T2(α−β)x, x
〉〈

T2(β−α)y, y
〉

for α ∈ [0, 1] and x, y ∈ H.

To enhance our understanding of the previous result, we provide helpful examples in
the following remark. This will aid in clarifying the concepts and implications presented
earlier for some fundamental operator functions.

Remark 2. (1) If T, U, V ∈ B(H) with ∥T∥ < 1, then for α ∈ [0, 1] we have the following
inequalities involving the resolvent functions (I ± T)−1

∣∣∣〈V∗T(I ± T)−1Ux, y
〉∣∣∣2 ≤ (1 − ∥T∥)−2〈∣∣|T|αU

∣∣2x, x
〉〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉

(9)



Axioms 2024, 13, 174 6 of 18

and inequalities involving the operator entropy functions T ln(I ± T)

∣∣〈V∗T ln(I ± T)Ux, y
〉∣∣2 ≤ [ln(1 − ∥T∥)]2

〈∣∣|T|αU
∣∣2x, x

〉〈∣∣∣|T∗|1−αV
∣∣∣2y, y

〉
(10)

for all x, y ∈ H.

Remark 3. For α = 1
2 in (9) and (10), we obtain∣∣∣〈V∗T(I ± T)−1Ux, y

〉∣∣∣2 ≤ (1 − ∥T∥)−2〈U∗|T|Ux, x
〉〈

V∗|T∗|Vy, y
〉

and ∣∣〈V∗T ln(I ± T)Ux, y
〉∣∣2 ≤ [ln(1 − ∥T∥)]2

〈
U∗|T|Ux, x

〉〈
V∗|T∗|Vy, y

〉
for all x, y ∈ H.

Remark 4. (2) If T, U, V ∈ B(H) and α ∈ [0, 1], then we have the following results connecting
the operator trigonometric and hyperbolic functions can be stated as well

∣∣〈V∗T sin(T)Ux, y
〉∣∣2 ≤ [sinh(∥T∥)]2

〈∣∣|T|αU
∣∣2x, x

〉〈∣∣∣|T∗|1−αV
∣∣∣2y, y

〉
(11)

and ∣∣〈V∗T cos(T)Ux, y
〉∣∣2 ≤ [cosh(∥T∥)]2

〈∣∣|T|αU
∣∣2x, x

〉〈∣∣∣|T∗|1−αV
∣∣∣2y, y

〉
(12)

for all x, y ∈ H.

Remark 5. For α = 1
2 in (11) and (12) we obtain∣∣〈V∗T sin(T)Ux, y

〉∣∣2 ≤ [sinh(∥T∥)]2
〈
U∗|T|Ux, x

〉〈
V∗|T∗|Vy, y

〉
and ∣∣〈V∗T cos(T)Ux, y

〉∣∣2 ≤ [cosh(∥T∥)]2
〈
U∗|T|Ux, x

〉〈
V∗|T∗|Vy, y

〉
for all x, y ∈ H.

Remark 6. (3) Also, if T, U, V ∈ B(H) and α ∈ [0, 1], then we have the following results
involving the operator exponential and the hyperbolic functions

∣∣〈V∗T exp(T)Ux, y
〉∣∣2 ≤ exp(2∥T∥)

〈∣∣|T|αU
∣∣2x, x

〉〈∣∣∣|T∗|1−αV
∣∣∣2y, y

〉
,

∣∣〈V∗T sinh(T)Ux, y
〉∣∣2 ≤ [sinh(∥T∥)]2

〈∣∣|T|αU
∣∣2x, x

〉〈∣∣∣|T∗|1−αV
∣∣∣2y, y

〉
and ∣∣〈V∗T cosh(T)Ux, y

〉∣∣2 ≤ [cosh(∥T∥)]2
〈∣∣|T|αU

∣∣2x, x
〉〈∣∣∣|T∗|1−αV

∣∣∣2y, y
〉

for all x, y ∈ H.

Remark 7. For α = 1
2 in the last three equations, we obtain some simpler inequalities. However,

we omit the details.

Taking into account the above results, it is natural to extend them for finite sequences
of operators as follows:
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Theorem 1. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is con-

vergent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for non-negative
constants pi ≥ 0 with ∑n

i=1 pi > 0, it holds that

n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣ (13)

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H and α ∈ [0, 1].

Proof. By taking the square root in (5), we obtain

∣∣〈V∗
i Tih(Ti)Uix, y

〉∣∣ ≤ 〈ha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈

ha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H and i ∈ {1, ..., n}.
If we multiply by pi ≥ 0, i ∈ {1, ..., n} and sum over i from 1 to n, then we obtain

n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣ (14)

≤
n

∑
i=1

pi
〈

ha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈

ha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H.
By the Cauchy–Buniakowsky–Schwarz weighted inequality, we derive

n

∑
i=1

pi
〈

ha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈

ha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

≤
[

n

∑
i=1

pi

(〈
ha(∥Ti∥)

∣∣|Ti|αUi
∣∣2x, x

〉 1
2

)2
] 1

2
[

n

∑
i=1

pi

(〈
ha(∥Ti∥)

∣∣∣|T∗
i |

1−αVi

∣∣∣2y, y
〉 1

2

)2
] 1

2

=

[
n

∑
i=1

pi
〈

ha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉] 1

2
[

n

∑
i=1

pi
〈

ha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉] 1

2

=
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2 (15)

for all x, y ∈ H.
By making use of (14) and (15), we obtain the desired result (13).

Remark 8. We observe that if we take h ≡ 1 in (13) then we obtain

n

∑
i=1

pi
∣∣〈V∗

i TiUix, y
〉∣∣ ≤ 〈 n

∑
i=1

pi
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

pi

∣∣∣|T∗
i |

1−αVi

∣∣∣2y, y
〉 1

2 ,

which is a generalization of the inequality

n

∑
i=1

pi
∣∣〈Tix, y

〉∣∣ ≤ 〈 n

∑
i=1

pi|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi|T∗
i |

2(1−α)y, y
〉 1

2 ,

obtained by the second author in ([25], Theorem 2). Therefore, the inequality (13) can be seen as
a functional generalization of Dragomir’s result [25] in the case when the function is given by a
power series.
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The next remark summarizes several useful consequences that arise from the above
theorem. These consequences serve to further elucidate and expand upon the implications
of the theorem.

Remark 9. (1) It is clear that by the above theorem, we have

n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|Ti|

1
2 Ui

∣∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1
2 Vi

∣∣∣2y, y
〉 1

2 .

Remark 10. (2) Since ha(·) is a nondecreasing function on (0, R), then

ha(∥Ti∥) ≤ ha

(
max

k=1,...,n
∥Tk∥

)
= max

k=1,...,n
ha(∥Tk∥),

then by (13) we derive for all α ∈ [0, 1] that

n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣

≤ max
k=1,...,n

ha(∥Tk∥)
〈 n

∑
i=1

pi
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

pi

∣∣∣|T∗
i |

1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H.
In particular, we have

n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣

≤ max
k=1,...,n

ha(∥Tk∥)
〈 n

∑
i=1

pi

∣∣∣|Ti|
1
2 Ui

∣∣∣2x, x
〉 1

2
〈 n

∑
i=1

pi

∣∣∣|T∗
i |

1
2 Vi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H.

To facilitate a better understanding of our previous Theorem 1, we provide a set of
useful examples in the next remark. These examples serve to illustrate and clarify the
application and significance of the result discussed earlier.

Remark 11. (1) If we take Vi = Ui = I, then for non-negative constants pi ≥ 0 with ∑n
i=1 pi > 0,

it holds from Theorem 1 that

n

∑
i=1

pi
∣∣〈Tih(Ti)x, y

〉∣∣ ≤ 〈 n

∑
i=1

piha(∥Ti∥)|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)|T∗
i |

2(1−α)y, y
〉 1

2

≤ max
k=1,...,n

ha(∥Tk∥)
〈 n

∑
i=1

pi|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi|T∗
i |

2(1−α)y, y
〉 1

2 (16)

for all x, y ∈ H and α ∈ [0, 1]. In particular,

n

∑
i=1

pi
∣∣〈Tih(Ti)x, y

〉∣∣ ≤ 〈 n

∑
i=1

piha(∥Ti∥)|Ti|x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)|T∗
i |y, y

〉 1
2

≤ max
k=1,...,n

ha(∥Tk∥)
〈 n

∑
i=1

pi|Ti|x, x
〉 1

2
〈 n

∑
i=1

pi|T∗
i |y, y

〉 1
2

for all x, y ∈ H.
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(2) If Ti > 0 and we take Ui = T−β, Vi = T−1+β, β ∈ [0, 1], then we derive from Theorem 1 that

n

∑
i=1

pi
∣∣〈Tih(Ti)x, y

〉∣∣ ≤ 〈 n

∑
i=1

piha(∥Ti∥)T
2(α−β)
i x, x

〉 1
2
〈 n

∑
i=1

piha(∥Ti∥)T
2(β−α)
i y, y

〉 1
2

≤ max
k=1,...,n

ha(∥Tk∥)
〈 n

∑
i=1

piT
2(α−β)
i x, x

〉 1
2
〈 n

∑
i=1

piT
2(β−α)
i y, y

〉 1
2

for all x, y ∈ H and α ∈ [0, 1].

(3) If we take h(λ) = (1 ± λ)−1 with |λ| < 1, then ha(λ) = (1 − λ)−1 and by (16) we obtain for
all x, y ∈ H and α ∈ [0, 1] that

n

∑
i=1

pi

∣∣∣〈Ti(1 ± Ti)
−1x, y

〉∣∣∣
≤
〈 n

∑
i=1

pi(1 − ∥Ti∥)−1|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi(1 − ∥Ti∥)−1|T∗
i |

2(1−α)y, y
〉 1

2

≤
(

1 − max
k=1,...,n

∥Tk∥
)−1〈 n

∑
i=1

pi|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi|T∗
i |

2(1−α)y, y
〉 1

2 ,

where ∥Ti∥ < 1, and pi ≥ 0 with ∑n
i=1 pi > 0.

(4) If we take h(λ) = exp(cλ) with c, λ ∈ C, then ha(λ) = exp(|c|λ) and by (16) we obtain for
all x, y ∈ H and α ∈ [0, 1] that

n

∑
i=1

pi
∣∣〈Ti exp(cTi)x, y

〉∣∣
≤
〈 n

∑
i=1

pi exp(|c|∥Ti∥)|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi exp(|c|∥Ti∥)|T∗
i |

2(1−α)y, y
〉 1

2

≤ exp
(
|c| max

k=1,...,n
∥Tk∥

)〈 n

∑
i=1

pi|Ti|2αx, x
〉 1

2
〈 n

∑
i=1

pi|T∗
i |

2(1−α)y, y
〉 1

2 ,

where Ti ∈ B(H), pi ≥ 0 with ∑n
i=1 pi > 0.

3. Norm and Numerical Radius Inequalities

In this section, we establish some norm and numerical radius inequalities for sums of
power series of operators in Hilbert spaces. Our first result in this direction reads as follows.

Theorem 2. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is conver-

gent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for α ∈ [0, 1], pi ≥ 0
with ∑n

i=1 pi > 0, it holds that∥∥∥∥∥ n

∑
i=1

piV∗
i Tih(Ti)Ui

∥∥∥∥∥
2

≤
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
≤ h2

a

(
max

k=1,...,n
∥Tk∥

)∥∥∥∥∥ n

∑
i=1

pi
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

pi

∣∣∣|T∗
i |

1−αVi

∣∣∣2∥∥∥∥∥.

Proof. Because, from the generalized triangle inequality for the modulus, we have∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, y

〉∣∣∣∣∣ ≤ n

∑
i=1

pi
∣∣〈V∗

i Tih(Ti)Uix, y
〉∣∣,
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then by (13), we obtain∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, y

〉∣∣∣∣∣ (17)

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

for all x, y ∈ H and α ∈ [0, 1].
By taking the supremum in (17), we obtain∥∥∥∥∥ n

∑
i=1

piV∗
i Tih(Ti)Ui

∥∥∥∥∥
≤ sup

∥x∥=∥y∥=1

∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, y

〉∣∣∣∣∣
≤ sup

∥x∥=1

〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2 sup
∥y∥=1

〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2y, y
〉 1

2

=

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
1
2
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
1
2

and thus the desired inequality is proved.

Remark 12. If we take Theorem 2 h ≡ 1, then we obtain the norm inequality∥∥∥∥∥ n

∑
i=1

piV∗
i TiUi

∥∥∥∥∥
2

≤
∥∥∥∥∥ n

∑
i=1

pi
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

pi

∣∣∣|T∗
i |

1−αVi

∣∣∣2∥∥∥∥∥
that for the choice Ui = Vi = I, i ∈ {1, ..., n}, becomes∥∥∥∥∥ n

∑
i=1

piTi

∥∥∥∥∥
2

≤
∥∥∥∥∥ n

∑
i=1

pi|Ti|2α

∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

pi|T∗
i |

2(1−α)

∥∥∥∥∥,

which is a weighted version of an inequality of Kato-type from ([25], Criterion 1).

Moreover, if we only consider the resolvent function h(z) = (1 ± z)−1 for |z| < 1, the
we obtain from Theorem 2 that∥∥∥∥∥ n

∑
i=1

piV∗
i Ti(I ± Ti)

−1Ui

∥∥∥∥∥
2

≤
∥∥∥∥∥ n

∑
i=1

pi(1 − ∥Ti∥)−1∣∣|Ti|αUi
∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

pi(1 − ∥Ti∥)−1
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
≤
(

1 − max
k=1,...,n

∥Tk∥
)−2

∥∥∥∥∥ n

∑
i=1

pi
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

pi

∣∣∣|T∗
i |

1−αVi

∣∣∣2∥∥∥∥∥,

where Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < 1, i ∈ {1, ..., n}.
We can state now some results that provide upper bounds for the numerical radius of

a weighted sum of operators as follows:
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Theorem 3. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is conver-

gent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for α ∈ [0, 1], pi ≥ 0
with ∑n

i=1 pi > 0, it holds that:

ω

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
≤

∥∥∥∥∥∥∥
n

∑
i=1

piha(∥Ti∥)

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥
≤ ha

(
max

k=1,...,n
∥Tk∥

)∥∥∥∥∥∥∥
n

∑
i=1

pi

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥.

Proof. From (17) we obtain for y = x that∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣ (18)

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉 1

2

for all x ∈ H.
By the arithmetic–geometric mean inequality, we also have

〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉 1

2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉 1

2

≤ 1
2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉
+

1
2
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉

=
〈 n

∑
i=1

piha(∥Ti∥)

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

x, x
〉

(19)

for all x ∈ H.
Therefore, by (18) and (19), we obtain

ω

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
= sup

∥x∥=1

∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
≤ sup

∥x∥=1

〈 n

∑
i=1

piha(∥Ti∥)

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

x, x
〉

=

∥∥∥∥∥∥∥
n

∑
i=1

piha(∥Ti∥)

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥,

which proves the desired result.

If we take h ≡ 1 in Theorem 3 we obtain

ω

(
n

∑
i=1

piV∗
i TiUi

)
≤

∥∥∥∥∥∥∥
n

∑
i=1

pi

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥,
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while for the resolvent function, we obtain

ω

(
n

∑
i=1

piV∗
i Ti(I ± Ti)

−1Ui

)

≤

∥∥∥∥∥∥∥
n

∑
i=1

pi(1 − ∥Ti∥)−1

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥
≤
(

1 − max
k=1,...,n

∥Tk∥
)−1

∥∥∥∥∥∥∥
n

∑
i=1

pi

∣∣|Ti|αUi
∣∣2 + ∣∣∣∣∣T∗

i

∣∣1−αVi

∣∣∣2
2

∥∥∥∥∥∥∥.

where Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < 1, i ∈ {1, ..., n}.

Theorem 4. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is conver-

gent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for α ∈ [0, 1], pi ≥ 0
with ∑n

i=1 pi > 0, it holds that

ω2

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
≤ 1

2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
+

1
2

ω

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2).

Proof. Recall Buzano’s inequality (see [28]), which states that

∣∣〈u, e
〉〈

e, v
〉∣∣ ≤ 1

2
[
∥u∥∥v∥+

∣∣〈u, v
〉∣∣] (20)

holds for any u, v, e ∈ H with ∥e∥ = 1.
Let x ∈ H, ∥x∥ = 1; then, by (18) and (20), we have∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
2

(21)

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉〈

x,
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x
〉

≤ 1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
+

1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x,
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x
〉∣∣∣∣∣

=
1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
+

1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉∣∣∣∣∣.

By taking the supremum over x ∈ H, ∥x∥ = 1, we obtain the desired result.

If we take h to be as in Section 2, then we obtain various inequalities for several
fundamental functions. We omit the details.

In order to establish our next result, we need to recall Young’s inequality, which holds
for a, b ≥ 0 and p, q > 1 with 1

p + 1
q = 1:
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ab ≤ 1
p

ap +
1
q

bq. (22)

We also require McCarthy’s inequality (see [29]), which holds for r ≥ 1 and a positive
operator P ≥ 0: 〈

Px, x
〉r ≤

〈
Prx, x

〉
for x ∈ H with ∥x∥ = 1. (23)

Theorem 5. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is conver-

gent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for α ∈ [0, 1], pi ≥ 0
with ∑n

i=1 pi > 0, it holds that

ω2r

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
(24)

≤
∥∥∥∥∥ 1

p

(
n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)rp

+
1
q

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr∥∥∥∥∥,

provided that r > 0, p, q > 1 with 1
p + 1

q = 1 and pr, qr ≥ 1.
If r ≥ 1, then

ω2r

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
(25)

≤ 1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
r∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
r

+
1
2

ωr

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2).

If r ≥ 1, p, q > 1 with 1
p + 1

q = 1 and pr, qr ≥ 2, then also

ω2r

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
(26)

≤ 1
2

∥∥∥∥∥ 1
p

(
n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)pr

+
1
q

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr∥∥∥∥∥
+

1
2

ωr

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2).

Proof. If we raise both sides of Equation (18) to the power of 2r > 0, we can utilize the
inequalities (22) and (23) to deduce the following:∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
2r

(27)

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉r〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉r

≤ 1
p
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉rp

+
1
q
〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉qr

≤ 1
p
〈( n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)rp

x, x
〉
+

1
q
〈( n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr

x, x
〉

=
〈 1

p

(
n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)rp

+
1
q

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr

x, x
〉
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for x ∈ H with ∥x∥ = 1. By taking the supremum over ∥x∥ = 1, then we obtain the desired
result (24).

By taking the power r ≥ 1 in (21) and using the convexity of the power function,
we obtain ∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
2r

=

(
1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
+

1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉∣∣∣∣∣
)r

≤ 1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
r∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
r

+
1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉∣∣∣∣∣

r

.

By taking the supremum over ∥x∥ = 1, then we obtain (25).
Also,∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
r∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
r

≤ 1
p

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
pr

+
1
q

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
qr

=
1
p

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
2 pr

2

+
1
q

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
2 qr

2

=
1
p
〈( n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)2

x, x
〉 pr

2 +
1
q
〈( n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)2

x, x
〉 qr

2

≤ 1
p
〈( n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)pr

x, x
〉
+

1
q
〈( n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr

x, x
〉

=
〈[ 1

p

(
n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)pr

+
1
q

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr]
x, x
〉

for ∥x∥ = 1, then

1
2

∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x

∥∥∥∥∥
r∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x

∥∥∥∥∥
r

(28)

+
1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉∣∣∣∣∣

r

≤ 1
2
〈[ 1

p

(
n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2)pr

+
1
q

(
n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2)qr]
x, x
〉

+
1
2

∣∣∣∣∣〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉∣∣∣∣∣

r

for ∥x∥ = 1.
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By utilizing (27) and (28), we then deduce the desired result (26).

Finally, we can also state the following result.

Theorem 6. Assume that the power series with complex coefficients h(λ) = ∑∞
k=0 akλk is con-

vergent on D(0, R) and Ti, Ui, Vi ∈ B(H) with ∥Ti∥ < R, i ∈ {1, ..., n}. Then, for α, λ ∈ [0, 1],
pi ≥ 0 with ∑n

i=1 pi > 0, it holds that

ω2

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
(29)

≤
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
[
(1 − λ)

∣∣|Ti|αUi
∣∣2 + λ

∣∣∣|T∗
i |

1−αVi

∣∣∣2]∥∥∥∥∥
×
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2∥∥∥∥∥
λ∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2∥∥∥∥∥
1−λ

and

ω2

(
n

∑
i=1

piV∗
i Tih(Ti)Ui

)
(30)

≤
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
[
(1 − λ)

∣∣|Ti|αUi
∣∣2 + λ

∣∣∣|T∗
i |

1−αVi

∣∣∣2]∥∥∥∥∥
×
∥∥∥∥∥ n

∑
i=1

piha(∥Ti∥)
[

λ
∣∣|Ti|αUi

∣∣2 + (1 − λ)
∣∣∣|T∗

i |
1−αVi

∣∣∣2]∥∥∥∥∥.

Proof. From (17), we obtain∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
2

≤
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉

=
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉1−λ〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉λ

×
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉λ〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉1−λ

for all x ∈ H, ∥x∥ = 1.
By the weighted arithmetic-geometric mean inequality, we also have

〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉1−λ〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉λ

≤ (1 − λ)
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉
+ λ

〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉

=
〈 n

∑
i=1

piha(∥Ti∥)
[
(1 − λ)

∣∣|Ti|αUi
∣∣2 + λ

∣∣∣|T∗
i |

1−αVi

∣∣∣2]x, x
〉

for all x ∈ H, ∥x∥ = 1.
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Then, we obtain∣∣∣∣∣〈 n

∑
i=1

piV∗
i Tih(Ti)Uix, x

〉∣∣∣∣∣
2

≤
〈 n

∑
i=1

piha(∥Ti∥)
[
(1 − λ)

∣∣|Ti|αUi
∣∣2 + λ

∣∣∣|T∗
i |

1−αVi

∣∣∣2]x, x
〉

×
〈 n

∑
i=1

piha(∥Ti∥)
∣∣|Ti|αUi

∣∣2x, x
〉λ〈 n

∑
i=1

piha(∥Ti∥)
∣∣∣|T∗

i |
1−αVi

∣∣∣2x, x
〉1−λ

for all x ∈ H, ∥x∥ = 1.
If we take the supremum over ∥x∥ = 1, then we obtain (29).
The inequality (30) follows in a similar way.

If we take h to be as in Section 2, then we obtain various inequalities for several
fundamental functions. We omit the details.

4. Conclusions

In this paper, we have focused on establishing inequalities for the norm and numer-
ical radius of various operators applied to power series of operators in Hilbert spaces.
Specifically, we have considered the power series with complex coefficients h(λ) = ∑∞

k=0 akλk

and its modified version ha(λ) = ∑∞
k=0 |ak|λk, assuming the convergence of h(λ) on the open

disk D(0, R), where R is the radius of convergence. Additionally, we have explored several
operator inequalities associated with these concepts.

The findings of this study significantly contribute to our understanding of opera-
tor behavior in bounded operator spaces. By establishing these inequalities, we have
gained insights into the relationships between power series of operators and various
operator properties.

Moreover, this study serves as a starting point for future investigations in this field.
It provides a foundation for exploring other topics, such as Hölder-type inequalities for
power series of operators in Hilbert spaces. By extending our work to consider different
types of inequalities, we can deepen our understanding of the behavior of power series of
operators in Hilbert spaces.

Furthermore, we speculate that our paper, particularly when n = 1, can be connected
with recent results by Bhunia [30]. This connection suggests potential avenues for further
research and opens up the possibility of establishing connections between different lines
of inquiry.

In conclusion, this paper contributes to the field of operator theory by establishing
norm and numerical radius inequalities for sums of power series of operators in Hilbert
spaces. The findings presented here provide valuable insights into operator behavior and
lay the groundwork for future research in this area.
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