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Abstract 

 

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a 

devastating, complex chronic disease with ambiguous aetiology and pathophysiology. There are 

neither confirmed specific biomarker/s nor clearly defined biological mechanism/s currently 

available that enable routine, accurate, and efficient diagnosis. ME/CFS individuals suffer from a 

myriad of debilitating symptoms including profound fatigue and post-exertional malaise and are 

often affected by comorbid fibromyalgia (FM) and irritable bowel syndrome (IBS). The 

heterogeneous, multisystemic nature of the condition and numerous diverse comorbidities is a 

major point of confusion. It is unclear whether these varying presentations in ME/CFS are 

phenotypes of the same underlying mechanisms or a combination of different diseases and their 

pathophysiology. The challenge in distinguishing between ME/CFS cases and grappling with the 

variability in clinical practice and research often means that individuals are confronted with 

years without a proper diagnosis and adequate health care. To address these issues, this 

project focused on the gut microbiome, host metabolome, and its relationship (gut microbe-

derived metabolites). Overall differences in the gut microbiome and host metabolome have 

been observed between ME/CFS and non-ME/CFS cohorts; however, not to the level of detail 

presented here. This thesis also sought to objectively address and explore the bearing of the 

FM and IBS comorbidities in ME/CFS within this framework.  

 

Material and Methods: 40 ME/CFS and 43 non-ME/CFS participants were recruited. All 

participants provided faecal and urine samples with questionnaire responses for Part One of the 

study. A selection of these participants (28 ME/CFS and 28 non-ME/CFS) provided a blood 

plasma and urine sample for Part Two. Participant metadata was used to form the comparative 

groups of interest described and discussed throughout this thesis: A) ME/CFS overall versus 

Control, B) ME/CFS with FM versus ME/CFS without FM, C) ME/CFS with IBS versus ME/CFS 

without IBS, and D) age-matched ME/CFS with IBS versus ME/CFS without IBS. All biological 

samples underwent a 1H-NMR and LC-MS/MS targeted metabolomic analytical workflow to 

characterise the host metabolome with polar metabolites. The faecal samples were used to 

provide insight into the gut microbiome with the usage of culture microbiology with MALDI-TOF 

MS, and 16S rRNA gene amplicon sequencing. PICRUSt2 and MiMeDB pipelines were used 

with the 16S rRNA sequences and culture data outcomes, respectively, to investigate the 

metabolic functionality and metabolite profiles of the gut microbiome. Across all datasets, 

univariate and multivariate statistics were used to evaluate the comparative groups.  
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Results and Conclusions: Investigating the heterogeneity and intricate host-microbiome 

relationship in ME/CFS requires a multi-omic and multi-disciplinary approach. There is value in 

using complementary approaches and techniques including expanding coverage and data 

capabilities. The comparisons across the datasets indicate that due consideration needs to be 

given to the presence or absence of FM and IBS comorbidities in ME/CFS. Overall, there are 

nuanced and subtle differences and similarities in the patterns and features that emerge from 

the gut microbiome and host metabolome findings. This may have far-reaching implications for 

disease pathophysiology and mechanisms, and the downstream establishment of preventative 

and management options. While the findings from this project only display a snapshot in time 

and cannot prove causality or prognosis; it offers an objective framework and pragmatic 

workflow for approaching the multifaceted issues in ME/CFS.  

 

Key Words and Phrases: ME/CFS, fibromyalgia, irritable bowel syndrome, comorbidities, 

disease heterogeneity, gut, gut microbiome, host metabolomics, complementary approaches 

and techniques  
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Preface  

 

My PhD started in 2017 with a different project plan and course of action from what is displayed 

in this thesis. The revised concept of this project was planned in the months leading up to the 

start of 2020. The course of this project has had to adapt to accommodate the changes due to 

major issues with supervision, laboratory facilities, resource availability, and the logistics of 

recruiting participants. Most of the issues experienced were largely unrelated to the COVID-19 

pandemic and restrictions. The COVID-19 restrictions in Melbourne, Victoria did cause some 

disruption and delay with my PhD progress; however, they were less extensive than the non-

COVID-19 issues encountered.  

 

While aspects of the project changed and evolved, the core interest of disease heterogeneity, 

the gut, its microbiome, and the relationship with host metabolism and biochemistry in Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remained. The recruitment of 

participants, collection of samples and questionnaire information, and initial processing and 

storage of biological samples were completed before the supervision changes and moving to 

another laboratory group were necessary. The faecal culture microbiology with MALDI-TOF MS, 

DNA extraction, and 16S rRNA Illumina MiSeq wet laboratory work was completed as originally 

intended. The metabolomics experiments were arranged with the new supervisors and 

laboratory group. The metabolomics work was completed with the samples that had already 

been collected and stored. The extent and level of knowledge and skill to process and analyse 

these specific, large, and complex dataset types were not accommodated, nor anticipated, at 

the start of my PhD before the changes happened. Particularly for the 16S rRNA component, 

time was invested much later in my PhD course to learn some bioinformatic approaches and 

acquire tools, for example, Linux, high-performance computing, QIIME2, and R/R Studio, to be 

able to handle these datasets.  

 

The outcome of managing and resolving my various challenges during my PhD candidacy has 

led to a project of significant and satisfying researcher and personal development involving work 

with more breadth and applicability when leaning into the space of chronic health conditions and 

diseases, and the host metabolome and gut microbiome relationship. Lastly, the discussion of 

post-COVID-19 pandemic health issues and the comparisons to ME/CFS is now a topic. The 

focus of this thesis is ME/CFS; however, the findings and discussion of this thesis, to an extent 

could have some applicability to this conversation.  
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1 CHAPTER ONE: Introduction and Literature Review 

 

1.1 Executive Summary  

 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a neglected, debilitating 

long-term chronic disease affecting several millions of people worldwide. There is evidence for 

the multisystemic pathophysiological abnormalities and the biological basis for ME/CFS; 

however, aetiology and precise disease mechanisms remain elusive. An incomplete 

understanding of this disease, compounded by the lack of a universally accepted case definition 

or measurable biomarker/s, impedes the availability of diagnostic or therapeutic options specific 

to ME/CFS. In many ways, ME/CFS is a victim of its complexity. ME/CFS individuals suffer from 

a myriad of diverse symptoms and comorbidities ME/CFS is a heterogeneous condition and an 

objective framework and common language are needed. It is unclear whether these varying 

presentations in ME/CFS are subgroups and phenotypes of the same underlying mechanisms 

or a combination of different diseases and their pathophysiology. While overall differences in the 

gut microbiome and host metabolome are observed between ME/CFS and non-ME/CFS 

cohorts, and in other chronic diseases, the microbial metabolic potential and functionality of the 

gut microbiome have rich potential to further insight into ME/CFS. This project and thesis aimed 

to focus on exploring the gut microbiome, host metabolome, and its relationship (gut microbe-

derived metabolites) using complementary analytical platforms to evaluate the role and bearing 

of the FM and IBS comorbidities in ME/CFS. 
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1.2 ME/CFS Background  

 

ME/CFS, also more recently named Systemic Exertion Intolerance Disease (SEID), is a 

complex, extremely debilitating, and burdensome disease. The debate about the nomenclature 

and whether ME, CFS, and SEID are distinct entities is still unresolved and ongoing (Campagne 

et al., 2022; Huth et al., 2020; Jason et al., 2015, 2016; Lim & Son, 2020). Acknowledging that 

this condition is much more involved and serious than “chronic fatigue”, the common umbrella 

term “ME/CFS” was used for this study. There are no approved biomarkers, diagnostic tests, 

curative, or therapeutic options for ME/CFS owing to its ambiguous aetiology, pathogenesis, 

and pathophysiology. ME/CFS is associated with significant personal loss and economic burden 

with health-related quality of life measures that are on par with, if not worse than, conditions 

such as multiple sclerosis, rheumatoid arthritis, cancer, type-2 diabetes, and stroke (Hvidberg et 

al., 2015; Mirin et al., 2020). This medical crisis is accompanied by an appalling and remarkably 

low level of research funding and support (Mirin et al., 2020, 2022). A study completed by Mirin 

and colleagues in 2020 found that the disease burden of ME/CFS in the United States is double 

that of HIV/AIDS and over half that of breast cancer and that the United States National 

Institutes of Health (NIH) funding for ME/CFS would need to increase roughly 14-fold to be 

commensurate with disease burden (Mirin et al., 2020). A more recent study revised this figure 

to be up to a 40-fold increase given the impact of the pandemic, inflation, and rising costs (Mirin 

et al., 2022).  

 

Anyone can get ME/CFS (or the complications of ME/CFS if not formally diagnosed) at any 

point in time and it does not discriminate (Ghali et al., 2022; Nacul et al., 2020). Studies have 

found that ME/CFS affects approximately three to four times as many adult females as males 

with sex differences found in the pathophysiology of ME/CFS; however, ME/CFS is not a 

“women’s disease” and there are paediatric cases (Bested & Marshall, 2015; Rivera et al., 2019; 

Valdez et al., 2019). Remission or a full recovery to pre-ME/CFS functioning is rare with 

reported recovery rates ranging from 0% to 8% (Ghali et al., 2022). There is a wide spectrum of 

severity ranging from mild to very severe with up to 75% of patients unable to work and an 

estimated 25-29% being consistently housebound or bedbound (Bateman et al., 2021; Mirin et 

al., 2020). The economic impact of ME/CFS has been estimated to range from $36 billion to $51 

billion (USD) annually in medical expenses (direct costs) and lost income (indirect costs); these 

figures are conservative and expected to rise (Jason & Mirin, 2021; Mirin et al., 2022). 

Estimates of ME/CFS prevalence vary depending on the case definition used and it has been 
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difficult to get an accurate epidemiological representation (Lim et al., 2020). Although there is 

the likely possibility of many undiagnosed or misdiagnosed cases, figures say that ME/CFS 

affects “approximately 1% of the population, 17 to 24 million people worldwide” (Bested & 

Marshall, 2015; Lim & Son, 2020). These numbers and figures aside, ME/CFS is a horrific 

disease and a terrifying reality for one too many (Dafoe et al., 2021). A complicated clinical 

presentation and chequered historical backdrop, including the indefinite terminologies and 

aetiology, have contributed to a general lack of understanding, awareness, and support, and at 

times, sheer empathy, and humanity. Medical education programs rarely cover ME/CFS and 

guidance for health care providers is often outdated and inappropriate with numerous instances 

reported where the legitimacy of ME/CFS has been doubted and patients have been harmed 

(Bateman et al., 2021; Mirin et al., 2020). Research, education, and advocacy efforts have 

somewhat overcome the stigma and improved the support, perception, and recognition of 

ME/CFS; however, it is nowhere near the amount that individuals, their caregivers, friends, and 

family, require or rightly deserve.  
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1.3 ME/CFS Symptom Presentation  

 

ME/CFS is commonly described as a chronic and multifaceted disorder that has lasted for at 

least six months and cannot be explained by any other underlying medical condition. It is now 

generally accepted that ME/CFS is characterised by profound, persistent, recurring fatigue that 

is not improved by rest, and post-exertional malaise (PEM). PEM is defined as an exacerbation 

or worsening of some or all baseline ME/CFS symptoms and a further reduction in function and 

capacity following any physical, cognitive, emotional, or social activities, events, stress, or 

challenges that were normally previously tolerated (Bateman et al., 2021; Ghali et al., 2021; 

Stussman et al., 2020). The PEM experience is often described as a “crash”, “relapse” or 

“payback” and the smallest amount and simplest of activities can result in an event. Common 

signs and symptoms of ME/CFS apart from the mental and physical fatigue include but are not 

limited to, muscle and/or joint pain, muscle weakness, cognitive dysfunction, “brain fog”, sleep 

dysfunction, mood changes, headache, immune system dysfunction, sore throat, nausea and 

dizziness. Multiple intolerances, hypersensitivities, and sensitivities, include issues with hot and 

cold temperatures, chemicals, drugs/medication, light, noise, touch, exercise, and orthostatic 

regulation. Many ME/CFS individuals also report gastrointestinal (GI) symptoms and problems 

including abdominal pain, bloating, diarrhoea, constipation, irritable bowel, intestinal discomfort, 

food intolerances, a changed appetite, and weight changes (Aaron et al., 2000; Carruthers et 

al., 2003; König et al., 2022; Lakhan & Kirchgessner, 2010; Lupo et al., 2021; Maes et al., 2014; 

Martín et al., 2023; Varesi et al., 2021). 

 

Not only are there a plethora of symptoms that affect multiple organs and body systems, but 

they show differently with varying severity, frequency, patterns, progression, and duration 

among and within ME/CFS individuals. Symptoms can present at inopportune times and be both 

debilitating and embarrassing (Corbitt et al., 2018). Any of the symptoms can vary in the timing 

and chronological sequence that they appear ranging from suddenly to more gradually over 

weeks and months (Bateman et al., 2021). Disease onset is generally described as “acute”, 

“sudden”, or “gradual” with individuals often reporting a bout of a viral infectious illness or 

stressful/major life event before they become unwell (Chu et al., 2019). However, Chu et al. 

(2019) found that many studies did not adequately define the timeframe of onset and that further 

investigation of aetiological triggers (infectious and non-infectious), predisposing factors, the 

course of ME/CFS, and its contribution to the heterogeneity observed in ME/CFS was warranted 

(Chu et al., 2019). In addition to this often-marked variability in presentation, the way ME/CFS 
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manifests in everyone may change with time (Chu et al., 2019; Nacul et al., 2020). In some 

studies, female sex, increased age, and lower socioeconomic status have been found to predict 

poor prognosis; however, the inconsistent nature of both population sampling and diagnostic 

criteria usage has led to vague results (Bakken et al., 2014; Kidd et al., 2016; Nacul et al., 2020; 

Vyas et al., 2022). Besides the worsening of baseline symptoms, new or non-typical symptoms 

could emerge in some ME/CFS patients, and these symptoms can also differ from those usually 

experienced by individuals after exposure to a PEM event or trigger (Ghali et al., 2021). 

Therefore, inter- and intra-individual phenotypic variations contribute toward the categorisation 

of different subtype trajectories of ME/CFS that may differ in pathogenesis and prognosis (Ghali 

et al., 2022; Jason et al., 2005; Lacasa et al., 2023; Maclachlan et al., 2017; Nacul et al., 2020; 

W. P. Tate et al., 2023).  

 

Symptoms are not specific to ME/CFS and can occur in other chronic conditions and healthy 

populations. However, the post-exertional worsening of function and the constellation of 

symptoms seen in ME/CFS are distinctive (Bateman et al., 2021; Stussman et al., 2020). PEM 

onset is unpredictable since it can be immediate or delayed by several hours or days. This 

onset delay can help distinguish ME/CFS from other diseases, in particular, multiple sclerosis 

and systemic lupus erythematosus, that manifest with severe fatigue and malaise but without 

the delayed onset (Ghali et al., 2021). It also has an unpredictable course and duration because 

the intensity and duration of PEM are unexpectedly disproportionate to the magnitude of the 

event that initiated it (Bateman et al., 2021; Ghali et al., 2021; Stussman et al., 2020). For the 

mildly affected individuals, working a few hours a day can result in PEM, whereas for the most 

severely ill, the most basic activities of daily living will be sufficient (Bateman et al., 2021). 

Recovery from a PEM event is also varied, unpredictable, and prolonged and may take days 

weeks, months, or longer. Intriguingly, in healthy and other unwell populations, physical 

exercise, and cognitive behavioural therapy (CBT) are shown to improve the symptoms of 

fatigue, sleep, pain, cognition, and mood and are often encouraged and implemented as 

prescribed therapy (Bateman et al., 2021; Dauwan et al., 2021; Ehde et al., 2014; Geneen et al., 

2017; Lenzen et al., 2020; Nakao et al., 2021; Schuch et al., 2016). By stark contrast, ME/CFS 

patients experience PEM where exercise and CBT activities can exacerbate symptoms rather 

than improve them (Stussman et al., 2020). Graded exercise therapy (GET) and CBT in a 

biopsychosocial model and context were investigated in the highly controversial, dubious, and 

potentially unethical PACE trial. My study and views support their (any PACE-trial-like or 

endorsed, GET and CBT protocols) removal from guidelines and practices for managing 
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ME/CFS as the distress, harm, and risks outweigh any minimal benefits. The consideration of 

PEM in diagnostic protocols is critical in the absence of any other means to term ME/CFS as a 

distinct entity.  

 

1.4 ME/CFS Name and Case Definitions   

 

As early as the 19th century, reasonably reliable medical records have been available that 

describe a multisystemic and debilitating disease of unknown origin causing chronic and severe 

fatigue which prevents individuals from carrying out normal levels of daily activities (Brurberg et 

al., 2014; Lim & Son, 2020; Prins et al., 2006; Varesi et al., 2021). ME/CFS has long been 

associated with discrete outbreaks and sporadic incidents of viral-like illness; however, the 

causality of ME/CFS has not been verified (Hanson, 2023; Rasa et al., 2018). It is often taken 

for granted that a disease has a clear-cut definition with established aetiology, identifiable 

biomarkers with known underlying biological mechanisms let alone consistent differentials, 

efficient and reliable diagnostic and management protocols, and even one name that everyone 

uses. Acknowledging the historical trajectory of ME/CFS is imperative because its events go 

hand in hand with the various names and case definitions (CDs) which emphasise different 

clinical features and characteristics through the lens of different clinicians' and researchers' 

perspectives (Brurberg et al., 2014; Christley et al., 2012; Lim & Son, 2020). Figure 1.4.1 is from 

a more recent review of ME/CFS CDs; it shows the developmental timeline of the 25 that have 

been developed and published in English to date (Lim & Son, 2020).  
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Figure 1.4.1 Figure 1 from Lim and Son’s 2020 review shows the timeline and development of 

ME/CFS case definitions and terminologies (Lim & Son, 2020).  

 

The initially distinct view of ME and CFS was later reformulated to ME/CFS and then SEID (Lim 

& Son, 2020). The first “ME” case definition was developed in 1986 by Dr Melvin Ramsay 

following outbreaks in the United Kingdom that described cases featuring predominantly 

neurological symptoms and an alarming level of chronicity (MEpedia, 2023b; Ramsay, 1965; 

Ramsey et al., 1988). A series of outbreaks led to the proposal that the condition was linked to a 

viral infection which altered the name for a period to “chronic Epstein-Barr virus syndrome” in 

1982 and “post-viral fatigue syndrome” in 1985 (Institute of Medicine, 2015; Lim & Son, 2020). 

In 1988, “CFS” was proposed by the Centers for Disease Control and Prevention (CDC) in the 

United States to describe the outbreak of cases that were similar, if not identical to, the ones 

observed earlier in the UK, and numerous sporadic cases (Brurberg et al., 2014; Fukuda et al., 

1994; G. P. Holmes et al., 1988). It was deemed by the CDC that there was insufficient 

evidence to link the viral origins of the illness and that the CFS terminology would more 

inclusively describe the symptom complex including psychological symptoms (Institute of 

Medicine, 2015; Lim & Son, 2020). The name “ME/CFS” was coined in 2003 by the Canadian 
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Consensus Criteria (CCC) to encapsulate the clinical features of both “ME” (neuroinflammation) 

and “CFS” and highlight the level of complexity that goes beyond the often misjudged and 

overlooked “chronic fatigue” (Carruthers et al., 2003). The name of “ME/CFS” itself although 

commonly used and widely accepted, remains controversial with views that oppose the 

combined term as they consider them to be separate diagnostic entities (Jason et al., 2016; 

Twisk, 2014). To some extent, these arguments are redundant and moot without confirmed 

aetiology and pathophysiology. More recently in 2015, SEID was recommended by the National 

Academy of Medicine, formerly the Institute of Medicine (IOM), as a new name for the condition. 

The IOM authors offered SEID with the hope that the new name would be the first step towards 

a widespread change in public and clinician attitudes in line with current literature and 

understanding of the patient experience with the disorder/disease (Clayton, 2015; Lancet, 

2015). Overall, the terminologies can be linked to the aetiologies that have been suggested for 

this condition: ME by a viral infection, ME/CFS by a neuroinflammatory disorder, CFS with 

unknown cause, and SEID by multisystemic effects (Lim & Son, 2020).  

 

The “what is in a name(?)” debate and issues are not to be ignored in ME/CFS (Bested & 

Marshall, 2015). However, the more concerning matter lies in the CDs or diagnostic criteria 

associated with these terminologies. The use of differing definitions has a profound impact on 

epidemiological estimates of prevalence hence the blanket caution needed when viewing them 

(Brurberg et al., 2014; Christley et al., 2012; Lim & Son, 2020). Eight CDs get cited the most (in 

descending order): Fukuda, Holmes, Oxford, CCC, International Consensus Criteria (ICC), 

Australian, Ramsay, and SEID; they can also be categorised by name into ME (ICC and 

Ramsay), ME/CFS (CCC), CFS (Holmes, Australian, Oxford, Fukuda), and SEID (Lim & Son, 

2020). These definitions have largely been developed based on expert opinion and perspectives 

which have continuously changed and differed rather than empirically (Conroy et al., 2022). The 

issue is not so much the comparability of which is the best of the case definitions but rather that 

they are being used and relied on to establish and determine a diagnosis. A CD is meant to 

perform the essential role of ensuring that illnesses are systematically identified, diagnosed, and 

classified with clear key signs and symptoms (Christley et al., 2012). Unfortunately, in ME/CFS, 

the CDs have created a great deal of confusion as the differing definitions place inconsistent 

emphasis on symptoms and features (Christley et al., 2012; Lim & Son, 2020). It begs the 

question of whether ME/CFS cases are appropriately or inappropriately diagnosed with criteria 

that are arguably either too broad or narrow, too inclusive or exclusive, and where the line 

should be drawn for research and clinical practice (Brurberg et al., 2014; Lim & Son, 2020). 
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Figure 1.4.2 shows a comparison of the symptoms and scope of the eight CDs from Lim and 

Son's (2020) review.  

 

Across the board, cognitive impairment is the core symptom that is commonly intersected in the 

eight definitions (Lim & Son, 2020). The five symptoms, fatigue, cognitive impairment, PEM, 

sleep disorder, and orthostatic intolerance overlap with the four categories of ME, ME/CFS, 

CFS, and SEID; these symptoms are considered core signs by the SEID definition (Lim & Son, 

2020). In general, CFS and SEID definitions focused on cognitive impairment and fatigue, 

whereas ME and ME/CFS further emphasised muscle disturbance with neuro-autonomic 

symptoms such as sensitivity to food, chemicals, or light (Lim & Son, 2020). As shown in Figure 

1.4.2, there are other symptoms experienced that encompass the ME/CFS condition which is 

only a testament to the innate complexity and heterogeneity of the condition and the challenge 

of its conceptualisation. It is likely that all CDs capture conditions with different or multifactorial 

pathogenesis and varying prognosis (Brurberg et al., 2014). There is some criticism that the 

Oxford or Fukuda criteria are too broad and not specific enough to discriminate between 

generalised chronic fatigue and ME/CFS fatigue which specifically involves PEM (Brown et al., 

2013; Institute of Medicine, 2015; Jason et al., 2004, 2014; Nacul et al., 2019). This distinction is 

important as PEM, also referred to as post-exertional symptom exacerbation, is considered a 

cardinal sign that characterises ME/CFS. For this reason, the CCC, ICC, and SEID definitions 

are preferred (Chu et al., 2018). While the optional presence of PEM by other CDs may not be 

as critical in a direct clinician-patient setting where vital clinical judgements should not be 

substituted in providing adequate care, it is for research studies (Brurberg et al., 2014; Conroy 

et al., 2022). Research requires uniform and reproducible criteria, suitable for unambiguous 

definitions of the target population (Brurberg et al., 2014). Clinical practice requires research-

based approaches but ultimately focuses on relieving patient uncertainty and providing care 

(Brurberg et al., 2014). Irrespective of the setting, the inconsistent use of CDs is problematic 

and hinders an efficient diagnostic process and the comparability of findings. In addition to this 

challenge with the diagnostic criteria, the lack of clinical expertise and clinician confidence in 

ME/CFS often delays and makes the process of receiving a diagnosis and care an utterly 

resource-exhaustive, overwhelming, and unpleasant experience (Pheby et al., 2020, 2021).  
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Figure 1.4.2 Figure 2 from Lim and Son’s 2020 review showing the scope of ME/CFS by case 

definitions (CFS, chronic fatigue syndrome, IOM, Institute of Medicine, SEID, systemic exertion 

intolerance disorder, ME, myalgic encephalomyelitis, CCC Canadian Consensus Criteria, ICC 

International Consensus Criteria, GI gastrointestinal, GU, genito-urinary symptoms) (Lim & Son, 

2020).  
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1.5 ME/CFS Comorbidities  

 

There are several comorbidities associated with ME/CFS and they can also complicate 

diagnosis, prognosis, treatment, and research (Ghali et al., 2022; Nacul et al., 2020). Although 

the rationale for diagnosing ME/CFS has shifted its focus to identifying positive signs and 

symptoms rather than being a diagnosis of exclusion, the last resort, or “wastebasket”, clinical 

presentation across patients and time may mimic the presentation of other conditions (Clayton, 

2015; Grach et al., 2023; Institute of Medicine, 2015). Symptoms of ME/CFS can present 

similarly and overlap with several medical and psychiatric conditions, and patients can have 

both ME/CFS and other diseases (Bateman et al., 2021). Two different studies of ME/CFS 

patients that fit the Fukuda definition found that 84% of 960 and 97% of 150 participants 

suffered from at least one comorbidity (Bateman et al., 2015; Chu et al., 2019). Chu et al. (2019) 

also stated that “multiple comorbidities are the rule rather than the exception”. Another study of 

1757 ME/CFS patients that met both the Fukuda definition and CCC found that over 80% of its 

cohort presented comorbidities (Castro-Marrero, Faro, et al., 2017). Irrespective of the CD used, 

comorbidities can substantially influence and contribute to the individual’s disease progress, 

symptom burden, and functional limitations (Bateman et al., 2015; Castro-Marrero, Faro, et al., 

2017; Chu et al., 2019; Ghali et al., 2022). Beyond this aspect of the ME/CFS manifold, 

comorbidities may reduce life expectancy, and increase morbidity and mortality; however, 

findings on this are inconclusive (Castro-Marrero, Sáez-Francàs, et al., 2017; McManimen et al., 

2016; Mirin et al., 2020; E. Roberts et al., 2016). It is often said that deaths from ME/CFS are 

very rare and rarely recorded on death certificates (MEpedia, 2023a). Considering the complex 

nature and numerous challenges surrounding ME/CFS to date, these evaluations would be 

better revised with a more objective and better understanding of comorbidities in ME/CFS, that 

is, in the context of revealing and understanding the biological underpinnings of the disease.  

 

This thesis studied participants who were diagnosed according to the CCC and focused on FM 

and IBS comorbidities in the ME/CFS cohort. The CCC recognises several comorbid entities 

including FM and IBS (Carruthers et al., 2003). Further to the issues described above with 

comorbidities in ME/CFS, comorbidities also raise the possibility of different pathophysiological 

processes that cannot be confined to any one organ (Lakhan & Kirchgessner, 2010; Natelson, 

2019). This in turn could mean different effects and outcomes for diagnostic, preventative, 

treatment, and management options. Currently, pharmacological and non-pharmacological 

treatment options for ME/CFS are focused on symptom alleviation and management but they 
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are non-specific and a bit of trial and error (Bateman et al., 2021; Bested & Marshall, 2015; 

Grach et al., 2023). Treatment of comorbidities can positively affect a patient’s quality of life and 

improve the severity of symptoms (Bateman et al., 2021; Leong et al., 2022). However, patient-

specific care is essential, as inter- and intra-individual variability means that management 

strategies may dynamically benefit or not benefit to varying degrees (Bateman et al., 2021; 

Bested & Marshall, 2015; Castro-Marrero, Sáez-Francàs, et al., 2017). For example, exercise 

and other pain treatment modalities may help the FM, but it can worsen ME/CFS (Bateman et 

al., 2021; Bested & Marshall, 2015). Joint and muscle pain and chronic pain that are akin to FM, 

a chronic musculoskeletal pain disorder, are commonly reported in ME/CFS (Barhorst et al., 

2022). Currently, ME/CFS and FM are complex syndromes that are governed by their 

respective diagnostic criteria(s) and management direction but show many similarities (Mckay et 

al., 2021). It has been estimated that between 20% and 70% of patients with FM meet the 

criteria for ME/CFS and conversely, 35% to 70% of those with ME/CFS, also have FM (Aaron et 

al., 2000). A recent meta-analysis found a 47.3% clinical overlap between ME/CFS and FM 

(Ramírez-Morales et al., 2022). Like ME/CFS, FM also faces the challenge of heterogeneity, 

multifactorial clinical presentation, disability, and unclear characterisation and pathophysiology 

(Barhorst et al., 2022; Dizner-Golab et al., 2023; Ramírez-Morales et al., 2022).  

 

The mystery of ME/CFS and FM origins has contributed at times to the (one) functional somatic 

disorders and cognitive behavioural psychiatric model viewpoint which is now discouraged and 

proven as unfounded (Eccles et al., 2021; Geraghty et al., 2019; Wessely et al., 1999; Wessely 

& White, 2004). These observations and the shared symptomology have led the debates and 

contrasting views on whether ME/CFS and FM manifestations are of the same spectrum 

disorder (single syndrome unitary hypothesis), extensions of one another, or entirely separate 

clinical entities with distinct disease mechanisms and a degree of misdiagnosis (Abbi & 

Natelson, 2013; Natelson, 2019; Natelson et al., 2019; Wessely & White, 2004). ME/CFS with 

and without FM, and pain in ME/CFS have been investigated with a variety of modalities (from 

clinical observations, physical assessments, and questionnaires to biomolecular/omic-based 

experiments). While symptomology is similar and overlapping, pathophysiological, biochemical, 

and molecular findings show evidence for both its distinction and non-distinction. No study so far 

has unanimously addressed and confirmed either side of this argument (Aaron et al., 2000; 

Barhorst et al., 2022; Campen et al., 2020b, 2020a, 2021; Conroy et al., 2022; Das et al., 2022; 

Eccles et al., 2021; Faro et al., 2014; Gerwyn & Maes, 2017; Ghali et al., 2021; Martín et al., 

2023; Mckay et al., 2021; McManimen & Jason, 2017; Meeus et al., 2016; Monden et al., 2022; 
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Morris et al., 2013; Nepotchatykh et al., 2023; Schutzer et al., 2023; van Eeden et al., 2023). 

While the somatisation and psychiatric stance have been debunked, the involvement and 

association of pain and FM comorbidity in ME/CFS pathophysiology requires further 

investigation.   

 

In addition to FM, IBS also appears frequently in ME/CFS. Interestingly, the CCC states the 

following in their primer about comorbidities in ME/CFS: “Comorbid entities may occur in the 

setting of ME/CFS. Others such as IBS may precede the development of ME/CFS by many 

years, but then become associated with it. The same holds true for migraines and depression. 

Their association is thus looser between the symptoms within the syndrome. ME/CFS and 

fibromyalgia syndrome often closely connect and should be considered to be “overlap 

syndromes” (Carruthers et al., 2003). This statement, following the notion that “there are 

differences, then there are differences,” suggests that comorbidities, such as FM and IBS, may 

have different roles in their association or connection with ME/CFS. This could point toward 

different pathophysiological processes depending on the comorbidity and therefore illuminate 

varying outcomes in the individual and their experiences with ME/CFS (Natelson et al., 2019). It 

is noteworthy that Conroy et al. (2022) in their evaluation of ME/CFS case diagnostic criteria 

that pain was found not to be an independent factor (therefore, pain may not be a discrete 

symptom category but a manifestation of other symptoms), but that gastrointestinal (GI) distress 

including irritable bowel problems appeared to be a unique and revealing symptom category 

(Conroy et al., 2022). IBS is a prevalent chronic functional disorder of the GI tract that also has 

an unclear pathophysiology and challenges with its heterogeneity and dynamic nature. 

Generally, it is a disorder of gut-brain interaction that manifests as recurrent episodes of 

abdominal pain, with altered bowel habits in the absence of another obvious causative organic 

disease (Holtmann et al., 2016; Tarar et al., 2023). IBS is often associated with other medically 

unexplained conditions like ME/CFS and FM (Aaron et al., 2000; Berstad et al., 2020; Tarar et 

al., 2023). Like ME/CFS and FM, IBS currently does not have any reliable, confirmed, or 

validated diagnostic biomarkers and largely relies on symptom presentation, exclusion of other 

reasons, and the Rome diagnostic criteria (Camilleri, 2021; J. H. Kim et al., 2017; Nakov et al., 

2022; Shin & Kashyap, 2023). 

In ME/CFS, GI disturbances and related symptoms are often reported and there is a very 

frequent comorbidity with IBS (Aaron et al., 2000; König et al., 2022; Nagy-Szakal et al., 2017; 

Varesi et al., 2021). GI symptoms are recognised under the CCC and ICC CDs (Du Preez et al., 

2018). Not surprisingly, 35-90% of ME/CFS individuals have IBS compared to 10-20% of the 
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general population (Nagy-Szakal et al., 2018). FM, independent of ME/CFS as a diagnostic 

entity, also frequently describes GI symptoms and reports of IBS comorbidity (Garofalo et al., 

2023; Minerbi & Fitzcharles, 2020; Tarar et al., 2023). In a meta-analysis of FM-diagnosed 

individuals according to the American College of Rheumatology criteria for FM, 1.78% of the 

general population especially women are suffering from FM; however, it was significantly higher 

(12.90%) among those with IBS (Heidari et al., 2017; Tarar et al., 2023). The early study by 

Aaron et al. (2000), found that lifetime rates of IBS were particularly striking in their patient 

groups (ME/CFS 92% and FM 77%). Natelson et al. (2019) reported that IBS and FM were 

comorbid with ME/CFS in 67% and 54% of their study participants, respectively (Natelson et al., 

2019). The high incidence of these conditions after infection, including GI infections, and after 

the use of antibiotics, has led to the hypothesis that gut dysbiosis and altered gut permeability 

may play a role in their pathogenesis (Berstad et al., 2020; Garofalo et al., 2023; König et al., 

2022; Tarar et al., 2023; Varesi et al., 2021; L. Wang et al., 2020). The “dysbiotic march” 

hypothesis has been postulated whereby the “march” starts with IBS early in life and proceeds 

to a systemic disease with chronic fatigue, FM, and possibly ME (ME/CFS) later in life (Berstad 

et al., 2020). However, exactly how the gut and gut microbiome are involved in symptomology, 

disease pathogenesis, development and progression (within a chronic condition as per its 

current governing diagnostic entity, and between the comorbidities) remains underexplored and 

unresolved. Regardless of the specific diagnostic criteria used, the frequent coexistence and 

overlap of features among ME/CFS, FM, and IBS has led to thoughts that underlying disease 

mechanisms, particularly those of the gastrointestinal tract, gut microbiome, host metabolism, 

immune, autonomic and enteric nervous systems, and broader gut-brain-axis, are similar. 

Understanding these intricate mechanisms would not only help elucidate differential and similar 

pathophysiology and pathways in the overlap or kaleidoscopic presentations but also pave the 

way for the development of therapies that simultaneously address multiple symptoms and 

concerns.  

 

Whether it is the symptomology, nomenclature, case definitions, comorbidities, multisystemic 

individual presentation, patient and clinician perspectives, timing, disease progression, 

biological mechanisms and their processes, or a combination of all these issues, ME/CFS is a 

colossally complex, heterogeneous disease. One way of describing the challenge that is faced 

in ME/CFS is that the disease is like a jigsaw puzzle (or jigsaw puzzles) with an undetermined 

number of, but probably several, pieces that can unpredictably change in shape, colour, and 

picture. Despite the unfavourable historical developments and many ongoing hurdles in the 
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ME/CFS clinical and research space, recent studies and technologies have mercifully debunked 

the psychological/psychiatric misnomer and enabled meaningful discoveries into the biological 

basis and diagnostic potential for ME/CFS (Maksoud et al., 2023; Rivera et al., 2019; Sweetman 

et al., 2019; W. P. Tate et al., 2023). Several markers have been suggested as potential 

candidates but there is no consensus on a biomarker for ME/CFS (Maksoud et al., 2023). 

Studies across a wide range of disciplines have pointed towards a loss of normal homeostasis, 

and a suite of alterations and abnormalities in multiple organ and body systems (Komaroff & 

Lipkin, 2023; Nacul et al., 2020). It is not known whether these changes occur before the onset 

of the disease or as its consequence (the chicken or the egg(?) dilemma) and whether 

stratification or subsets of ME/CFS can be described from this (Nacul et al., 2020; Noor et al., 

2021; Renz-Polster et al., 2022).  

 

Nacul et al. (2020) proposed the natural history framework of ME/CFS whereby tentative 

classification of disease stages supports better understanding, research, and healthcare 

interventions for ME/CFS (Nacul et al., 2020). These interconnected stages which are roughly 

marked by an increase in the degree of homeostatic dysfunction and irreversibility are 

predisposition and trigger, prodromal, early, established, and long-term, advanced and 

complicated disease (Nacul et al., 2020). Viral infections have long been considered the main 

trigger of disease onset; however, other factors including physical or emotional trauma, genetic 

profile, environmental exposures, and the nature of the host response have also been proposed 

as contributing or predisposing components for disease origin, risk, manifestation, and 

chronicity (Deumer et al., 2021; Nacul et al., 2020; Rivera et al., 2019; Varesi et al., 2021). 

These different “origins” or “starting points” of ME/CFS are thought to be involved in the initiation 

or inducement of several body-wide pathological cascades or interconnected spirals of aberrant 

homeostasis with similar outcomes (Missailidis et al., 2019; Nacul et al., 2020). However, as 

individuals move between the different hypothetical stages of ME/CFS, different molecular and 

system abnormalities may be encountered (Nacul et al., 2020). At the pathobiological or 

pathophysiological level, ME/CFS is no less complex (Renz-Polster et al., 2022). Several 

studies report evidence comprising, but not limited to, immunological, inflammatory, 

neurological, metabolic, mitochondrial, microbiome, gastrointestinal, circulatory, 

endocrinological, autonomic, infectious, oxidative-reductive (redox), and muscular abnormalities 

(Deumer et al., 2021; Komaroff, 2019; Komaroff & Lipkin, 2023; Missailidis et al., 2019; Nacul et 

al., 2020). A few hypotheses based on these biological underpinnings of ME/CFS have been 

proposed; however, it is possible and likely that all these threads are entangled in the 
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progression (recovery and deterioration) over time, upstream and downstream picture of 

ME/CFS (Missailidis et al., 2019; Nacul et al., 2020; Renz-Polster et al., 2022).  
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1.6 ME/CFS Gut Microbiome and Host Metabolome 

 

The human microbiome comprises approximately 100 trillion microorganisms, most of them 

bacteria, but also viruses, eukaryotes (like fungi, protozoa, and yeasts), and archaea that exist 

primarily in the gastrointestinal tract (gut) (Ogunrinola et al., 2020; Shreiner et al., 2015; Vijay & 

Valdes, 2021). The collection of all intestinal microbial genes in an individual represents a 

genetic repertoire that is more than one order of magnitude higher than the human genome (Y. 

Chen et al., 2021; Fan & Pedersen, 2020). Microorganisms essentially function as “chemical 

factories” and the number and diversity of metabolites generated by the human gut microbiome 

are impressively large (Wishart, 2019). Hippocrates was said to have claimed that “All disease 

begins in the gut”, and while the statement is not an all-encompassing truth, the evidence so far 

has revealed that the gut and its microbiome have an important role in health and disease 

(Hatton et al., 2018; Lyon, 2018).  

 

The gut microbiome and gastrointestinal system have received considerable public and 

scientific attention (Afzaal et al., 2022; De Vos et al., 2022; K. Hou et al., 2022; König et al., 

2022; Rackaityte & Lynch, 2020; Valdes et al., 2018; Vijay & Valdes, 2021). Virtually all body 

sites are colonised by microbes suggesting different types of crosstalk with our organs (De Vos 

et al., 2022). The gut microbiome is now considered one of the key elements or most significant 

sites in contributing to the regulation and maintenance of host health; it is now best thought of 

as a virtual or hidden organ of the body (De Vos et al., 2022; K. Hou et al., 2022; Valdes et al., 

2018). Nowadays, the role of the gut and gut microbiome is documented in many conditions and 

diseases that have gastrointestinal, extra-intestinal, and wider systemic manifestations including 

obesity, type 2 diabetes, some cancers, Alzheimer’s disease, Parkinson’s disease, autism 

spectrum disorder, asthma, allergy, anxiety, depression, hypertension, celiac disease, 

inflammatory bowel disease, FM, IBS, and ME/CFS. In ME/CFS, the gut and gut microbiome, 

and its association with changes in host metabolism and responses, are becoming increasingly 

recognised as a potential gateway for future research and predictive, diagnostic, and treatment 

avenues (Armstrong et al., 2017; Borody et al., 2012; Briese et al., 2023; Che et al., 2022; 

Conroy et al., 2022; Frémont et al., 2013; Germain et al., 2017, 2018, 2020; Giloteaux, 

Goodrich, et al., 2016; Giloteaux, Hanson, et al., 2016; Guo, Che, et al., 2023; G. He et al., 

2023; S.-Y. Hsieh et al., 2023; M. L. Jackson et al., 2015; Keating et al., 2019; Kenyon et al., 

2019; Kitami et al., 2020; König et al., 2022; Lakhan & Kirchgessner, 2010; Lupo et al., 2021; 

Mandarano et al., 2018; Martín et al., 2023; Nagy-Szakal et al., 2017, 2018; Navaneetharaja et 
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al., 2016; Naviaux et al., 2016; Newberry et al., 2018; Seton et al., 2023; Sheedy et al., 2010; 

Shukla et al., 2015; Sullivan et al., 2009; Varesi et al., 2021; Wallis et al., 2016, 2017; Xiong et 

al., 2023).  

 

In a state of eubiosis, the gut microbiome acts in favour of health and provides a myriad of 

essential and positive functions for human life (Afzaal et al., 2022; Bull & Plummer, 2014). 

Without the gut microbiome, humans are unable to do many things – host metabolism and 

sustaining life would look very different (Wishart, 2019). It is involved in and responsible for 

several vital processes that influence or impact host metabolic pathways, physiology, and 

systems. This includes an assortment of roles such as circadian rhythmicity, changing insulin 

resistance and affecting its secretion, host digestion and nutrient metabolism, energy 

metabolism, cellular metabolism and signalling, xenobiotic and drug metabolism, maintenance 

of the structural integrity of the gut mucosal barrier, controlling the proliferation and 

differentiation of epithelial cells, immunomodulation, protection against pathogens and infection, 

and influencing brain-intestinal communication (Bull & Plummer, 2014; De Vos et al., 2022; K. 

Hou et al., 2022; Jandhyala et al., 2015; Lotti et al., 2023; Maciel-Fiuza et al., 2023; Valdes et 

al., 2018). Although the establishment of an ideal model remains ongoing and important 

research, it is generally accepted that in healthy conditions, the gut microbiome exhibits stability, 

resilience, and symbiotic interactions with the host (K. Hou et al., 2022; McBurney et al., 2019; 

Rinninella et al., 2019). However, the gut and gut microbiome can also be, or become, 

potentially harmful with deleterious consequences. A very considerable amount of evidence has 

linked gut dysbiosis and intestinal dysfunction (permeability, aberrations, disturbances, or 

deviations in microbial communities and the GI system) to a variety of diseases and detrimental 

outcomes, including ME/CFS (Afzaal et al., 2022; De Vos et al., 2022; K. Hou et al., 2022; König 

et al., 2022; Maciel-Fiuza et al., 2023; Varesi et al., 2021).  

 

This thesis recognises that the “gut dysbiosis” terminology needs to be used and viewed with 

caution, not taken out of context or extended beyond what the data can and cannot show when 

precise relationships (causation, response, associations, contribution to disease) between the 

gut, microbiome, and disease, especially in ME/CFS, remains unresolved (Brüssow, 2020; 

Duvallet et al., 2017; König et al., 2022). Interestingly, while the symptoms of GI disturbance 

have been recognised under the CCC and ICC, these case definitions do not specifically 

describe gut dysbiosis or alterations in the gut microbiome as further investigation is required 

(Du Preez et al., 2018). It does not help that a specific and consistent microbial signature has 
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not been found with contradictory changes in the overall composition (direction of microbial 

abundance being higher or lower) and the diversity of the gut microbiome reported (Du Preez et 

al., 2018; König et al., 2022). This aspect of gut dysbiosis has been hypothesised to contribute 

to microbial shifts that can result in the growth and expansion of pathogenic microbes and the 

production of factors toxic or harmful to host cells (Newberry et al., 2018). If not for pathogenic 

microbes, the collective commensal bacterial populations could shift to an increase or 

overgrowth of pro-inflammatory, harmful, opportunistic features and a decrease or undergrowth 

in beneficial, protective, and anti-inflammatory features (Carding et al., 2015; Frémont et al., 

2013; Giloteaux, Goodrich, et al., 2016; Jandhyala et al., 2015; Sweetman et al., 2019). Of 

course, depending on the gut microbiota composition, effects on the immune system, and other 

functions of host health that it is involved in can differ or be positively and negatively affected 

(Varesi et al., 2021).  

 

The gut microbiome research area continues to grow with increasing capability for the further 

unveiling of intricate disease mechanisms that are required to accompany these findings to 

human translation and application which is the goal and end point (Puschhof & Elinav, 2023). 

Recent and rapidly developing advances in techniques and technologies in the field continue to 

progress the understanding of what exactly the gut microbiome means (Y. Chen et al., 2021; 

König et al., 2022; J. Liu et al., 2022; Maciel-Fiuza et al., 2023; Puschhof & Elinav, 2023; Varesi 

et al., 2021). Currently, it is generally thought that homoeostatic stability, and therefore, health 

and disease status, are involved with changes in the microbial composition and imbalances of 

the gut microbiome. However, in most cases, it is unclear whether dysbiosis or changes in the 

microbiome are a cause or consequence of disease and intestinal insults, or both, and whether 

its manipulation can help control or even treat the condition (Frémont et al., 2013; G. He et al., 

2023; McBurney et al., 2019; Talapko et al., 2022). Again, it is another “chicken or the egg(?)” 

dilemma. Further, the overall metabolic potential of the gut microbiome, the intricacies or 

interplay between the gut microbiome and host metabolism under different conditions remain 

largely underexplored (Dey & Ray Chaudhuri, 2023; Montenegro et al., 2023; Schröder, 2022; 

Visconti et al., 2019). While it is widely accepted that gut dysbiosis and gut dysfunction are 

closely associated with or linked to disease, it is becoming apparent that the functionality, 

relationship or interaction between the gut microbiome and host metabolome, beyond its 

composition and taxonomy, warrants further and more consideration (Agus et al., 2021; M. X. 

Chen et al., 2019; Y. Chen et al., 2021; Dey & Ray Chaudhuri, 2023; Guo, Che, et al., 2023; 

Lamichhane et al., 2018; J. Liu et al., 2022; Ma et al., 2022; Maciel-Fiuza et al., 2023; Puschhof 
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& Elinav, 2023; Visconti et al., 2019; Wilmanski et al., 2021; Xiong et al., 2023; Y. Zhang et al., 

2023). These interactions are highly dynamic and complex (Lamichhane et al., 2018). 

Metabolites of the gut microbiome, measured via metabolomics in a workflow combined with 

metataxonomics, can provide another element of insight into the metabolic activity and 

structures of the microbes and the role of the gut in ME/CFS.  

 

The genetic complexity and non-redundant genes of the gut microbiome allow the microbes to 

produce many enzymes and metabolites that their human hosts cannot produce (Puig-Castellví 

et al., 2023; Wishart, 2019). The gut microbiome can interact with the host by producing 

metabolites, representing intermediates or end products of microbial metabolism (Agus et al., 

2021; Lamichhane et al., 2018). These metabolites can be derived de novo by the gut microbes, 

the transformation of ingested materials, or those generated by the host and biochemically 

modified by gut microbes (Agus et al., 2021; Lamichhane et al., 2018; Y. Zhang et al., 2023). 

While metabolites produced by the host and microbiota play a crucial role in the body, most of 

them are produced by the microbiota and hosts in the digestive tract (Moya & Ferrer, 2016; Y. 

Zhang et al., 2023). Further, microbiota-derived compounds can vary more among individuals in 

concentration compared to host-derived metabolites (Agus et al., 2021; Ma et al., 2022; Y. 

Zhang et al., 2023). It is thought that host-derived metabolites in circulation are maintained with 

relative consistency between individuals (Puig-Castellví et al., 2023; Y. Zhang et al., 2023). 

Beyond their key role in physiological signalling and homeostasis within the GI system, gut 

microbial metabolites appear to have actions that influence other organs and systems (Wishart, 

2019). Metabolomics offers the opportunity to simultaneously explore the various axes (kidney, 

lung, brain, liver, etc.) connected with the gut that may reveal potential mechanisms and targets 

with multisystemic implications and treatment benefits (Wishart, 2019). Previous ME/CFS gut 

microbiome studies have suggested a possible link between dysbiosis and disease 

pathogenesis and pathophysiology; however, accompanying metabolomic information about its 

association with disrupted metabolism is not always presented simultaneously (Du Preez et al., 

2018; König et al., 2022; Newberry et al., 2018; Varesi et al., 2021). Similarly, other ME/CFS 

studies have revealed insightful metabolic abnormalities that signal or point towards a 

potentially important association or involvement of gut issues, symptoms, and the microbiome; 

however, they do not always directly address or mention these topics in their discussions (Glass 

et al., 2023; Hoel et al., 2021; Maya et al., 2023; Missailidis et al., 2021; Nkiliza et al., 2021). For 

the most part, studies do mention or discuss the gut with their findings; however, the 

accompanying gut microbiome information is not always presented concurrently (Che et al., 
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2022; Germain et al., 2017, 2018, 2020, 2022; Giloteaux et al., 2023; Mandarano et al., 2020; 

McGregor et al., 2019; Naviaux et al., 2016). A consistent metabolomic signature for ME/CFS is 

also yet to be discovered (Huth et al., 2020; Maksoud et al., 2023; Taccori et al., 2023).  

 

It can be appreciated that these studies (and any research investigation) are major undertakings 

and commitments with slightly different focus points, and resources are not unlimited. If nothing 

else, they highlight that there is a lot of ground to cover as far as ME/CFS biomedical insights 

go. Studies that have looked at the gut microbiome and host metabolome, or at least the gut 

microbiology and host metabolism but not to an “omic” extent, have shown that the dual 

investigation provides the opportunity to characterise the microbes and further understand the 

microbial function and its metabolic output in ME/CFS. However, they do not prove causality 

and raise other unanswered questions in ME/CFS about heterogeneity including comorbidities 

(Armstrong et al., 2017; Guo, Che, et al., 2023; Kitami et al., 2020; Lupo et al., 2021; Maksoud 

et al., 2023; Nagy-Szakal et al., 2017, 2018; Sheedy et al., 2009; Shukla et al., 2015; Xiong et 

al., 2023). Moreover, beyond the collective multi-dimensional challenges prevalent in ME/CFS 

research that accentuate its lack of reproducibility and direct comparability, heterogeneity, and 

overall complexity, such as the case definitions, relatively limited sample sizes in the majority of 

studies, a multitude of involved symptoms and comorbidities, and varying degrees of disease 

presentation, frequency (acute versus chronic), severity and duration (long-term versus short-

term), there exists the issue of plausible yet undefined subgroups/subtypes, individual-related 

factors, and likely multifaceted pathogenesis and pathophysiology. Additionally, study design 

and data harmonisation elements such as the selection and usage of different biospecimen 

types, and experimental, data, and analytical approaches, need to be taken into consideration.  
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1.7 Thesis Aims and Objectives 

 

There is currently no standard diagnostic test or biomarker/s for ME/CFS where the clarity and 

simplicity in the pursuit of finding these urgently needed tools is hampered by comorbidities and 

its many phenotypic presentations. As the critical role of the gut microbiome, host metabolism, 

and its relationship seems likely to be involved in ME/CFS in a substantial way, this project was 

undertaken within this framework to contribute to the understanding of some of the factors that 

could underpin pathophysiology and heterogeneity. Following this overarching aim, this project 

was also undertaken with the interest of exploring and utilising different biospecimen types and 

complementary analytical techniques and approaches. Together, this project aspired to 

investigate ME/CFS with the appreciation and awareness that tackling a multifaceted issue 

would necessitate a holistic, multidisciplinary, and multi-omic approach.  

 

Currently, most ME/CFS studies report findings from ME/CFS versus Control cohorts. Given 

that ME/CFS is potentially made up of different subgroups of individuals that are yet to be fully 

defined, I chose in this thesis to compare a ME/CFS overall group with a Control (non-ME/CFS) 

group, as well as the ME/CFS group alone according to their FM and IBS comorbidity 

determined by the questionnaire metadata. So far, some studies have looked at ME/CFS with 

and without IBS or FM, but even more rarely with both. Recently, Nepotchatykh et al. (2023) 

and Schutzer et al. (2023) performed molecular and proteomic-based investigations with 

ME/CFS samples that were also grouped by whether there was comorbid FM or not; however, 

neither of these insightful studies ascertained IBS profiles. Similarly, ME/CFS with or without 

IBS has been explored in a few biomolecular-based studies; however, without factoring in FM 

comorbidity in their data analyses (Che et al., 2022; Giloteaux et al., 2023; Guo, Che, et al., 

2023; Nagy-Szakal et al., 2017). One study on ME/CFS proteomic profiles looked at outcomes 

that considered ME/CFS cases, controls, ME/CFS cases with IBS, ME/CFS cases without IBS, 

ME/CFS cases with FM, ME/CFS cases without FM (Milivojevic et al., 2020). In light of this, the 

following four comparative groups of interest feature throughout this thesis unless otherwise 

stated (Section 2.1): Comparison A compares the ME/CFS overall and Control groups, 

Comparison B compares the ME/CFS with FM and ME/CFS without FM groups (ME/CFS +/- 

FM), Comparison C compares the ME/CFS with IBS and ME/CFS without IBS groups (ME/CFS 

+/- IBS), and Comparison D compares the age-matched ME/CFS with IBS and ME/CFS without 

IBS groups (ME/CFS +/- IBS**). 

 

https://www.nature.com/articles/s41598-023-28955-9#auth-Evguenia-Nepotchatykh-Aff1-Aff2-Aff4-Aff5
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2 CHAPTER TWO: Methodology 

 

2.1 Analytical Approaches, Platforms, and Technologies 

 

Composite data from the gut microbiome and the host metabolome currently provides the most 

powerful evidence that can demonstrate the closest associations with healthy and diseased 

states (M. X. Chen et al., 2019; Jandhyala et al., 2015; Wishart et al., 2023). A theme that 

emerges from the microbiome and metabolomic fields, and in other omic and scientific areas, 

are the applications and utility of different approaches, platforms, and technologies that enable 

the work. This applies to processes and activities further upstream as well as downstream of the 

overall research design and directive. No single approach, technique, or method is without 

some shortcomings; everything has its advantages and disadvantages for their respective 

reasons. While the findings and outcomes of a study are essential, it is just as important to 

acknowledge and evaluate the benefits and limitations of any methodology used and the details 

of how it got there.  

 

2.1.1 Gut Microbiome with Culture-Based and Culture-Free Methods  

 

This study used culture with matrix-assisted laser desorption-ionization time of flight mass 

spectrometry (MALDI-TOF MS or MALDI-TOF) and 16S rRNA gene amplicon sequencing (16S 

rRNA) for bacterial identification in participant faecal matter. Previous ME/CFS studies have 

used these methods, but both have not been applied to the same participant cohort within the 

same study (Du Preez et al., 2018). These methods were chosen to have a culture and 

molecular-based complementary approach to characterising the gut microbiota. They were also 

selected given supervision, laboratory facilities, and resources available at the time of 

commencing the study. The same laboratory that supported the culture MALDI-TOF gut 

microbiology work in previous ME/CFS studies was used for the work presented in this thesis 

(Armstrong et al., 2017; Sheedy et al., 2009; Wallis et al., 2016, 2018). I used a similar protocol 

for my experiments with some modifications. Instead of the glucose-saline buffer that was used 

in the previous studies to prepare the faecal samples for culture, I opted for a standard 

phosphate-buffered saline (PBS) diluent medium. Given the interest in enumerating faecal 

bacteria from samples and comparing the differences in the microbial abundance between a 

ME/CFS and non-ME/CFS cohort, it was not apparent to me why having glucose, a nutrient and 

energy source, in the dilution medium would be a suitable choice for this work. Glucose is the 
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classical carbon source that is used to investigate the transport, metabolism, and regulation of 

nutrients in bacteria (Jahreis et al., 2008). While these studies, including my own, also have an 

interest in the gut microbes (bacteria) and their metabolites with host metabolism, enumerating 

bacteria as they are in a sample at “baseline” without giving them an energy source is a different 

topic from looking at microorganisms and their capacity and cellular physiology to utilise a 

nutrient such as glucose (Jahreis et al., 2008). Addressing these topics regarding gut microbes 

would require different experimental designs and apparatus. Instead, PBS offers a non-toxic, 

nutrient-free environment to suspend the faecal samples and transfer them to agar plates for 

culture, counting, and MALDI-TOF identification. The dilution series used in previous work was 

not a strict or straightforward preparation as would be expected for standard plate counting; I 

elected to use a 10-fold series that made calculations less onerous. Added to this, from 

observation of the previous experimental process of this technique, I used a motorised 

homogenising instrument to achieve a seamless mixture before completing the dilution series 

and spread plating the samples onto agar. These steps replaced the manual mixing of the 

faecal samples with the diluent using wooden sticks which did not always blend the sample well 

or make it an easy material to work with, and streak plating (Y. H. Hsieh et al., 2016; Santiago et 

al., 2014; Tarazona Carrillo et al., 2023). Aside from these details with the experimental design 

and details of the culture MALDI-TOF MS work, the platform does offer a reliable and relatively 

simple way of identifying microorganisms (Franco-Duarte et al., 2019; T. Y. Hou et al., 2019; 

Rahi & Vaishampayan, 2020; Rychert, 2019). Further, in terms of the gut microbiome, culture 

with MALDI-TOF MS offers insight, added knowledge of microbes, and an extension of the 

known gut repertoire where molecular and bioinformatic/computationally based approaches fall 

short (L. Chen et al., 2023; Lagier et al., 2018; Yada et al., 2023).  

 

Traditionally, bacteria have been identified and characterised by microbiological methods based 

on morphological and biochemical attributes of the isolates which initially relied on culture 

(Franco-Duarte et al., 2019). The utility of MALDI-TOF has presented laboratories with a tool to 

reduce its reliance on, and in some cases, an attractive and favourable replacement of 

traditional methods for identifying microorganisms following culture (Franco-Duarte et al., 2019; 

A. Gupta et al., 2023; T. Y. Hou et al., 2019; Rychert, 2019; Singhal et al., 2015). Its capability 

has allowed for a much more accurate and specific, faster, and cost-effective identification of 

microbes from cultivated specimens and in some cases, directly from medical specimens with 

minimal sample preparation needs (this is more common in routine monitoring clinical 

microbiology laboratory settings) (Elbehiry et al., 2022; T. Y. Hou et al., 2019; Rahi & 
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Vaishampayan, 2020; Rychert, 2019). MALDI-TOF MS is an analytical technique in which 

particles are ionised, separated according to their mass-to-charge ratio, and measured by 

determining the time it takes for the ions to travel to a detector at the end of a time-of-flight tube. 

The use of MALDI-TOF has allowed for the rebirth and renewed interest in culture techniques in 

microbiology, hence the term “culturomics” (Lagier et al., 2018; Yadav et al., 2023). Generally, 

culturomics is a high-throughput approach that implements MALDI-TOF in its workflow and 

offers a window to improve and optimise the identification and study of microbes that were 

previously considered challenging to examine, unculturable with traditional culturing 

methodologies or remain uncultured (Lagier et al., 2018; Yada et al., 2023). The MALDI-TOF 

platform can identify gram-positive, gram-negative, aerobic, and anaerobic bacteria as well as 

mycobacteria, yeast, and moulds, typically at the genus and species level (T. Y. Hou et al., 

2019; Rychert, 2019). Aside from the features that are not in the MALDI-TOF reference 

database that enable microbe identifications to be made, the platform does offer an 

advantageous opportunity to characterise microbes that are closely related to each other at the 

genus and species level (Elbehiry et al., 2022; T. Y. Hou et al., 2019; Rychert, 2019; Topić 

Popović et al., 2023). The resolution and accuracy of microbe identification at the species level 

are typically as good or better than traditional or molecular methods for microorganism 

identification (Elbehiry et al., 2022; Lagier et al., 2018; Rychert, 2019). While molecular-based 

techniques have provided record insights into bacterial identification and typing, there is still a 

valuable place for MALDI-TOF culture-based techniques in gut microbiota investigations 

(Franco-Duarte et al., 2019; Lagier et al., 2018).   

 

In the context of profiling the “overall” gut microbiota, using culture with MALDI-TOF MS is still a 

workload-intensive and time-consuming process given the need for culture on several types of 

agar media and the sheer number of microbes which makes it difficult to study various isolates 

on an agar plate (Armstrong et al., 2017; L. Chen et al., 2023; Franco-Duarte et al., 2019; 

Jandhyala et al., 2015; Lagier et al., 2018; Sheedy et al., 2009; Wallis et al., 2016, 2018). 

Isolation, identification, and enumeration of the vast majority of gastrointestinal microorganisms 

using culture-based techniques is not only an arduous and time-consuming process, but it is 

also insensitive and offers less comprehensive coverage of features by comparison to 16S 

rRNA-based sequencing (Jandhyala et al., 2015). For this reason, molecular-based, culture-

independent techniques have been preferred and used in most gut microbiome studies, not to 

mention the unprecedented insights into bacterial identification and typing that the “molecular 

biology age” of sequencing has provided (Franco-Duarte et al., 2019; Jandhyala et al., 2015; 
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Lau et al., 2016). Although culture and MALDI-TOF by comparison to culture-free molecular 

approaches are not as frequently used to study the “entire” gut microbiota, the benefits that 

culture coupled with MALDI-TOF MS does provide is something that cannot be overlooked (L. 

Chen et al., 2023; S. Gupta et al., 2019; Jandhyala et al., 2015; Lagier et al., 2018; Yada et al., 

2023). 16S amplicon sequencing offers many advantages and is a mainstay of sequence-based 

bacterial analysis; however, the platform does struggle to provide taxonomic resolution at the 

species and strain level because of short read lengths (Johnson et al., 2019; Lagier et al., 2018; 

Peterson et al., 2021). Further, culture-based approaches also allow for the determination of 

viable microbes in a community whereas the majority of standard molecular methods do not, or 

cannot, distinguish between DNA material obtained from alive or dead cells (Bellali et al., 2021; 

Emerson et al., 2017; Kallastu et al., 2023; Lagier et al., 2018; Lau et al., 2016). In some cases, 

the culture-based approach may also discover less abundant bacteria that may be missed by 

depth bias or insufficient sequencing depth in culture-independent studies (Lagier et al., 2018; 

Lau et al., 2016; Yadav et al., 2023). Outside of characterising the overall gut microbiome, 

culture with MALDI-TOF can be used to study the gut and model various conditions in vivo 

(Yadav et al., 2023). Some argue that a dead or alive microbe does not matter, but information 

regarding microbe viability may provide more information to capture the diversity of microbes, 

and their functional capacity and metabolic state in an environment (Bellali et al., 2021; 

Emerson et al., 2017; Wutkowska et al., 2019). Lastly, information at the species and strain 

level of resolution deepens the understanding and interpretation of the microbes which may 

exhibit high variability in their activity and interactions with the host despite being similar in 

genomic content, for example, pathogenicity, antibiotic resistance, clinic outcomes and 

therapeutic efficacy, response to environmental stress (B. D. Anderson & Bisanz, 2023; Carrow 

et al., 2020; V. K. Gupta et al., 2020; Johnson et al., 2019; P. Liu et al., 2022; Park et al., 2022; 

Peterson et al., 2021; Shetty et al., 2022; W. Xu et al., 2023; J. Yang et al., 2020).  

 

Since its advent, culture-independent, molecular-based next-generation sequencing (NGS) 

approaches have revolutionised the sciences and study of complex microbial communities, 

including that of the gastrointestinal system. NGS has enabled major advanced investigations 

and discoveries of the gut microbiome in many diseases with exceptional resolution and 

throughput (Jovel et al., 2016; Satam et al., 2023; Tang et al., 2020). High throughput next-

generation sequencing methods have compared large cohorts in record time, allowed for the 

parallel sequencing of millions of DNA fragments (multiplexing), improved sensitivity compared 

to culture, detected uncultured bacteria, facilitated sophisticated analyses, and deeper and 
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wider scope of understanding the microbiome from its taxonomy, genomic structure, function, 

and dynamics (Jovel et al., 2016; Lagier et al., 2018; Satam et al., 2023). In recent times, an 

overall improved cost-effectiveness supported by the advances in scalability, robotics, liquid 

handling, sample collection and processing, data analysis, bioinformatics, and IT infrastructure 

have made, and will continue to make, NGS workflows more accessible and widespread in 

several fields and studies including agricultural, environmental, medical research, and routine 

clinical practice (Satam et al., 2023). Metataxonomics (16S ribosomal RNA, 16S rRNA gene 

amplicon sequencing) and whole shotgun metagenomic sequencing (metagenomics) are the 

two main NGS approaches using extracted DNA samples for analysing the microbiome (Durazzi 

et al., 2021; Jovel et al., 2016). NGS of the 16S rRNA gene is one of the most widely used 

culture-independent applications to investigate the microbiota at any given body site in research 

(S. Gupta et al., 2019; Peterson et al., 2021). While the NGS downstream data analytical area 

has become more accessible and easier to navigate, data generated by both 16S rRNA and 

metagenomics still requires extensive computer hardware resources and computational 

analytical methods (bioinformatic sequence processing and data analyses) compared to culture 

methodologies which can be an initial barrier and steep learning curve for those unfamiliar with 

the workflow requirements and tools available (Jovel et al., 2016; Y. Kim, 2023; Larson et al., 

2023; Szopinska-Tokov et al., 2023). However, all in all, the wide availability of several options 

from free up-to-date open-source, and commercially based sequencing and bioinformatic 

service providers for all microbiome needs makes the future and application of NGS in research 

developments a promising and well-supported one.  

 

The choice between metataxonomics (16S) and metagenomics can be made on the comparison 

of costs and needs; both provide a wealth of microbiome data and information (Jovel et al., 

2016; Usyk et al., 2023). 16S rRNA amplicon gene sequencing generally involves PCR to target 

and amplify portions of the hypervariable regions (V1-V9) of the bacterial 16S rRNA gene, 

followed by sequencing and comparison to known databases for identification (Kameoka et al., 

2021). Profiling microbial communities using 16S sequencing is a relatively straightforward and 

cost-effective method to profile the taxonomic composition of a microbial community by 

comparison to metagenomics (Peterson et al., 2021; Usyk et al., 2023). 16S sequencing does 

come with the caveat of sequence artifacts from PCR errors, and primer bias where the 

selection of primers targeting regions of the 16S gene can influence the resulting microbial 

composition and taxonomic representation of the microbiome (Abellan-Schneyder et al., 2021; 

Peterson et al., 2021; Usyk et al., 2023). Another major limitation of 16S sequencing is that the 
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shorter length of the amplicon sequences usually limits the taxonomic classification of the 

microbial community to the genus level (J. Yang et al., 2020). Shotgun metagenomics 

indiscriminately sequences all of the DNA material in a sample, and therefore typically requires 

more sequenced reads per sample to find unique taxonomic identifiers (Peterson et al., 2021). 

This potentially means that non-microbial reads could interfere with and eclipse the microbiome 

outcome; this is particularly relevant in human microbiome investigations where samples such 

as faeces may contain human DNA (Tomofuji et al., 2023). Metagenomics can reveal more 

about the gut microbiota at a deeper and wider level with improved detection of low abundant 

taxa and a strain-level of identification (Durazzi et al., 2021; Jovel et al., 2016; Peterson et al., 

2021). Metagenomic sequencing can also simultaneously study archaea, viruses, virophages, 

and eukaryotes (Jovel et al., 2016). Although shotgun sequencing information yields more 

information on many genes rather than only one, the need for increased sequencing depth 

carries a higher cost (Peterson et al., 2021; Usyk et al., 2023). Overall, when weighing up 

project-specific circumstances, costs, and benefits, utilisation of the 16S rRNA gene offers a 

suitable and comprehensive method to profile the gut microbiome despite its limitations (Durazzi 

et al., 2021; Jovel et al., 2016; Peterson et al., 2021; Usyk et al., 2023). Both molecular-based 

sequencing methods have been adopted in ME/CFS microbiome research, but this study opted 

for 16S sequencing. This came at the trade-off of collecting data at deeper taxonomic resolution 

and about the functional capacity of the microbe which the 16S sequencing information does not 

provide but shotgun metagenomics does. However, computational tools, such as PICRUSt2, 

MicFunPred, Piphillin, and Tax4Fun2 are available to leverage the 16S data to predict and 

estimate the functional capacity of the microbe metagenome (Douglas et al., 2020; Mongad et 

al., 2021; Wemheuer et al., 2020). PICRUSt2 was applied to the 16S data in this study as the 

pipeline was expected to perform well for gut microbiome data and also because other studies 

and available computational support (Douglas et al., 2020; M. H. Kim et al., 2020; Vänni et al., 

2021). Analysing and visualising PICRUSt2 outputs has also been a challenging task; however, 

previously STAMP software and more recently, ggpicrust2 a R package, have been developed 

to support researchers in getting the most out of their 16S rRNA data (Parks et al., 2014; C. 

Yang et al., 2023).  
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2.1.2 Host Metabolomics with LCMS and NMR 

 

LCMS and NMR were used as independent but complementary platforms in a targeted 

metabolomics workflow to assay polar metabolites typically part of primary metabolism from 

faecal, urine, and blood plasma samples. LCMS and NMR have been used in previous ME/CFS 

metabolomic studies; however, both platforms have also not been applied to the same 

participant cohort and samples within the same study (Huth et al., 2020). Metabolomics seeks to 

comprehensively and systematically identify and measure all metabolites (small, low-molecular-

weight molecules less than 1500 Da) in a given organism or biological sample (Clish, 2015; Qiu 

et al., 2023). The field has steadily grown over the past few decades and shows no signs of 

diminishing (Edison et al., 2021). The most common analytical platforms for metabolomics are 

nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry 

(GCMS), and liquid chromatography-mass spectrometry (LCMS) (Edison et al., 2021; X. Liu & 

Locasale, 2017; Wishart et al., 2022). At present, no single method or instrument can fulfil the 

mission of capturing and covering the entire metabolome (Qiu et al., 2023; Roca et al., 2021). 

An important part (or the true extent) of the human metabolome remains uncovered although 

continued improvements in analytical chemistry and bioinformatics have considerably increased 

the number of measurable metabolites (Roca et al., 2021; Wishart et al., 2018).  

 

While LCMS methods are becoming increasingly popular, accounting for more than 70% of 

published metabolomics studies to date, there are considerable benefits and advantages to 

NMR-based methods for metabolomic studies (Edison et al., 2021; Nagana Gowda & Raftery, 

2023; Wishart et al., 2022). Recent data shows that a record number of NMR-based 

metabolomic publications have been published in 2021; NMR continues to grow and offer a lot 

to the research community (Nagana Gowda & Raftery, 2023; Wishart et al., 2022). It is now 

widely recognised that using more than one platform expands the metabolomic data output, 

broadens coverage and the scope of understanding the metabolome in any given context, 

system, or sample (Bustamam et al., 2021; Gathungu et al., 2020; González-Domínguez et al., 

2017; H. Lau et al., 2022; Letertre et al., 2020; Moosmang et al., 2019; Nkobole & Prinsloo, 

2021; Qiu et al., 2023; Roca et al., 2021). Metabolomics can be categorised into targeted and 

untargeted approaches. Generally, untargeted metabolomics reveals a broad view of previously 

known and unknown metabolic information and conversely, targeted highlights analysing a set 

of metabolites which tends to be more defined, hypothesis-driven, sensitive, and reproducible 

relative to an untargeted approach (Letertre et al., 2020; Qiu et al., 2023; L. D. Roberts et al., 
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2012). Further, different biospecimen types provide different but complementary, metabolic 

information, and insights about various processes occurring and phenotypes presenting (Smith 

et al., 2020). In the biomedical sciences, a variety of sample types are of interest because they 

each provide useful information about the organs or tissues that produce them. A summary of 

the advantages and disadvantages of LCMS and NMR, and different biospecimen types are 

provided below.  

 

Advantages of LCMS:  

• Initial set-up costs and ongoing instrument maintenance can be more attractive than 

NMR 

• Generally, MS has had more success than NMR in the clinical chemistry laboratory 

because of its overall lower costs, its smaller instrumental footprint, and its ability to 

measure low-concentration metabolites that are more frequently used in diagnostic 

assays 

• Although destructive and the sample cannot be recovered after analysis, only a small 

amount of sample material is required 

• High sensitivity where low abundant metabolites and nanomolar concentrations can be 

detected 

• Generally, LCMS has higher coverage and number of detectable metabolites in a 

sample  

 

Disadvantages of LCMS:  

• Higher cost per sample as some of the required standards, consumables, and 

equipment parts can be more expensive; however, advancements in analytical 

technologies have made overheads more cost-effective and reduced the environmental 

impact of solvent consumption  

• Sample separation and preparation needs are generally more demanding to enhance 

detection or analysis; although some NMR workflows can also be just as demanding to 

prepare if there are many samples without automation assistance  

• Chromatographic and ionsiation techniques to separate and prepare compounds for 

detection can be cumbersome and time-consuming when run on the instrument  

• The intensity of the MS line is often not correlated with metabolite concentrations as the 

ionisation efficiency is also a determining factor  

• Quantitation is more difficult to achieve with the use of labelled internal standards  
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• Destructive to sample and sample cannot be recovered after analysis which can be an 

issue if samples are rare, difficult to obtain, need to be measured repeatedly, or if an in 

vivo, metabolic flux or metabolic imaging study design is required  

• LCMS is limited to detecting compounds that readily ionise, which is further diminished 

by ion suppression common to complex, heterogenous mixtures (biological samples)  

• Reproducibility is a challenge in LCMS in comparison to NMR although the development 

of newer approaches and technologies has contributed to improvements in reproducible 

data  

• Inter- and intra-variability in LCMS comes from its technical limitations – batch effects, 

different instruments even if the same model, signal drifts, performance of the same 

instrument over time  

• Harmonisation of disparate datasets, protocols pre- and post-instrument analysis is more 

challenging to achieve in and between laboratories in comparison to NMR  

 

Advantages of NMR:  

• Lower cost per sample not including the personnel, equipment, and maintenance, but 

consumables required for sample preparation are often less expensive 

• Advances in magnet shielding, electronics, and cryo-technology are making NMR 

instruments smaller, cheaper, easier to maintain, and more compatible with a wider 

range of environments beyond large university departments 

• Non-destructive and non-invasive, samples remain intact after analysis and can be 

recovered, stored, and used for reanalysis using NMR or at a later time with other 

methods such as MS 

• NMR does not involve harsh sample treatment before analysis where metabolites can be 

fragile or sensitive to ionisation voltage used by MS analysis; sample preparation is 

relatively simple  

• Unbiased by comparison to LCMS as no chromatographic separation of compounds 

before ionisation and detection is required  

• Easily quantifiable so both relative and absolute metabolite concentrations can be 

obtained – NMR is inherently quantitative as the signal intensity is directly proportional to 

the metabolite concentrations and number of nuclei in the molecule  

• Requires little to no sample preparation and does not need chemical derivatisation 

• The gold standard for the identification of novel compounds 
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• NMR is highly amenable to metabolic flux and metabolic imaging studies making it ideal 

for investigating living cells, tissues, and organs  

• Easily automatable and exceptionally reproducible, making automated high-throughput 

metabolomics studies much more feasible and reliable with NMR compared to LCMS or 

GCMS 

• Amenable to detecting and characterising compounds that can be challenging for LCMS, 

such as sugars, organic acids, alcohols, polyols, and other highly polar compounds 

• The possibility of detecting non-ionic compounds, such as sugars and alcohols, without 

disrupting their structure 

• Reproducibility among different instruments, and laboratories, and the robustness of 

NMR measurements means that the development of standard procedures has become 

progressively easier, especially for clinical application 

 

Disadvantages of NMR:  

• Relative lower signal-to-noise ratio, compared to other analytical techniques – 

microprobes and cryoprobes are some strategies being used to enhance sensitivity in 

NMR 

• Lower sensitivity by comparison to mass spectrometry  

• Initial set-up costs can be greater and sometimes prohibitive for equipment and ongoing 

maintenance is also expensive; larger space for the instrumentation and non-vibrational 

floors and isolation from magnetic and radio frequency are required  

• Instrument cost often scales exponentially with the field strength of the NMR magnet – 

the “sweet spot” for metabolomics to have field strength, resolution, and cost-

effectiveness is the 600 MHz spectrometer 

• Unstable helium supplies and/or high delivery costs where self-recycling systems can be 

advantageous 

• 1H NMR spectra for metabolomics require consistent solvent suppression and flat 

baseline; many biological matrices are water-based, and it is essential that pulse 

sequences suppress the solvent signal to allow for better detection of lower abundant 

compounds and increased sensitivity 

• All 1H NMR spectra in metabolomics suffer from considerable signal overlap since 

sample preparation is minimal; each metabolite often leads to several signals in the 

spectrum, and many metabolites can be detected which makes the accurate and 

efficient deconvolution of spectra onerous 
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• Many NMR applications have traditionally been processed manually and data analysis is 

inherent to data acquisition; however, more computational tools and resources are 

becoming available to support NMR-based metabolomics in a more user-friendly way – 

even though I had to manually process and deconvolve all my spectra, this point led me 

to seek advice from the Wishart lab group. I sought their advice so that I could get the 

most information and metabolites assigned out of my already acquired NMR spectra, 

and where it was possible to implement, improve, and build from the existing NMR 

metabolomic procedures used by my laboratory group that require review and updating 

with what is now currently available.   

 

(Cui et al., 2018; A. H. Emwas et al., 2015, 2019; A. H. M. Emwas, 2015; Ghosh et al., 2021; 

Hajjar et al., 2023; Moco, 2022; Nagana Gowda & Raftery, 2021, 2023; Plumb et al., 2023; 

Wishart et al., 2022) 

 

Advantages of Faeces:  

• Non-invasive sample collection that can be repeated relatively easily if required (this 

depends on the individual and sometimes faecal samples are not that easy to collect) 

• A reflection of the metabolic interplay between the host and its gut microbiome 

• Directly associated with the gut and may reflect changes in metabolism very early 

through its transit in the gut  

• Bacterial biomass with a complex composition that can provide rich information about 

the gut microbiome and host metabolism  

 

Disadvantages of Faeces:  

• Considerations for sample collection (anaerobic and cool temperatures) can be 

logistically difficult as aerobic conditions and room temperature might quickly change the 

faecal metabolome  

• Water content bias requires dry weight measurements, lyophilisation, or freeze drying of 

samples; each of these normalisation approaches also has its pros and cons for the 

detection of metabolites  

• Homogenisation is necessary; too much can perturb the faecal biostructure, and too little 

yields an inadequate representation of the sample  
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• The great variability in material content and characteristics makes it difficult to 

standardise the collection process, sample preparation, and analysis including the 

analytical platform  

• The sample material is complicated to study and more complicated in the wet laboratory 

to handle since its composition is heterogeneous, multi-component, rich in 

macromolecules, particles of undigested food, and bacterial biomass of living and dead 

bacteria  

• Apart from the perceived grossness with the sample, variability from an individual with 

feeding patterns, bowel activity, and other “gut health” factors that can make passing 

and collecting a faecal sample an unpredictable and difficult experience 

 

Advantages of Urine:  

• Non-invasive sample collection that can be repeated relatively easily if required 

• Provides a historical overview of the global metabolic events 

• Profiles provide an overall measure of the metabolic phenotype including diet and gut 

microbiota metabolic activity; capture a wide range of metabolites and metabolic 

processes occurring throughout the body  

• Changes in urine metabolite concentrations can be greater than the changes seen in 

protein levels  

 

Disadvantages of Urine:   

• Large variability depending on the collection time caused by the circadian rhythm 

regulating the energy metabolism and gut microbiome metabolism, also due to a 

difference in hydration status, physical activity, and feeding state  

• 24-hour sampling is preferred to eliminate the day-time variability in metabolic profiles; 

however, this is not always feasible or practical  

• Unlike blood, where metabolite concentration is tightly maintained, urine concentration 

can vary drastically from sample to sample requiring appropriate pre-analytical 

normalisation of urinary metabolomic data  

• A complex sample matrix including a large number of salts can lead to challenges in 

separating and identifying metabolites (shifts in retention times, matrix effects, many 

overlapping signals or features with urine being a biological waste material, and 

collection of biological by-products) 
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Advantages of Blood Plasma:  

• Most metabolites in the blood reflect endogenous metabolites; hence, the joint 

metabolomics analysis of blood and urine could provide complementary data reflecting 

the state of the whole system at a defined time point  

• Blood metabolic profiles are dynamic and vary continuously in response to changes in 

gene expression or changes induced by exogenous metabolites such as those provided 

by nutrients or drugs 

• Provides the opportunity to study disruptions or impairments in homeostatic function   

• There is better reproducibility in plasma due to the absence of the blood-clotting step 

when separating the two main components (plasma and serum) of whole blood  

 

Disadvantages of Blood Plasma:  

• Slightly more invasive sample collection than urine and faeces 

• The choice of collection tube for plasma is critical depending on the analytical platform 

used  

• The risk of highly dynamic and pronounced changes of the metabolome in the sample 

tube after blood drawing  

 

(Bouatra et al., 2013; A. H. M. Emwas, 2015; Erben et al., 2021; Karu et al., 2018; Matysik et 

al., 2016; Smith et al., 2020; Tang et al., 2020; Yin et al., 2015; Zhgun & Ilyina, 2020) 
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2.2 Recruitment and Participant Selection Criteria 

 

Participants who were at least 18 years old were recruited for the ME/CFS and control groups 

between March 2019 and November 2019. The project was reviewed and approved by the St 

Vincent’s Hospital (Melbourne) Human Research Ethics Committee (Reference 

HREC/18/SVHM127). All participants were invited to join the study through word-of-mouth 

advertising, and assistance from the CFS Discovery Clinic, in Melbourne, Australia. Figure 2.2.1 

outlines the selection criteria that were used. A power analysis calculation was initially 

conducted using the power analysis module in Statistica (Version 12.0) to determine a target 

sample size. At least 35 participants in each group (ME/CFS, fibromyalgia, and control) were 

required to achieve a power of 80% with a 0.01 significance level while detecting a mean 

difference of 12.26 with a standard deviation of 4.6. The parameters for the power calculation 

were based on raw data from McGregor et al. (2016) reflecting changes in acetate and the 

serum metabolome. Acetate is a short-chain fatty acid metabolite that was found to be involved 

in widespread pain development and ME/CFS (McGregor et al., 2016). The target sample size 

also considered other small-scale ME/CFS, and fibromyalgia (FM) research projects published 

at the time, and the availability of project funding, time, and resources (Armstrong et al., 2017; 

Germain et al., 2018; Nagy-Szakal et al., 2017; Slim et al., 2015; Wallis et al., 2018). 

 

Due to practical and logistical factors, data and biological samples were collected across two 

parts. Part One and Part Two collected different biological sample types. Figure 2.2.2 provides 

an overview of the steps undertaken to collect participant data and samples that were used 

across the various analyses and experiments that appear in this thesis. Part One and Part Two 

formed the two overall ME/CFS and Control cohorts of interest; Comparison A in Table 2.2.1 

and Table 2.2.2 provides details of these cohorts. Herein, a total of 40 ME/CFS and 43 Control 

participants represented Part One, and 28 ME/CFS and 28 Control participants represented 

Part Two. Efforts were made to closely age- and sex-match the control and patient group 

volunteers; however, the closure of the CFS Discovery Clinic prioritised the recruitment of those 

who could be involved. All the ME/CFS patients conformed to the ME/CFS Canadian 

Consensus (diagnostic) Criteria (Carruthers et al., 2003). To ensure that an adequate number of 

participants were recruited in the available timeframe, some of the control group volunteers 

were household members and/or relatives of someone diagnosed with ME/CFS and/or FM.  
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Figure 2.2.1 Selection criteria for participants to be recruited and included in the study  

 

All participants (n = 89) were required to complete Part One involving a faecal and urine sample 

collection, and completion of the questionnaire from a time point (Section 2.4.1). A subset of this 

cohort was formed from those who could complete Part Two (n = 60 of the 89). Part Two was 

optional depending on participant attendance at the designated collection room and it involved 

the collection of a blood sample and a second urine sample (Section 2.4.2). Participants were 

excluded from Part One (n = 3) and Part Two (n = 3) if they had incomplete questionnaires or 

experimental data. During the initial analyses of the questionnaire responses, control group 

participants were also excluded from Part One (n = 3) and Part Two (n = 1) if they had recorded 

that they had a FM or IBS diagnosis but were otherwise considered to be non-ME/CFS 

diagnosed. FM and IBS are ME/CFS comorbidities of interest in this study; however, there were 

not enough participant numbers to include those who had FM and/or IBS but not ME/CFS. 

Section 2.3 provides details on how the questionnaire metadata was used to select and form the 

FM and IBS subgroups for Parts One and Two (Comparison B, C, and D in Table 2.2.1 and 

Table 2.2.2) after the exclusions were made.  

We invite you to participate if you are at least 18 years of age and meet at least one of the 

following criteria: 

• Are currently experiencing symptoms or have unresolved symptoms of ME/CFS and/or FM 

OR 

• Are currently experiencing symptoms or have unresolved symptoms of chronic fatigue 

and/or pain 

 

Alternatively, we invite you to participate as a healthy volunteer if you are at least 18 years 

of age and meet the following criteria: 

• Do not have ME/CFS and/or FM 

• Have not ever been given a diagnosis or suspected of having ME/CFS and/or FM 

• Have not experienced symptoms of ME/CFS and/or FM; or chronic fatigue and/or pain in 

the last 6 months 

• Have not been affected by severe, unexplained (including undiagnosed) chronic fatigue 

and/or pain for at least 6 months 

• Are generally healthy 
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Figure 2.2.2 Overview of the steps undertaken with participant recruitment, data, and biological 

sample collection. Created with BioRender.com.   
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Table 2.2.1 Part One Age and Sex Baseline Characteristics  

 

 

 

 

 

 

 

 

 

ME/CFS Control ME/CFS with FM
ME/CFS without 

FM

Sex Age n = 40 n = 43 P-value n = 19 n = 21 P-value

Mean ± SD 43 ± 13 43 ± 17 45 ± 12 41 ± 13

Median (Range) 41 (21-75) 37 (21-80) 44 (21-75) 39 (22-69)

n = 33 n = 20 P-value n = 17 n = 16 P-value

Mean ± SD 44 ± 13 43 ± 18 46 ± 13 41 ± 14

Median (Range) 41 (21-75) 34.5 (23-80) 44 (21-75) 39 (22-69)

ME/CFS with IBS
ME/CFS without 

IBS

ME/CFS with IBS 

age-matched

ME/CFS without 

IBS age-matched

Sex Age n = 20 n = 20 P-value n = 14 n = 14 P-value

Mean ± SD 49 ± 12 37 ± 10 44 ± 6 40 ± 7

Median (Range) 45 (29-75) 36.5 (21-58) 44 (33-55) 39 (32-53)

n = 17 n = 16 P-value

Mean ± SD 49 ± 13 38 ± 11

Median (Range) 46 (29-75) 37.5 (21-58)

Part 

One

Male and Female 0.5115 0.1469

Female-only 0.4683 0.2005

0.0761

INTENTIONALLY BLANK Not enough participant 

numbers to age-match with only femalesFemale-only 0.0182

Comparison A Comparison B

Comparison C Comparison D

Part 

One

Male and Female 0.0028
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Table 2.2.2 Part Two Age and Sex Baseline Characteristics 

ME/CFS Control ME/CFS with FM
ME/CFS without 

FM

Sex Age n = 28 n = 28 P-value n = 13 n = 15 P-value

Mean ± SD 43 ± 13 42 ± 19 44 ± 14 42 ± 12

Median (Range) 40.5 (21-75) 34 (21-80) 42 (21-75) 40 (26-69)

n = 22 n = 17 P-value n = 12 n = 10 P-value

Mean ± SD 44 ± 14 44 ± 19 45 ± 14 43 ± 13

Median (Range) 41 (21-75) 34 (23-80) 43 (21-75) 39.5 (26-69)

ME/CFS with IBS
ME/CFS without 

IBS

ME/CFS with IBS 

age-matched

ME/CFS without 

IBS age-matched

Sex Age n = 14 n = 14 P-value n = 10 n = 10 P-value

Mean ± SD 49 ± 13 36 ± 9 43 ± 6 41 ± 7

Median (Range) 44 (33-75) 35.5 (21-53) 41.5 (33-54) 39.5 (32-53)

n = 12 n = 10 P-value

Mean ± SD 49 ± 14 37 ± 11

Median (Range) 43 (33-75) 36.5 (21-53)

Part 

Two

Male and Female 0.3212 0.5186

Female 0.5144 0.5975

0.4046

INTENTIONALLY BLANK Not enough participant 

numbers to age-match with only femalesFemale 0.0477

Comparison A Comparison B

Comparison C Comparison D

Part 

Two

Male and Female 0.0067
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2.3 Participant Characteristics and Subgroups 

 

The participants completed the questionnaires with Part One (Section 2.4.1). The questions 

collected a variety of participant information which provided insight into their medical history, 

demographics, symptomology, and other diagnoses/comorbidities (Appendix 1 provides a copy 

of the questionnaires used). The questionnaires were paper-based, and raw responses were 

manually collated, tabulated, and adjusted to correct for any scaling differences in Microsoft 

Excel. Analyses of the questionnaire responses in R Studio determined subgroups of interest 

based on sex, age, and other points of interest (Section 2.3.1). Significance for all tests used in 

Section 2.3.1 was defined as p-value < 0.05. These metadata parameters and outcomes 

informed the decision for this thesis to focus on the four comparative groups in Part One and 

Part Two using male and female participants (Appendix 2 shows the metadata used for this 

thesis). These comparisons are A) ME/CFS overall versus Control, B) ME/CFS with FM versus 

ME/CFS without FM (ME/CFS +/- FM), C) ME/CFS with IBS versus ME/CFS without IBS 

(ME/CFS +/- IBS), and D) age-matched ME/CFS with IBS versus ME/CFS without IBS (ME/CFS 

+/- IBS**). Table 2.3.1 and Table 2.3.2 summarises the age and sex baseline characteristics 

with the number of participants used for these comparisons in Part One and Part Two, 

respectively. 

 

2.3.1 Analyses of Questionnaire Metadata 

 

It was anticipated that there would be a higher proportion of female participants consistent with 

community and clinical prevalence rates in ME/CFS and FM patients (Buchwald & Garrity, 1994; 

Carruthers et al., 2003; Heidari et al., 2017). In Part One, there were 33 female and 7 male 

ME/CFS participants, and 20 female and 23 male Control participants. In Part Two, there were 

22 female and 6 male ME/CFS participants, and 17 female and 11 male Control participants. 

There was a significant difference between the proportion of females and males in the ME/CFS 

overall and Control group cohorts in Part One; two-tailed Fisher’s exact test, p = 0.0012. 

However, there was no significant difference between the sex, and ME/CFS overall or Control 

group variables in Part Two; two-tailed Fisher’s exact test, p = 0.2448. These outcomes 

indicated that analyses of experimental outcomes would need to take into consideration the 

potential influence of the sex differences. In this thesis, Comparisons A to D in Part One and 

Part Two used both the male and female participants given the already limited sample size. This 



 

CHAPTER TWO: Methodology | 69 

study acknowledges the sex disparity, however, there was a lack of power to adequately test for 

sex disparities owing to the difficulty in obtaining participant, especially male, numbers. 

The metadata regarding diagnostic conditions was used to select and assign the subgroups of 

interest for further data investigations with the experimental data outcomes. The participants 

were asked whether they had been diagnosed to have that condition with “yes” or “no”. Two-

tailed Fisher’s exact tests were used to determine whether there was a significant association 

between the ME/CFS or Control groups, and the listed diagnostic condition. Table 2.3.1 (Part 

One) and Table 2.3.2 (Part Two) displays the percentages of the ME/CFS and Control group 

participants that had responded “yes” to having that diagnostic condition, and the p-value 

determining the statistical association between the two variables. A statistically significant 

difference was identified for a number of these diagnostic conditions (Table 2.3.1 and Table 

2.3.2 p-value < 0.0001 highlighted in red, and p-value < 0.05 highlighted in green). The p-value 

outcomes for Fisher’s exact tests confirmed that this thesis had the basis to delve further into 

the interest in investigating the gut microbiology, host metabolomics, and subgroupings of the 

other diagnostic conditions/comorbidities in ME/CFS. The total numbers from these responses 

were also used to assign the FM and IBS subgroups within the ME/CFS cohorts (Comparisons 

B and C in Table 2.3.1 and Table 2.3.2) in addition to Comparison A which compares the 

ME/CFS overall and Control group. 

 

The investigation of the overlapping and comorbid conditions in ME/CFS required a stepwise 

methodical approach. This thesis focuses on fibromyalgia (FM) and irritable bowel syndrome 

(IBS) as these comorbidities and their symptoms are frequently discussed in the context of 

ME/CFS (Aaron et al., 2000, 2001; Abbi & Natelson, 2013; Martín et al., 2023; Nacul et al., 

2020; Natelson, 2019; Natelson et al., 2019; Petersen et al., 2020). This was also a factor that 

was taken into consideration when choosing to assess these comorbidities. Table 2.2.1 (Part 

One) and Table 2.2.2 (Part Two) shows the age and sex baseline characteristics of the four 

comparisons that are central to this thesis. Two-tailed Mann-Whitney U tests were conducted to 

determine whether there was a difference due to age between the groups of Comparisons A, B, 

and C in Part One and Part Two. The test results indicated for Part One and Two, that there 

was no significant difference in age between ME/CFS and Control groups (Comparison A), and 

ME/CFS with FM and ME/CFS without FM groups (Comparison B); however, there was a 

statistically significant difference in age between the ME/CFS with IBS, and ME/CFS without 

IBS groups (Comparison C). This difference was determined with a p-value of 0.0028 (all), and 

0.0182 (female-only) in Part One, and 0.0067 (all), and 0.0477 (female-only) in Part Two. To 
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address the issue of age potentially being a confounding variable for Comparison C, 

Comparison D was formed (Bakken et al., 2014; Hornig et al., 2015; Kidd et al., 2016a). 

Comparison D in Part One and Two, comprises the ME/CFS with IBS and ME/CFS without IBS 

male and female participants that have been age-matched and selected. Based on the age Z-

scores of the overall ME/CFS group, those that had a value below or above 1.0 standard 

deviation away from the mean were removed. This study acknowledges the limitations of this 

approach due to the sample size of a small-scale project, however, this age-matched 

Comparison D grouping was an attempt to address the potential age-confounding variable in 

IBS. The participant numbers were re-totalled, and a two-tailed Mann-Whitney U test was 

conducted on the new grouping (Part One and Part Two, Comparison D). The test results 

indicated that there was no significant difference due to age for the matched ME/CFS with IBS 

and ME/CFS without IBS groups; p-values of 0.0761 and 0.4046 for Part One and Two, 

respectively. This age-match approach was only applied to the group with male and female (all) 

participants as there were not enough numbers for an age-matched, female-only participant 

subgrouping (Table 2.2.1 and Table 2.2.2).  
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Table 2.3.1 Part One Summary of Diagnostic Conditions  

Diagnostic Condition 

Part One 

All Participants (n = 83) Female-only Participants (n = 53) 

ME/CFS (n = 40) Control (n = 43) 

p-value † 

ME/CFS (n = 33) Control (n = 20) 

p-value † 

Percentage of 
YES responses 
from ME/CFS 

group 

Percentage of 
YES responses 

from Control 
group 

Percentage of 
YES responses 
from ME/CFS 

group 

Percentage of 
YES responses 

from Control 
group 

ME/CFS  100% 0% < 0.0001 100% 0% < 0.0001 

Postural orthostatic tachycardia syndrome 78% 0% < 0.0001 82% 0% < 0.0001 

Food intolerance/s 78% 14% < 0.0001 82% 25% < 0.0001 

Irritable bowel syndrome 50% 0% < 0.0001 52% 0% < 0.0001 

Fibrositis or fibromyalgia  48% 0% < 0.0001 52% 0% < 0.0001 

Trouble eating/drinking milk/dairy products 65% 12% < 0.0001 67% 25% 0.0047 

Tension headaches 40% 5% 0.0001 42% 5% 0.0040 

Anxiety or other mental disorder  43% 7% 0.0002 45% 10% 0.0137 

Sinus problems  40% 7% 0.0005 42% 5% 0.0040 

Dermatitis or any other skin problem  40% 7% 0.0005 39% 10% 0.0284 

Tinnitus or ringing in the ears 35% 5% 0.0006 39% 5% 0.0087 

Multiple chemical sensitivity  23% 0% 0.0008 21% 0% 0.0365 

Clinical depression 38% 7% 0.0010 42% 10% 0.0150 

Low blood pressure  28% 2% 0.0012 33% 5% 0.0197 

Food allergy/allergies 48% 14% 0.0016 48% 20% 0.0461 

Joint hyperflexibility/mobility 20% 0% 0.0020 24% 0% 0.0187 

Gastritis  20% 0% 0.0020 21% 0% 0.0365 

Glandular fever  43% 12% 0.0024 42% 5% 0.0040 

Trouble eating or drinking sugar 25% 2% 0.0028 27% 5% 0.0697 

Low blood sugar or hypoglycaemia  13% 0% 0.0227 15% 0% 0.1438 

Allergies  43% 19% 0.0302 45% 30% 0.3859 

Migraine with aura  20% 5% 0.0438 21% 0% 0.0365 

Migraine without aura  28% 9% 0.0452 33% 10% 0.0978 

Gall bladder problems 10% 0% 0.0497 9% 0% 0.2816 

Streptococcal throat 10% 0% 0.0497 6% 0% 0.5210 

Kidney infections 15% 2% 0.0520 18% 0% 0.0722 
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Physical/sexual/emotional abuse  15% 2% 0.0520 18% 0% 0.0722 

Urinary tract infection/cystitis 30% 12% 0.0561 36% 20% 0.2370 

Eye conditions with or without vision loss 18% 5% 0.0815 21% 5% 0.2336 

Yeast disease or candidiasis  18% 5% 0.0815 18% 10% 0.6947 

Cluster headaches 13% 2% 0.1013 15% 0% 0.1438 

Stomach or gastric ulcers  8% 0% 0.1075 6% 0% 0.5210 

Pneumonia 8% 0% 0.1075 3% 0% 1.0000 

Thyroid problems  20% 7% 0.1089 21% 10% 0.4556 

Cold sores, herpes labialis 30% 14% 0.1098 27% 15% 0.4996 

Bronchitis  23% 9% 0.1335 24% 0% 0.0187 

Fractured bone  23% 9% 0.1335 24% 10% 0.2863 

Autoimmune disease  15% 5% 0.1465 15% 10% 0.6974 

Genital infections 10% 2% 0.1912 9% 0% 0.2816 

Anaemia  10% 2% 0.1912 9% 0% 0.2816 

Cancers  10% 2% 0.1912 12% 0% 0.2848 

Other gastrointestinal disorder  10% 2% 0.1912 12% 5% 0.6388 

Slipped disk or other back problems 20% 9% 0.2173 21% 10% 0.4556 

Eczema  20% 9% 0.2173 18% 10% 0.6947 

Ehlers-Danlos syndrome 5% 0% 0.2292 6% 0% 0.5210 

Colitis/Crohn's disease  5% 0% 0.2292 6% 0% 0.5210 

Yellow jaundice or hepatitis 5% 0% 0.2292 6% 0% 0.5210 

Psychiatric illness  5% 0% 0.2292 6% 0% 0.5210 

Hormone disorder  5% 0% 0.2292 3% 0% 1.0000 

Injury to head or neck  13% 5% 0.2538 9% 0% 0.2816 

Iron deficiency anaemia  18% 9% 0.3401 21% 15% 0.7248 

A genetic (inherited) disease  8% 2% 0.3481 9% 5% 1.0000 

Asthma  20% 12% 0.3709 18% 5% 0.2333 

Ear infection  20% 12% 0.3709 21% 5% 0.2336 

Arthritis or rheumatism  10% 5% 0.4219 12% 5% 0.6388 

Concussion  13% 7% 0.4729 9% 0% 0.2816 

Psoriasis  13% 7% 0.4729 15% 5% 0.3904 

Type 2 diabetes  3% 0% 0.4819 3% 0% 1.0000 

Carpal tunnel syndrome 3% 0% 0.4819 3% 0% 1.0000 

Malaria  3% 0% 0.4819 3% 0% 1.0000 

Disease of the hair or scalp including hair loss  3% 0% 0.4819 3% 0% 1.0000 
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Any other blood disorder   3% 0% 0.4819 3% 0% 1.0000 

Suicide attempts  3% 0% 0.4819 3% 0% 1.0000 

Drug abuse  3% 0% 0.4819 3% 0% 1.0000 

Alcohol abuse  3% 0% 0.4819 3% 0% 1.0000 

Heart valve disease  0% 5% 0.4946 0% 10% 0.1379 

A stroke  0% 5% 0.4946 0% 10% 0.1379 

Rheumatic fever  0% 5% 0.4946 0% 5% 0.3774 

Sexual problems  5% 2% 0.6069 6% 0% 0.5210 

Haemochromatosis  5% 2% 0.6069 3% 5% 1.0000 

Hayfever  28% 21% 0.6090 30% 20% 0.5274 

Gall bladder removed 8% 5% 0.6685 9% 5% 1.0000 

Eye disease/s or disorder/s  8% 5% 0.6685 9% 10% 1.0000 

Your appendix removed  5% 9% 0.6770 3% 10% 0.5492 

High blood pressure  15% 19% 0.7728 15% 10% 0.6974 

Other neurological disorder  0% 2% 1.0000 0% 5% 0.3774 

Type 1 diabetes  0% 0% 1.0000 0% 0% 1.0000 

Gout 0% 0% 1.0000 0% 0% 1.0000 

Rheumatoid arthritis  0% 0% 1.0000 0% 0% 1.0000 

Epilepsy 0% 0% 1.0000 0% 0% 1.0000 

Leukaemia  0% 0% 1.0000 0% 0% 1.0000 

Lymphoma  0% 0% 1.0000 0% 0% 1.0000 

Lupus erythematosus  0% 0% 1.0000 0% 0% 1.0000 

Sjogren's syndrome  0% 0% 1.0000 0% 0% 1.0000 

Heart attack/myocardial infarct  0% 0% 1.0000 0% 0% 1.0000 

Glaucoma  3% 2% 1.0000 3% 5% 1.0000 

Loss of hearing  8% 7% 1.0000 9% 5% 1.0000 

Meniere's disease 0% 0% 1.0000 0% 0% 1.0000 

Tuberculosis 0% 0% 1.0000 0% 0% 1.0000 

Duodenal ulcers 0% 0% 1.0000 0% 0% 1.0000 

Cirrhosis of the liver 0% 0% 1.0000 0% 0% 1.0000 

Splenectomy  0% 0% 1.0000 0% 0% 1.0000 

Subfertility  3% 2% 1.0000 3% 0% 1.0000 

Radiation therapy  0% 0% 1.0000 0% 0% 1.0000 

Prosthetic valve/joint or implants  3% 2% 1.0000 3% 0% 1.0000 

Scarlet fever  0% 0% 1.0000 0% 0% 1.0000 
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Sarcoidosis 0% 0% 1.0000 0% 0% 1.0000 

Premenstrual syndrome * * * * 24% 0% 0.0187 

Endometriosis * * * * 3% 15% 0.1450 

Hysterectomy * * * * 3% 10% 0.5492 

Hormone replacement therapy * * * * 9% 10% 1.0000 

Hyperogestrogenaemia (high oestrogen) * * * * 0% 0% 1.0000 

* Female Only 
      

† Two-tailed Fisher's exact test, p < 0.05 
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Table 2.3.2 Part Two Summary of Diagnostic Conditions  

Diagnostic Condition 

Part Two 

All Participants (n = 56) Female-only Participants (n = 39) 

ME/CFS (n = 28) Control (n = 28) 

p-value † 

ME/CFS (n = 22) Control (n = 17) 

p-value † 

Percentage of 
YES responses 
from ME/CFS 

group 

Percentage of 
YES responses 

from Control 
group 

Percentage of 
YES responses 
from ME/CFS 

group 

Percentage of 
YES responses 

from Control 
group 

ME/CFS  100% 0% < 0.0001 100% 0% < 0.0001 

Postural orthostatic tachycardia syndrome 82% 0% < 0.0001 86% 0% < 0.0001 

Food intolerance/s 75% 11% < 0.0001 82% 18% < 0.0001 

Irritable bowel syndrome 50% 0% < 0.0001 55% 0% 0.0002 

Trouble eating/drinking milk/dairy products 71% 14% < 0.0001 77% 24% 0.0013 

Fibrositis or fibromyalgia  46% 0% < 0.0001 55% 0% 0.0002 

Tension headaches 36% 4% 0.0052 41% 0% 0.0025 

Sinus problems  36% 4% 0.0052 36% 0% 0.0056 

Dermatitis or any other skin problem  39% 7% 0.0095 41% 12% 0.0733 

Low blood pressure  25% 0% 0.0102 32% 0% 0.0124 

Clinical depression 32% 4% 0.0116 41% 6% 0.0240 

Anxiety or other mental disorder  36% 7% 0.0200 41% 12% 0.0733 

Joint hyperflexibility/mobility 21% 0% 0.0232 27% 0% 0.0267 

Bronchitis  29% 4% 0.0248 32% 0% 0.0124 

Food allergy/allergies 43% 14% 0.0366 45% 12% 0.0365 

Tinnitus or ringing in the ears 32% 7% 0.0403 36% 6% 0.0518 

Ear infection  18% 0% 0.0515 18% 0% 0.1179 

Gastritis  18% 0% 0.0515 18% 0% 0.1179 

Multiple chemical sensitivity  18% 0% 0.0515 14% 0% 0.2429 

Glandular fever  36% 11% 0.0550 32% 0% 0.0124 

Trouble eating or drinking sugar 21% 4% 0.1012 27% 6% 0.1125 

Yeast disease or candidiasis  14% 0% 0.1115 18% 0% 0.1179 

Streptococcal throat 14% 0% 0.1115 9% 0% 0.4953 

Urinary tract infection/cystitis 29% 11% 0.1771 36% 12% 0.1395 

Kidney infections 18% 4% 0.1927 23% 0% 0.0565 

Migraine with aura  18% 4% 0.1927 18% 0% 0.1179 
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Low blood sugar or hypoglycaemia  11% 0% 0.2364 14% 0% 0.2429 

Stomach or gastric ulcers  11% 0% 0.2364 9% 0% 0.4953 

Anaemia  11% 0% 0.2364 9% 0% 0.4953 

Iron deficiency anaemia  21% 7% 0.2516 27% 12% 0.4260 

Asthma  25% 11% 0.2955 23% 6% 0.2056 

Cold sores, herpes labialis 29% 14% 0.3290 27% 12% 0.4260 

Cluster headaches 14% 4% 0.3516 18% 0% 0.1179 

Your appendix removed  4% 14% 0.3516 0% 12% 0.1835 

Psoriasis  14% 4% 0.3516 18% 6% 0.3634 

Eye conditions with or without vision loss 14% 4% 0.3516 18% 6% 0.3634 

Allergies  32% 18% 0.3550 36% 24% 0.4940 

Migraine without aura  18% 7% 0.4216 23% 6% 0.2056 

Concussion  18% 7% 0.4216 14% 0% 0.2429 

Thyroid problems  18% 7% 0.4216 18% 12% 0.6790 

Slipped disk or other back problems 21% 11% 0.4688 23% 12% 0.4383 

Heart valve disease  0% 7% 0.4909 0% 12% 0.1835 

A stroke  0% 7% 0.4909 0% 12% 0.1835 

Cancers  7% 0% 0.4909 9% 0% 0.4953 

A genetic (inherited) disease  7% 0% 0.4909 9% 0% 0.4953 

Colitis/Crohn's disease  7% 0% 0.4909 9% 0% 0.4953 

Yellow jaundice or hepatitis 7% 0% 0.4909 9% 0% 0.4953 

Psychiatric illness  7% 0% 0.4909 9% 0% 0.4953 

Pneumonia 7% 0% 0.4909 5% 0% 1.0000 

Eczema  25% 14% 0.5027 23% 12% 0.4383 

Physical/sexual/emotional abuse  11% 4% 0.6110 14% 0% 0.2429 

Genital infections 11% 4% 0.6110 9% 0% 0.4953 

Autoimmune disease  11% 4% 0.6110 9% 6% 1.0000 

Fractured bone  14% 7% 0.6695 14% 0% 0.2429 

High blood pressure  11% 18% 0.7049 9% 12% 1.0000 

Rheumatic fever  0% 4% 1.0000 0% 6% 0.4359 

Glaucoma  0% 4% 1.0000 0% 6% 0.4359 

Injury to head or neck  11% 7% 1.0000 9% 0% 0.4953 

Loss of hearing  7% 4% 1.0000 9% 0% 0.4953 

Sexual problems  7% 4% 1.0000 9% 0% 0.4953 

Hayfever  25% 21% 1.0000 27% 18% 0.7042 
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Type 1 diabetes  0% 0% 1.0000 0% 0% 1.0000 

Type 2 diabetes  0% 0% 1.0000 0% 0% 1.0000 

Gout 0% 0% 1.0000 0% 0% 1.0000 

Rheumatoid arthritis  0% 0% 1.0000 0% 0% 1.0000 

Epilepsy 0% 0% 1.0000 0% 0% 1.0000 

Leukaemia  0% 0% 1.0000 0% 0% 1.0000 

Lymphoma  0% 0% 1.0000 0% 0% 1.0000 

Lupus erythematosus  0% 0% 1.0000 0% 0% 1.0000 

Sjogren's syndrome  0% 0% 1.0000 0% 0% 1.0000 

Ehlers-Danlos syndrome 4% 0% 1.0000 5% 0% 1.0000 

Hormone disorder  4% 0% 1.0000 5% 0% 1.0000 

Heart attack/myocardial infarct  0% 0% 1.0000 0% 0% 1.0000 

Other neurological disorder  0% 0% 1.0000 0% 0% 1.0000 

Carpal tunnel syndrome 4% 0% 1.0000 5% 0% 1.0000 

Meniere's disease 0% 0% 1.0000 0% 0% 1.0000 

Tuberculosis 0% 0% 1.0000 0% 0% 1.0000 

Malaria  4% 0% 1.0000 5% 0% 1.0000 

Duodenal ulcers 0% 0% 1.0000 0% 0% 1.0000 

Cirrhosis of the liver 0% 0% 1.0000 0% 0% 1.0000 

Gall bladder problems 4% 0% 1.0000 0% 0% 1.0000 

Gall bladder removed 4% 4% 1.0000 5% 6% 1.0000 

Splenectomy  0% 0% 1.0000 0% 0% 1.0000 

Other gastrointestinal disorder  4% 0% 1.0000 5% 0% 1.0000 

Arthritis or rheumatism  7% 7% 1.0000 9% 6% 1.0000 

Disease of the hair or scalp including hair loss  0% 0% 1.0000 0% 0% 1.0000 

Haemochromatosis  7% 4% 1.0000 5% 6% 1.0000 

Any other blood disorder   4% 0% 1.0000 5% 0% 1.0000 

Subfertility  4% 4% 1.0000 5% 0% 1.0000 

Suicide attempts  4% 0% 1.0000 5% 0% 1.0000 

Drug abuse  0% 0% 1.0000 0% 0% 1.0000 

Alcohol abuse  4% 0% 1.0000 5% 0% 1.0000 

Radiation therapy  0% 0% 1.0000 0% 0% 1.0000 

Prosthetic valve/joint or implants  0% 4% 1.0000 0% 0% 1.0000 

Scarlet fever  0% 0% 1.0000 0% 0% 1.0000 

Sarcoidosis 0% 0% 1.0000 0% 0% 1.0000 
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Eye disease/s or disorder/s  7% 7% 1.0000 9% 12% 1.0000 

Premenstrual syndrome * * * * 27% 0% 0.0267 

Endometriosis * * * * 5% 12% 0.5703 

Hysterectomy * * * * 5% 12% 0.5703 

Hormone replacement therapy * * * * 14% 6% 0.6180 

Hyperogestrogenaemia (high oestrogen) * * * * 0% 0% 1.0000 

* Female Only 
      

† Two-tailed Fisher's exact test, p < 0.05 
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2.3.2 Other Participant Cohort Characteristics 

 

Brief analyses were conducted to characterise the socio-economic demographic and activity 

profiles of the overall ME/CFS and Control group cohort recruited for this study. These 

questionnaire responses were not a primary focus for this thesis; however, the study did ask 

some questions to be able to give some indication of the participants’ demographics, health 

status, and activity profile. The questionnaire for the study was based on forms previously used 

by McGregor et al., Bennett et al., Dr John Whiting, and Dr Don Lewis (materials obtained via 

personal communications). A copy of the questionnaire can be viewed electronically via 

Appendix 1. Table 2.3.3 summarises actions and changes that were undertaken in response to 

health status. Participants were asked to respond “yes” or “no” to these questions regarding if 

they had to take certain actions or make changes due to their health status. Table 2.3.4 

tabulates the difficulties experienced in completing several everyday activities. Participants were 

asked to score on a scale of “no difficult” to “very difficult” the experience they had in doing the 

activities over the last seven days. The activities were individually examined, and responses 

were also tallied to give an overall score of all the activities combined. Table 2.3.3 and Table 

2.3.4 showed a statistically significant difference when the overall ME/CFS (n = 40) and Control 

(n = 43) group participants were compared across several measures.  

 

The responses to the Bell’s Disability scale also indicated that 100% of the control and 16% of 

the ME/CFS participants were 50 or above on the scale, respectively. Conversely, the scale 

indicated that none of the control and 84% of the ME/CFS participants were 40 or below on the 

scale. The association between ME/CFS and Bell’s disability scale is statistically significant 

(two-tailed Fisher’s exact test, p-value < 0.0001 grouping patients either above or below 50 on 

the scale). In brief, 100 on the Bell’s Disability scale is fully recovered, normal activity with no 

symptoms, 50 is able to do 4-5 hours a day of work or similar activity at home with daily rests 

required and symptoms are mostly moderate, 0 is bedridden constantly and unable to care for 

self. The responses to the scale were according to the participant in the last 7 days at the time 

of their sample collection and questionnaire completion for Part One.  
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Table 2.3.3 Socio-demographic characteristics of all ME/CFS and Control participants (Part 

One) 

 

 

Table 2.3.4 Difficulty in completing activities due to health condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

# % # %

Change employment/occupation 35 87.5 0 0 < 0.0001

Seek financial assistance 30 75 0 0 < 0.0001

Change living arrangements 20 50 0 0 < 0.0001

Seek assistance or make arrangments for extra care 31 77.5 1 2.33 < 0.0001
† Two-tailed Fisher's exact test, p < 0.05

Actions due to health status

Part One (Overall Participant Cohort n = 83)

p-value †

ME/CFS (n = 40) Control (n = 43)

YES responses from ME/CFS 

group

YES responses from Control 

group

Mean Std. Dev. Mean Std. Dev.

Overall of all these activities 5.36 2.28 0.33 0.81 < 0.0001

Brush or comb hair 0.24 0.27 0.02 0.04 < 0.0001

Walk continuously for 20 minutes 0.74 0.30 0.03 0.11 < 0.0001

Prepare a homemade meal 0.65 0.31 0.04 0.11 < 0.0001

Vacuum, scrub or sweep floors 0.75 0.29 0.04 0.11 < 0.0001

Lift and carry a bag full of groceries 0.61 0.29 0.04 0.12 < 0.0001

Climb one flight of stairs 0.57 0.33 0.04 0.12 < 0.0001

Change bed sheets 0.66 0.32 0.03 0.11 < 0.0001

Sit in a chair for 45 minutes 0.42 0.35 0.06 0.14 < 0.0001

Go shopping for groceries 0.72 0.3 0.03 0.10 < 0.0001
† t-test, p < 0.05

Difficulty experienced in completing these activities

Part One (Overall Participant Cohort n = 83)

p-value †ME/CFS (n = 40) Control (n = 43)



 

CHAPTER TWO: Methodology | 81 

2.4 Data and Biological Sample Collection from Participants 

 

2.4.1 Part One – questionnaires, faecal and urine sample collection 

 

The home collection kit came as a polyurethane foam insulated container including gel freeze 

ice packs, sample collection components, the participant information and consent form, and the 

questionnaires. Contents from this kit formed Part One of the study. Participants could peruse 

the materials first to ensure that they were familiar with all the requirements. Participants were 

asked to observe the following requests: 

• Complete the consent form and Self-Report questionnaire before collecting samples. 

• Complete the Symptom Questionnaire and collect the faecal and urine samples as close 

as possible to each other in time as this component was time sensitive.  

• Ideally, collect the faecal and urine samples at the same time point, but no more than 12 

hours apart from each other. 

• Document their diet, medications, and/or supplements in the questionnaire although not 

required to cease or change anything for the project. 

• Be adequately hydrated (water) to facilitate an easier collection experience and be able 

to produce sufficient sample quantities. 

• Female participants were asked to refrain from collecting samples during menstruation 

to avoid cross-contamination with the different sample types. 

• Promptly return their completed collection kit without delay (time and temperature 

sensitivity) to Bioscreen Laboratory  

 

Urine samples were collected using a 70 mL specimen container, a Greiner Bio-one urine 

transfer device (part reference: 450251), and 10 mL urine preservative-free Greiner Bio-One 

Vacuette tubes (part reference: 455007). Faecal samples were collected using a 70 mL 

specimen container with a hole drilled into the lid (to aid anaerobiosis), and BD GasPak™ EZ 

Anaerobe Gas Generating Pouch System with Indicator (part reference: 260683). The kits 

arrived at the laboratory no more than 48 hours after paperwork completion and sample 

collection. If samples had been collected the night before, samples were kept cool in the fridge 

until they went to the post office. Frequent communication and check-ins with the participants 

during recruitment and sample collection, and postal tracking aided compliance.  
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Upon receiving the kit, Bioscreen laboratory staff performed quality control checks and 

completed the administrative requirements for the samples, questionnaires, and paperwork. 

Returned kits were checked to ensure that they had a cool internal temperature (<12°C), gel 

packs remained frozen during transit, the faecal sample collection bag was properly sealed 

indicating anaerobiosis, and all documentation had been completed. If the quality control checks 

failed, the samples were discarded, participants were contacted to inform them of the outcome, 

and arrangements were made for a re-collection and an update of the time-sensitive 

questionnaire responses. The administrative requirements also involved the staff member 

logging, coding, and de-identifying the samples, questionnaires, and paperwork before handing 

them over to AJK. AJK handled coded samples that were in random order during all sample 

preparation and experimental procedures; these measures kept AJK unbiased and from 

drawing early conclusions. The participant codes and metadata were matched once 

experimental outcomes were ready for data analysis.  

 

The questionnaires were manually transcribed, tabulated, and used for data analysis (Section 

2.3). The faecal samples were prepared into a homogenate (Section 2.5.1) and immediately 

used for the faecal culture and MALDI-TOF MS experiment (Section 2.5.2). A portion of the neat 

faecal sample was transferred and stored in a clean polypropylene plastic tube at -80°C for 

future DNA extraction and molecular-based experiments (Section 2.5.3). Section 2.5 details the 

gut microbiology experimental workflow used with the faecal samples. Another portion of the 

neat faecal sample was transferred into a polypropylene plastic tube and temporarily (no more 

than 24 hours) stored in the refrigerator for faecal dry weight determination (Section 2.7). The 

urine sample and remainder of the faecal homogenate were aliquoted and stored in clean 

polypropylene plastic cryogenic tubes at -80°C for metabolomic experiments (Section 2.8). All 

this sample processing and preparation was completed within 24 hours of the kit being returned 

and received at the laboratory.  
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2.4.2 Part Two – blood plasma and urine sample collection  

 

Part Two was optional for participants (Section 2.1). Participants were asked to be adequately 

hydrated (water) to facilitate an easier collection experience and be able to produce sufficient 

sample quantities. Female participants were asked to refrain from collecting during menstruation 

to avoid sample cross-contamination. At the Melbourne Pathology collection room, participants 

were asked to provide a blood sample and a urine sample from the same time point (no more 

than 30 minutes apart from each other). Whole blood was drawn and collected into two grey 4 

mL FE Sodium Fluoride/K3EDTA Greiner Bio-One Vacuette tubes (part reference: 454033) by a 

phlebotomist. Participants collected their urine into a 70 mL specimen container. These blood 

and urine samples were immediately taken to the Bioscreen laboratory in cool conditions.  

 

Like the process for Part One, laboratory staff completed the administrative requirements for the 

samples (including blinding) before handing them over to AJK (Section 2.4.1). These coded 

samples were handled within four hours of being collected and returned to the laboratory. The 

blood collection tubes were centrifuged for 10 minutes at 1450 × g. Following centrifugation, the 

resulting plasma supernatant was transferred, apportioned into clean polypropylene plastic 

cryogenic tubes, and stored at -80°C. The urine sample was first transferred from the container 

into 10 mL urine preservative-free Greiner Bio-One Vacuette tubes (part reference: 455007) 

then apportioned into clean polypropylene plastic cryogenic tubes, and stored at -80°C. The 

blood plasma and urine sample aliquots were used for metabolomic experiments (Section 2.8).  
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2.5 Gut Microbiology Experiments 

 

Two approaches, a culture-based, and a culture-free/molecular-based, were used to analyse 

the gut microbiome in the faecal samples (Section 2.4.1). The faecal homogenate was first 

prepared by AJK to set up the culture and matrix-assisted laser desorption ionization time-of-

flight Mass Spectrometry (MALDI-TOF MS) experiment (Sections 2.5.1 and 2.5.2). The counting 

and reading of the agar plates, MALDI-TOF MS instrument loading, and final bacterial 

identification reporting were conducted by a nominated Bioscreen laboratory scientist. This staff 

member completed this work for all participant samples, maintaining consistency in plate 

counting and reading, and reporting of outcomes. This staff member was not involved in 

handling the return of the collection kits to the laboratory and was blinded from identified 

participant information (Section 2.4.1). A portion of the neat faecal sample was used for 16S 

rRNA gene amplicon sequencing. Section 2.5.3 details the molecular-based work that was 

involved in this technique; this work was completed by AJK across Bioscreen and Victoria 

University laboratories.  

 

2.5.1 Faecal Homogenate Preparation 

 

An anaerobic bio-safety cabinet was not available. Oxygen exposure was minimised by 

preparing the faecal homogenate and setting up the culture and MALDI-TOF experiment in < 45 

minutes. The faecal sample was not removed from the BD GasPak™ EZ Anaerobe Gas 

Generating Pouch System with Indicator (part reference: 260683) zip-lock bag until the 

homogenate was ready to be made. Four grams of the neat sample were immediately 

transferred to 40 mL of freshly prepared phosphate-buffered saline (PBS) in a compatible IKA 

Ultra Turrax tube. The PBS was prepared using the standard recipe for PBS tablets (Sigma Life 

Science P4417) and autoclaved less than 24 hours before use. The same PBS was used as the 

diluent for the serial dilutions used in the culture and MALDI-TOF MS preparation. The neat 

sample was homogenised using an IKA Ultra Turrax® tube disperser workstation system and 

centrifuged at 15 × g for 10 minutes to make a homogenate that could be pipetted without 

blockage (very low centrifuge speed intended to prevent potential sample damage and 

disturbing the microbes). The remaining homogenate material that was not used for the faecal 

culture and MALDI-TOF MS experiment was immediately aliquoted and stored in cryogenic 

tubes at -80°C; these were used in the metabolomics experiments (Section 2.8). 
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2.5.2 Faecal Culture (Microbiology) and MALDI-TOF MS 

 

This methodology was adapted from protocols previously described (Armstrong et al., 2017; 

Wallis et al., 2016); see also Section 2.1. The PBS and 4 g in 40 mL faecal homogenate 

prepared in Section 2.5.1 were immediately used to set up eleven 1:10 serial dilutions (undiluted 

to 10-11) for the culture and MALDI-TOF MS experiment. The first step of the dilution series 

(lowest dilution, most concentrated) was prepared by transferring 1 mL of the faecal 

homogenate to 9 mL of PBS diluent. Subsequent steps of the dilution series were prepared by 

transferring 1 mL of the sample mixture to 9 mL of PBS diluent. The sample tubes were gently 

inverted three times and vortexed (two seconds) to mix in between each transfer.  

 

A variety of whole standard-sized (90 mm diameter) agar-based medium plates were used to 

enumerate bacteria. Plates were purchased from Edwards, Australia, a specialist microbiology 

media supplier. Anaerobic plates were pre-reduced in anaerobic jars 24 hours before use; 

anaerobic plates were spread and prepared for incubation first before the aerobic plates to 

minimise oxygen exposure. One whole plate was spread with 100 µL for each respective 

dilution step being assessed. Plates were spread as soon as the 100 µL was transferred onto 

the agar preventing the sample from unevenly drying and setting in one spot. Dilutions 10-6 to 

10-11 inclusive were transferred on pre-reduced Columbia horse blood agar for anaerobic 

incubation. Dilutions 10-4 to 10-9 inclusive were transferred onto pre-reduced Raka-Ray with 

cycloheximide agar for anaerobic incubation. Dilutions 10-1 to 10-7 inclusive were transferred 

onto Columbia horse blood agar, chromogenic medium agar, and Columbia colistin and nalidixic 

acid horse blood agar for aerobic incubation. Dilutions 10-1 and 10-2 were transferred onto 

chloramphenicol-gentamicin selective Sabouraud dextrose agar for aerobic incubation. All 

anaerobic plates were incubated for 4 days (96 hours) using the BD Gas Pak™ EZ Anaerobe 

Container System with Indicator (part reference: 260001). All aerobic plates were incubated for 

2 days (48 hours).  

 

A stereomicroscope was used to examine aerobic and anaerobic culture plates before bacterial 

identification. Colonies from each agar medium were microscopically examined and the 

colony/viable counts were quantified for each plate. Similar morphotypes were sub-cultured onto 

Columbia horse blood agar in case it was required for re-identification by MALDI-TOF MS. 

Counts were performed and calculated depending on the dilution factor plated. While plates 

were being counted and examined, index bacterial colonies were transferred to a target 
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polished steel plate (MSP 96, Bruker Daltonics, Germany). Each of the samples on the target 

plate was subjected to protein extraction with 1 µL of 70% formic acid (Sigma) and left to air dry. 

The target plate was then overlaid with 1 µL of matrix solution (saturated solution of α-cyano-4-

hydroxycinnamic acid [HCCA] in a mixture of 47.5% ultra-pure water, 2.5% trifluoroacetic acid, 

and 50% acetonitrile) and left to air dry again. The prepared and dried target plate was analysed 

using a Microflex MALDI-TOF mass spectrometer (Bruker Daltonics, Germany) equipped with a 

60 Hz nitrogen laser. Spectra were recorded in the positive linear mode for the mass range of 

2,000-20,000 Da at maximum laser frequency. The raw spectra were automatically analysed 

without user intervention using the default settings of the MALDI Biotyper 3.0 software package 

(Bruker, Daltonics, Germany). The software contained a proprietary peptide database that can 

detect up to approximately five thousand species. The classification results from the software 

were assigned to the bacteria counted providing the final reporting outcome of the faecal 

bacteria identified and quantified. Bacterial counts via culture MALDI-TOF MS were corrected to 

faecal sample dry weight (Section 2.7) before results were used for further statistical analyses 

and visualisation (Section 2.6.5) and utilising MiMeDB (Section 2.6.8).  
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2.5.3 DNA Extraction for 16S rRNA Illumina Sequencing 

 

Faecal bacterial communities were also profiled by 16S rRNA gene amplicon sequencing on the 

Illumina MiSeq platform. This required a 16S rRNA library to be constructed with DNA sample 

extracts and instrument-specific adapters attached so that it could be sequenced on the 

platform. Microbial genomic DNA extracts were prepared using the portion of the neat faecal 

sample that had been stored at -80°C immediately after the homogenate preparation and set-up 

were completed for the culture and MALDI-TOF MS experiment (Section 2.5.1 and Section 

2.5.2, respectively). DNA extractions were performed in batches of 12 samples using a QIAcube 

instrument (Qiagen). The QIAcube automated the manual spin-column-based aspect of 

compatible sample preparation kits for up to 12 samples in a single run. The Qiagen QIAamp® 

Fast DNA Stool Mini Kit (Category Number 51604) was used with the QIAcube according to the 

manufacturer’s standard instructions. The DNA extractions were stored at -20°C until all 

samples were ready for DNA quantification and quality checking (Section 2.5.4). This step was 

conducted before using the DNA extracts for library preparation and MiSeq instrument loading 

(Section 2.5.5).  

 

2.5.4 DNA Quantification and Quality Check Before 16S rRNA Illumina Sequencing 

 

DNA concentrations were measured fluorometrically on a Qubit® 1.0 fluorometer device using 

the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32851). The fluorescence readouts 

determined the quantity of DNA from each sample that was used for preparing the sequencing 

library (Section 2.5.5). The Illumina protocol required 2.5 µL of microbial DNA (5 ng/µL) from 

each sample to be used as the template for amplicon PCR (Illumina, 2013). The fluorescence 

readouts were used to normalise the samples to this specified volume and concentration. 

Samples with concentrations above 5 ng/µL were diluted with 10 mM Tris pH 8.5. For samples 

with concentrations below 5 ng/µL, a maximum 5 µL cut-off was used to maximise the 

concentration but not compromise the total volume of the final pooled library. This was a minor 

deviation from the Illumina protocol (Illumina, 2013). DNA quality and presence were also 

determined by 0.8% agarose gel electrophoresis in a 1X TAE (Tris-acetate-EDTA) buffer. The 

gel was visualised on a BioRad ChemiDoc™ MP imaging instrument using SYBR® Safe DNA 

Gel Stain (Thermo Fisher Scientific, S33102), Blue/Orange Loading Dye 6X (G190A, Promega), 

and 100 bp DNA ladder (G210A, Promega). PCR-grade water was used as a blank control.  
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2.5.5 Library Preparation for 16S rRNA Gene Amplification and Illumina Sequencing 

 

A sequencing library was prepared according to a standard Illumina protocol (Part #15044223 

Rev B), targeting the variable V3 and V4 regions of the 16S rRNA gene (Illumina 2013).  The 

full-length primers suggested by the protocol were ordered from IDT® Integrated DNA 

Technologies using standard IUPAC nucleotide nomenclature (Klindworth et al., 2013). The full-

length primers included the Illumina adapter overhang nucleotide sequences and the gene-

specific sequences. The amplicon forward primer targeting this region used was 5'-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’. The 

amplicon reverse primer targeting this region used was = 5' 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’.  

 

The amplicon (first stage) polymerase chain reaction (PCR) reaction was set up according to 

the composition in Table 2.5.1. PCR on a BioRad T100 Thermal Cycler was performed with 

these conditions: one cycle of initial denaturation at 95°C for 3 minutes, followed by 25 cycles of 

denaturation at 95°C for 30 seconds, annealing at 55°C for 30 seconds, elongation at 72°C for 

30 seconds, a final extension at 72°C for 5 minutes, and then hold at 4°C. The PCR product 

size after amplicon PCR was checked by 2% agarose gel electrophoresis in a 1X TAE buffer 

and was determined to be approximately 550 base pairs (bp). The same approach as detailed in 

Section 2.5.4 was used to visualise the agarose gel.  

 

Table 2.5.1 Composition of the amplicon (first stage) PCR reaction per sample  

Component Volume (µL)  

Microbial DNA (Section 2.5.4) 2.5 

Amplicon PCR Forward Primer 1 µM 5 

Amplicon PCR Reverse Primer 1 µM 5 

2 X KAPA HiFi HotStart Ready Mix (Kapa Biosystems, Inc., Reference KK2602 

07958935001) 

12.5 

TOTAL 25 

 

 

The PCR products were cleaned and purified using Agencourt AMPure XP Reagent magnetic 

beads (Beckman Coulter Genomics, Part Number A63881). The magnetic beads purified the 

amplicon product away from free primers and primer dimer species. The products from the 
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amplicon (first) PCR stage were used as the template for indexing (second) PCR. To be able to 

sequence the amplicon, dual indices and Illumina sequencing adapters were attached using the 

Illumina Nextera® XT indexes (Nextera XT Index Kit V2 Set A, Reference 15052163). The 

indexing (second) PCR reaction was set up according to the composition in Table 2.5.2. 

Indexing PCR on a BioRad T100 Thermal Cycle was performed with these conditions: one cycle 

of initial denaturation at 95°C for 3 minutes, followed by eight cycles of denaturation at 95°C for 

30 seconds, annealing at 55°C for 30 seconds, elongation at 72°C for 30 seconds, a final 

extension at 72°C for 5 minutes, and then hold at 4°C. The PCR products after indexing were 

cleaned again using the AMPure XP magnetic beads before fluorometric quantification was 

conducted to construct the final pooled library. The PCR product size after index PCR was 

checked by 2% agarose gel electrophoresis in a 1X TAE buffer and the average library size was 

determined conservatively to be ~580 bp. The same approach as detailed in Section 2.5.4  was 

used to visualise the agarose gel.  

 

Table 2.5.2 Composition of the index (second stage) PCR reaction per sample  

Component Volume (µL)  

DNA (product from amplicon first-stage PCR) 5 

Nextera XT Index Primer 1 (N7xx) 5 

Nextera XT Index Primer 2 (S5xx) 5 

2 X KAPA HiFi HotStart Ready Mix (Kapa Biosystems, Inc., Reference KK2602 

07958935001) 

25 

PCR-grade water 10 

TOTAL 50 

 

 

The libraries (amplicons from the individual samples with unique adapters attached) were 

quantified fluorometrically ahead of normalising and pooling the libraries for MiSeq loading. 

The DNA concentrations from each library were measured on a Qubit® 1.0 fluorometer device 

using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Q32851). A few of the libraries 

were below the 4 nM concentration that the Illumina protocol suggested. As a workaround, 

instead of normalising the final libraries to 4 nM before pooling, they were normalised to 5 nM 

with 10 mM Tris pH 8.5. The respective volumes from each library were transferred to make a 

pooled library stock that was adjusted with the cumulative total volume of 10 mM Tris pH 8.5 

diluent (all indexed amplicon samples together in one 1.5 mL microcentrifuge tube). To ensure 

that there was a sufficient volume of the library to transfer from the completed second PCR 



 

CHAPTER TWO: Methodology | 90 

clean-up step, the total volume of each normalised individual library stock was capped at 11 µL. 

For libraries that were below 5 nM, a maximum of 11 µL was transferred to the pooled library 

stock.  

 

Quantification of the pooled library using quantitative polymerase chase reaction (qPCR) was 

done using a commercial kit (KAPA Library Quantification Kit, Illumina Platforms, KK4824). 

Following the manufacturer's instructions, dilution series were made from the pooled library and 

run in parallel with the standards provided in the kit. A set of dilutions was made from the pooled 

library stock with 10 mM Tris pH 8.5 diluent (1:1,000, 1:10,000, 1:100,000) and compared 

against six standards (respective concentrations of 20, 2, 0.2, 0.02, 0.002, and 0.0002 pM). 

PCR-grade water was used as a no-template control. All samples and standards were run in 

triplicates. The BioRad CFX96 Real-Time System was programmed to run qPCR with the 

following conditions: one cycle of initial denaturation at 95°C for 5 minutes, followed by 35 

cycles of denaturation at 95°C for 30 seconds, annealing/extension/data acquisition at 60°C for 

45 seconds, then hold at 4°C. The KAPA Library Quantification Data Analysis template was 

used to calculate the concentration of the undiluted pooled library with the quantitation cycle 

(Cq) values from the qPCR results. The concentration of the undiluted pooled library was 

determined by qPCR to be 3.5 nM.  

 

The pooled (sample) library was spiked with 10% PhiX Control, a proprietary-generated control 

library (Illumina, Reference FC-110-3001). The libraries were denatured, diluted, and combined 

before they were loaded onto the MiSeq for sequencing (Illumina, 2013, 2019). The MiSeq was 

loaded with 600 µL of the combined library that had a final overall concentration of 8 pM. The 

details of the denaturing and dilution calculations can be found in Appendix 3. The final 

prepared library was sequenced in a 2 x 300 bp paired-end run on the MiSeq with a 600-cycle 

proprietary reagent kit (Illumina MiSeq Reagent Kit v3, Reference MS-102-3003). The MiSeq 

instrument was programmed to operate according to standard Illumina settings.  
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2.5.6 Bioinformatic Processing of 16S rRNA Sequences with QIIME2 

 

After the MiSeq sequencing run was completed, the instrument generated FASTQ files 

containing demultiplexed raw sequencing data of the 16S rRNA gene amplicons. The 

demultiplexing step separated the sequenced data from the PhiX and the indexes that uniquely 

tagged the different samples. The FASTQ files initially required translation into a result format 

that is compatible and usable for downstream analytical and visualisation requirements (Hall & 

Beiko, 2018; Rai et al., 2021). There are several commonly used bioinformatic platforms and 

computational tools, including Quantitative Insights into Microbial Ecology Version 2 (QIIME2), 

to process FASTQ files; however, there is no single gold-standard option for this task (Kang et 

al., 2021; Marizzoni et al., 2020; Prodan et al., 2020). QIIME2 is a widely used next-generation 

microbiome bioinformatics platform that is extensible, free, open source, and community-

developed; it enables the processing and analysis of raw sequencing data to provide insight into 

the microbial environment of interest (Bolyen et al., 2019; Estaki et al., 2020; Hall & Beiko, 

2018; Rai et al., 2021). The choice to use QIIME2 was also based on its frequent use in 16S 

rRNA amplicon data analyses, other gut microbiome studies, and the local assistance that was 

available (Bolyen et al., 2019; Estaki et al., 2020; Giloteaux, Goodrich, et al., 2016; Rai et al., 

2021; Simpson et al., 2021). 

 

The FASTQ files (forward and reverse sequences) were quality filtered, trimmed, denoised, and 

merged using QIIME2 (Version 2021.8) and other computational tools that are part of the 

platform (q2-plugins) (Bolyen et al., 2019). These processes, along with taxonomic assignment 

and generation of a phylogenetic tree, also performed in QIIME2, produced the final 

representative amplicon sequencing variants (ASVs) and outputs that were used downstream in 

R. QIIME2 was installed and operated in a high-performance computing Conda environment via 

a Linux workstation (Ubuntu 20.04.4 LTS). The script that was used to run QIIME2 can be found 

in Appendix 4. Briefly, the demultiplexed forward and reverse reads (FASTQ files) were 

imported and the primers were removed using the q2-cutadapt plugin (Martin, 2011). DADA2, 

as a q2-plugin, was used for quality-score-based filtering, denoising, and merging of the input 

sequences (Callahan et al., 2016). DADA2 is a software package that models and corrects 

Illumina-sequence amplicon errors (Callahan et al., 2016). It was also used to construct the 

feature table which contained the counts of each unique sequence of each sample. Since 

DADA2 was used, “ASV” instead of Operational Taxonomic Units or OTUs is a more fitting 

terminology to describe the processed sequences (Chiarello et al., 2022). These DADA2 
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parameters were used after the primers were trimmed from the sequences: –p-trunc-len-f 270 –

p-trunc-len-r 220 –p-max-ee-f 3 –p-max-ee-r 3. Taxonomy was then assigned using the sklearn 

feature-classifier q2-plugin against a trained SILVA (version 138) classifier (Bokulich et al., 

2018; Pedregosa et al., 2011; Quast et al., 2013; Robeson et al., 2020). ASVs that were 

observed fewer than two times (singletons) were removed from the dataset before exporting 

outputs required for statistical analyses and visualisation (Section 2.6.1) and running PICRUSt2 

(Section 2.6.3).  
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2.6 Visualisation and Analyses of Gut Microbiology Data 

 

2.6.1 Phyloseq and R Studio with 16S rRNA Data 

 

There are several approaches and opinions on 16S rRNA amplicon sequencing processing and 

data analysis which can make workflows complicated (Allaband et al., 2019; Cameron et al., 

2021; Gloor et al., 2017; McMurdie & Holmes, 2014; Nearing et al., 2022; Schmidt et al., 2022; 

Weiss et al., 2017). A major reason for this is because of the differences in library sizes and 

how the sequencing instruments fundamentally operate; therefore, these challenges come with 

the territory of using next-generation sequencing techniques. The approach taken in this study 

was informed by a combination of workflows from other laboratory groups, common practices in 

this area, and awareness of the inherent compositional nature of 16S rRNA gut microbiome 

datasets. If the wrong assumptions about the data are made, this can have inappropriate 

consequences with normalisation and data analysis strategies, thereby affecting downstream 

outcomes and interpretation (Cameron et al., 2021; Gloor et al., 2017; Schmidt et al., 2022). As 

such, both the non-rarefied and rarefied 16S rRNA Phyloseq objects were used based on the 

data characteristics and normalisation caveats associated with each metric and analysis 

undertaken (Sections 2.6.2, 2.6.3, 2.6.3). 

 

Library sizes (i.e., the total number of sequencing reads within a sample) often vary over several 

ranges of magnitude, even within a single sequencing run, and the data contains many zeros 

with a non-gaussian distribution. The disparity in library sizes between samples does not 

represent actual differences in microbial communities and means that libraries cannot be 

directly compared. Further, microbiome datasets collected by next-generation sequencing of 

16S rRNA amplicons are compositional because they have an arbitrary total imposed by the 

instrument. To mitigate some of these issues, data are often normalised by various 

computational processes before downstream analysis. Rarefaction is a widely used 

normalisation tool for amplicon sequencing data to allow for sample comparison without 

associated bias from differences in library size; it is accomplished by reducing the number of 

observations to a size threshold shared among the samples of interest (Cameron et al., 2021; 

Weiss et al., 2017). However, rarefaction is the subject of considerable debate and statistical 

criticism as it introduces artificial variation to the data by omitting a random subset of observed 

sequences and potentially also necessitates discarding samples with library sizes deemed too 

small (Cameron et al., 2021; Gloor et al., 2017; McMurdie & Holmes, 2014). While rarefying 
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data is not an ideal normalisation method, it is accepted practice for data analytical approaches, 

particularly for alpha diversity measures (Cameron et al., 2021; Weiss et al., 2017; Willis, 2019).  

 

The performance of beta diversity measures and differential abundance analyses (Section 

2.6.3) are affected by rarefaction to varying extents (Cameron et al., 2021; Nearing et al., 2022; 

Weiss et al., 2017; Wong et al., 2016). Although rarefying and data normalisation can be 

problematic, it is important to keep in mind that there are no perfect models of microbiome data, 

and therefore, a selection of analytical approaches should be used (Cameron et al., 2021; 

Nearing et al., 2022; Wong et al., 2016). Further, alternatives to rarefying have only recently 

been sufficiently developed (Weiss et al., 2017). The authors of the UniFrac method have 

suggested that rarefying more clearly clusters samples according to the biological origin than 

other normalisation techniques do for metrics based on presence or absence (i.e., unweighted 

UniFrac) (Wong et al., 2016); therefore, this metric is often calculated from rarefied data. As 

weighted UniFrac takes into abundance of different taxa, it is not as sensitive to rarefaction and 

the common practice uses non-rarefied data transformed to relative abundance (Gloor & Reid, 

2016; Wong et al., 2016). However, it is argued that the use of relative abundances to represent 

compositional data is also problematic as it is constrained by the simplex (sum to 1) and is not 

free-floating in the Euclidean space (Gloor & Reid, 2016; Weiss et al., 2017). Various 

transformations for compositional data analyses have been considered to address this issue 

and often, the centred log-ratio transformation (CLR) of non-rarefied data is used (Gloor et al., 

2017; Gloor & Reid, 2016). The CLR transformation was introduced by Aitchison in 1986; its 

values are scale-invariant meaning that the same ratio is expected to be obtained in a sample 

with few read counts or an identical sample with many read counts (Gloor et al., 2017; Gloor & 

Reid, 2016). In light of these analytical considerations, this thesis has explored weighted and 

unweighted Unifrac and Aitchison distances to measure beta diversity between the comparative 

groups of interest. 

 

In R Studio (Version 4.2.0 and 4.2.1), Phyloseq (version 1.42.0) was used to create an object (a 

type of electronic data format for working with large amounts of data in R). This object contained 

the participant metadata of the Part One cohort (Sections 2.1 and 2.3) and the outputs from 

QIIME2 (SILVA taxonomy classification table, DADA2 feature table with the representative 

ASVs, and phylogenetic tree as described in Section 2.5.6). Phyloseq, with other R packages in 

R Studio, was used to handle, store, conduct and visualise statistical analyses (McMurdie & 

Holmes, 2013). The R scripts used can be found in Appendix 5. The object was filtered to 
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remove all non-bacterial sequences (mitochondria or chloroplasts), as well as ASVs that were 

unassigned at the phylum level. This final filtered Phyloseq object contained 5894 ASVs 

(features) and was used for all subsequent analyses related to the 16S rRNA dataset (Sections 

2.6.2, 2.6.3, and 2.6.3). Figure 2.6.1 and Figure 2.6.2 shows an overview of the ASV and 

sequencing read counts from the non-rarefied object. Rarefaction without replacement was 

performed on the filtered Phyloseq object with the lowest sequencing depth, 7044 sequences 

per sample (Cameron et al., 2021; Willis, 2019). The rarefied data retained 3958 ASVs. Figure 

2.6.3 (individual samples from Part One) and Figure 2.6.4 (ME/CFS overall vs Control group 

Part One) show the rarefaction curves of the non-rarefied data. Figure 2.6.5 (individual samples 

from Part One) and Figure 2.6.6 (ME/CFS overall vs Control group Part One) show the 

rarefaction curves of the rarefied data. Both the rarefied and non-rarefied data in their respective 

Phyloseq objects to reflect Comparisons A, B, C, and D (Part One) were used with the analyses 

in Sections 2.6.2, 2.6.3, and 2.6.4.  
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Figure 2.6.1 Overview of the number of reads per Amplicon Sequence Variant (ASV), and per 

all the samples in Part One 

 

 

Figure 2.6.2 Histogram of the distribution of the total read count from all the samples in Part 

One 
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Figure 2.6.3 Rarefaction curves for all samples in the Part One dataset (n = 83) before 

rarefaction  

 

 

Figure 2.6.4 Rarefaction curves of ME/CFS overall (n = 40) vs. Control (n = 43) groups in Part 

One prior to rarefaction  
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Figure 2.6.5 Rarefaction curves for all samples in the Part One dataset (n = 83) rarefied to even 

sequencing depth without replacement  

 

 

Figure 2.6.6 Rarefaction curves of ME/CFS overall (n = 40) vs. Control (n = 43) groups in Part 

One rarefied to even sequencing depth without replacement 
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2.6.2 Composition and Diversity Analysis with 16S rRNA Data 

 

The following compositional and diversity analyses were applied to Comparisons A, B, C, and D 

(Part One) using Phyloseq and other R packages in R Studio.   

 

2.6.2.1 Alpha Diversity  

 

Alpha diversity is the local diversity, that is the diversity within a community (sample). Using the 

rarefied data, the following metrics were calculated at the ASV level: ACE, Chao1, Fisher, 

Inverse Simpson, Observed ASVs, Shannon, and Simpson. Alpha diversity comparisons among 

multiple groups were done using a Kruskal-Wallis test, while the Wilcoxon rank-sum test was 

used for comparing two groups. Uncorrected p-values were reported and p < 0.05 was 

considered statistically significant.  

 

2.6.2.2 Beta Diversity  

 

Beta diversity is the diversity between communities (samples). Principal coordinates analysis 

(PCoA) ordination plots of Unweighted and Weighted Unifrac distances were used to compare 

beta diversity between the comparative groups of interest at the ASV, family, genus, and 

species taxonomic levels. Unweighted Unifrac was assessed using rarefied data. Weighted 

Unifrac was assessed using non-rarefied data that had been transformed using the 

“compositional” function in the Microbiome R package (version 1.23.1); this scaled the ASV 

counts to relative abundance (Lahti & Shetty, 2019). In addition, principal component analysis 

(PCA) ordination of the Aitchison distance, a compositionally aware distance metric, was also 

used to compare beta diversity between the comparative groups of interest at the ASV, family, 

genus, and species taxonomic levels using the non-rarefied data object. The non-rarefied data 

was first transformed using the centred-log ratio (CLR) transform function in the microbiome R 

package (version 1.23.1) (Lahti & Shetty, 2019). Comparisons of all beta diversity metrics 

between groups were performed using a permutational multivariate analysis of variance 

(PERMANOVA), as implemented as the “Adonis2” function in the vegan R-package (version 

2.6.4) with 1000 permutations (M. J. Anderson, 2017; Oksanen J, 2022). Permutational 

multivariate analysis of dispersion (PERMDISP) was used to check for the homogeneity of 

group dispersion values; this was tested also using 1000 permutations using the “betadisper” 
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function in the vegan R package (M. J. Anderson, 2017; Oksanen J, 2022). For both tests, 

comparisons were considered significantly different if Pr(F) was < 0.05 (uncorrected).  

 

2.6.2.3 Composition  

 

The composition and distribution (absolute, relative abundance, and CLR-transformed 

abundance) of the 16S data were visualised at the phylum level using non-rarefied and rarefied 

data. Phyloseq, Ggplot2 (version 3.4.4), and the “taxa_distribution” function from 

MicrobiomeUtilities (version 1.00.17) R packages were used to construct these visualisations in 

R Studio (Lahti & Shetty, 2019; Wickham, 2016).  
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2.6.3 Differential Abundance Analysis with 16S rRNA Data 

 

Differential gene expression analysis Version 2 (DESeq2) and Linear discriminant analysis 

(LDA) effect size (LEfSe) were used to find microbial features differentially represented between 

the comparative groups of interest (Love et al., 2014; Segata et al., 2011). DESeq2 and LEfSe 

were performed using MicrobiomeAnalyst 2.0, a web-based server providing a variety of 

microbiome data analytical tools (Lu et al., 2023). Non-rarefied and rarefied ASV raw/absolute 

counts, metadata, and taxonomic and phylogenetic information were used as the inputs in the 

“Marker Data Profiling” module of MicrobiomeAnalyst. Non-rarefied ASV counts were used for 

DESeq2 and LEfSe as it has been shown that rarefaction may result in high rates of false 

positives in tests for differential abundance (McMurdie & Holmes, 2014). However, there is 

some disagreement with LEfSe and whether read count tables should be rarefied to correct for 

different read depths across samples (Nearing et al., 2022; Segata et al., 2011; Wallen, 2021; 

Weiss et al., 2017). As such, read count tables are often rarefied before running LEfSe; this test 

has also been performed with rarefied data (Nearing et al., 2022).  

 

These required inputs for MicrobiomeAnalyst were prepared prior in R Studio by exporting 

components of the Phyloseq object in csv or nwk format. At the data filtering step in the module, 

the default settings were used; “low count filter” was set to a minimum count of 4 and 20% 

prevalence in samples, and the “low variance filter” was set to remove features at 10% based 

on the inter-quantile range. This filtering step was to remove potentially uninformative features 

before applying the differential abundance tests thereby improving downstream outcomes (J. 

Chong et al., 2020; Nearing et al., 2022). DESeq2 was performed with the default settings in the 

module using filtered absolute, non-rarefied ASV count data. For LEfSe only, the non-rarefied 

and rarefied count data was scaled using total sum scaling (TSS) without any other data 

transformations applied at the data normalisation step in the module following filtering. The csv 

files of the DESeq2 results were exported from MicrobiomeAnalyst and used in R Studio to 

create volcano plots with a fold change threshold set at 0.5 and an uncorrected p-value set at 

0.05. The following conditions were used for LEfSe with the filtered and transformed data (non-

rarefied and rarefied): the alpha level for the Kruskal-Wallis rank sum test among classes was 

set at 0.05 (uncorrected p-value) and the threshold for logarithmic LDA score for discriminative 

features was set at 2.0. The bar plot function from the module was used for visualising the 

LEfSe outputs.  
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2.6.4 PICRUSt2 Software with 16S rRNA Gene Sequences 

 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 

(PICRUSt2) is a bioinformatics software platform designed to predict the functional potential of a 

bacterial community based on marker gene sequencing profiles (Douglas et al., 2020). 

PICRUSt2 was used to obtain insight into the potential functional capabilities of the faecal 

bacterial communities identified from 16S rRNA gene sequencing. The standard PICRUSt2 

(Version 2.5.0) algorithm was run in a high-performance computing environment using the 

filtered feature table and representative 16S rRNA sequencing outputs obtained from QIIME2 

(Section 2.5.6). Total-frequency-based filtering was applied to remove singletons (bacterial 

identifications found only by one sequencing read in one sample) to reduce any noise from the 

PICRUSt2 calculations. To retain all samples from Part One of the study for PICRUSt2 

analyses, no further filtering was applied. 

 

Three reference gene family databases were considered when running the PICRUSt2 pipeline 

at the ASV level: the Kyoto Encyclopaedia of Genes and Genomes (KEGG) orthologs (KOs), 

Enzyme Commission numbers (ECs), and MetaCyc pathway abundances (PWYs). The 

PICRUSt2 outputs are tabulated estimates of the functional abundances of the microbial 

communities. The outputs (KOs, ECs, PWYs) were analysed using ggpicrust2 R package to 

identify significant features of interest among the comparative groups of interest (Part One 

Comparisons A, B, C, and D). The ANOVA-Like Differential Expression 2 (ALDEx2) function in 

ggpicrust2 was used to test whether abundances of the predicted KO, EC, and PWY outputs 

differed among Comparisons A, B, C, and D; p < 0.01 was considered significant for this test. 

Ggpicrust2 is a recently released seamless and intuitive R software package designed to 

facilitate the analysis and interpretation of PICRUSt2 outputs (C. Yang et al., 2023). The 

standard ggpicrust2 workflow was followed and its packaged features were utilised to perform 

pathway name/description annotations, differential abundance testing (ALDEX2), and 

visualisation (C. Yang et al., 2023).  
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2.6.5 Phyloseq and R Studio with Culture MALDI-TOF MS Data 

 

Phyloseq was used to create an object for the downstream analyses of the faecal culture 

MALDI-TOF data. This object contained the participant metadata (Sections 2.1 and 2.3) and the 

MALDI-TOF data (Section 2.5.2). The MALDI-TOF data provided bacterial count (corrected to 

its faecal dry weight) and identification at the species taxonomic level. This data in their 

respective Phyloseq objects to reflect Comparisons A, B, C, and D (Part One) were used with 

the analyses in Sections 2.6.6, 2.6.7, and 2.6.8. The analytical workflow is alike the one used for 

the 16S rRNA data. The R scripts used can be found in Appendix 5. 

 

2.6.6 Composition and Diversity Analysis with Culture MALDI-TOF MS Data 

 

2.6.6.1 Alpha Diversity  

 

The following metrics were calculated at the species level: Observed species, Inverse Simpson, 

Chao1, Shannon, and Simpson. Alpha diversity comparisons among multiple groups were done 

using a Kruskal-Wallis test, while the Wilcoxon rank-sum test was used for comparing two 

groups. Uncorrected p-values were reported and p < 0.05 was considered statistically 

significant. 

 

2.6.6.2 Beta Diversity  

 

Principal coordinates analysis (PCoA) ordination plots of Bray-Curtis and Jaccard distances 

were used to compare beta diversity between the comparative groups of interest at the species 

taxonomic level. Bray-Curtis and Jaccard metrics were assessed using data that had been 

transformed using the “transform_sample_counts” function in the Phyloseq package; this scaled 

the count data to relative abundance. Before the data was visualised using PCoA ordination, the 

data already scaled to relative abundance underwent a Hellinger transformation using the 

function that is a part of the MicrobiotaProcess R package (version 1.13.2.994) (S. Xu et al., 

2023). This final data object was visualised using the PCoA function implemented in the 

MicrobiotaProcess R package (version 1.13.2.994) (S. Xu et al., 2023). Outside of the 

MicrobiotaProcess R package, the Hellinger transformation was performed by applying a square 

root to the “transform_sample_counts” calculation. Comparisons of all beta diversity metrics 

between groups were performed using a permutational multivariate analysis of variance 



 

CHAPTER TWO: Methodology | 104 

(PERMANOVA), as implemented as the “Adonis2” function in the vegan R-package (version 

2.6.4) with 1000 permutations (M. J. Anderson, 2017; Oksanen J, 2022). Permutational 

multivariate analysis of dispersion (PERMDISP) was used to check for the homogeneity of 

group dispersion values; this was tested also using 1000 permutations using the “betadisper” 

function in the vegan R package (M. J. Anderson, 2017; Oksanen J, 2022). For both tests, 

comparisons were considered significantly different if Pr(F) was < 0.05 (uncorrected).  

 

2.6.6.3 Composition  

 

The composition and distribution of the MALDI-TOF data were visualised at the genus level 

using relative abundance values. Phyloseq and Ggplot2 (version 3.4.4) R packages were used 

to construct these visualisations in R Studio (Wickham, 2016).  

 

2.6.7 Differential Abundance Analysis with Culture MALDI-TOF MS Data 

 

Linear discriminant analysis (LDA) effect size (LEfSe) was used to find microbial features from 

the culture MALDI-TOF data that were differentially represented between the comparative 

groups of interest (Love et al., 2014; Segata et al., 2011). LEfSe was performed using 

MicrobiomeAnalyst 2.0 (Lu et al., 2023). Raw/absolute counts, metadata, and taxonomic 

information were used as the inputs in the “Marker Data Profiling” module of MicrobiomeAnalyst. 

These required inputs for MicrobiomeAnalyst were prepared prior in R Studio by exporting 

components of the Phyloseq object in csv format. At the data filtering step in the module, the 

default settings were used; “low count filter” was set to a minimum count of 4 and 20% 

prevalence in samples, and the “low variance filter” was set to remove features at 10% based 

on the inter-quantile range. This filtering step was to remove potentially uninformative features 

before applying the differential abundance tests thereby improving downstream outcomes (J. 

Chong et al., 2020; Nearing et al., 2022). For LEfSe, the count data was scaled using total sum 

scaling (TSS) without any other data transformations applied at the data normalisation step in 

the module following filtering. The following conditions were used for LEfSe with the filtered and 

transformed data: the alpha-level for the Kruskal-Wallis rank sum test among classes was set at 

0.05 (uncorrected p-value) and the threshold for logarithmic LDA score for discriminative 

features was set at 2.0. The bar plot function from the module was used for visualising the 

LEfSe outputs.  
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2.6.8 MiMeDB with Culture MALDI-TOF MS Data 

 

The Human Microbial Metabolome Database (MiMeDB) (https:mimedb.org) is a comprehensive 

multi-omic, microbiome resource that connects: (i) microbes to microbial genomes; (ii) microbial 

genomes to microbial metabolites; (iii) microbial metabolites to the human exposome and (iv) all 

of these ‘omes’ to human health (Wishart et al., 2023). This thesis utilised MiMeDB with the 

faecal culture MALDI-TOF dataset on the premise that it is not the microbes themselves that 

lead to specific health effects, but rather the chemicals (metabolites) they produce (Wishart et 

al., 2023). Particularly, this study used the information output from MiMeDB to provide further 

insight into the potential connections between the metabolites and other associated health 

conditions. MiMeDB is in its infancy and this study was an opportunity for the Wishart Lab 

members to test the database based on user input and feedback, and for this project to explore 

the culture MALDI-TOF MS data further. Input data was provided by AJK to the Wishart Lab so 

they could generate output information using the backend server of the MiMeDB platform as the 

web-based interface is not ready for handling multiple queries at once.  

 

For Comparisons A, B, and C in Part One (Table 2.2.1), the bacterial count table (corrected to 

faecal dry weight and scaled to relative abundance) with the corresponding list of the faecal 

bacteria (species taxonomic level) identified were exported as Excel files from their respective R 

Phyloseq objects (Section 2.6.5). In Excel, the relative abundance values from each of the 

microbes identified were summed for each comparative group of interest. For example, 

Comparison A (Part One) compares 43 ME/CFS and 40 Control participants. The relative 

abundance values for one of the microbes (e.g., Bacteroides vulgatus) identified were summed 

for the ME/CFS group, followed by the Control group. This calculation was applied to all 

microbes identified via MALDI-TOF. The difference in relative abundance between the two 

groups for each of the microbes (direction: ME/CFS minus Control) was calculated and these 

values were used to select the microbes (features of interest) that would be put through 

MiMeDB. The same calculations were applied to Comparisons B and C (Part One). The 

subtraction direction for Comparison B was ME/CFS with FM minus ME/CFS without FM, and 

for Comparison C, it was ME/CFS with IBS minus ME/CFS without IBS. A difference of ≥ ± 0.5 

between the total relative abundance values of the comparisons was used to filter and select the 

features of interest. This selection was then used as the input information for MiMeDB with the 

assumption that the microbes with larger differences were more likely to be of interest.  
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2.7 Faecal Dry Weight Determination 

 

A portion of the neat faecal sample was used to determine its dry weight (Section 2.4.1). 

Approximately 300 milligrams of faecal sample were transferred into a pre-weighed disposable 

borosilicate glass culture tube 12 x 75 mm (part reference: Kimble 73500-1275). The combined 

mass of the sample and glass tube was recorded before it was placed into a pre-heated 

centrifugal concentrator capable of removing water from samples. The sample was dried out 

until a constant total weight of the sample and glass tube was achieved. All samples were 

monitored and achieved their constant total weight over 72 hours. The dry weight and 

percentages of the dry weight and water content of the samples were calculated based on the 

mass values recorded pre-drying and post-drying. Appendix 2 contains the faecal dry weight 

data for the participants as part of the study metadata.         

        

2.8 LCMS and NMR Metabolomics Experiments 

 

Targeted liquid-chromatography mass spectrometry (LCMS) and nuclear magnetic resonance 

(NMR) spectroscopy analytical techniques were used to assay biological samples for polar 

metabolites/small molecules. The faecal homogenate, urine, and blood plasma aliquots that 

were prepared during sample collection were kept in -80°C conditions until they were required 

for the metabolomics experiments (Sections 2.8.1 and 2.8.2). Figure 2.2.2 summarises the 

steps that were undertaken during sample collection before these experiments were conducted. 

Table 2.8.1 below outlines the batches of the samples used, and the corresponding section in 

this thesis detailing their sample preparation. The aliquots were thawed on ice and prepared 

simultaneously for metabolomic experiments in batches according to the sample type and 

analytical platform (LCMS or NMR). Part One and Two urine samples were prepared for LCMS 

analysis and run on the instrument at the same time. All sample preparation was done in cool 

conditions with samples and materials kept on ice throughout.  
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Table 2.8.1 Details of the biological sample aliquots used for metabolomics sample preparation  

Sample Type 

(Aliquot) 

Aliquot 

Preparation 

Details (refer to 

the 

corresponding 

section) 

Part One or Two 

or Project 

LCMS 

Metabolomic 

Sample 

Preparation 

(refer to the 

corresponding 

section)  

NMR 

Metabolomic 

Sample 

Preparation 

(refer to the 

corresponding 

section) 

Faecal 

Homogenate 

2.5.1 One 2.8.1.1 2.8.2.1 

Urine 2.4.1  One 2.8.1.2 2.8.2.2 

Urine 2.4.2  Two 2.8.1.2 2.8.2.2 

Blood Plasma 2.4.2  Two 2.8.1.3 2.8.2.3 
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2.8.1 LCMS Sample Preparation and Data Acquisition  

 

Samples were prepared according to polar metabolite extraction protocols advised by 

Metabolomics Australia, Bio21 Institute (MA), and transported to the MA facility on dry ice for 

instrument loading. Internal standards were prepared and provided by MA. Eppendorf-branded 

1.5mL microcentrifuge tubes (Eppendorf Tubes ® 3810X 0030 125.150) were used. Metabolites 

were extracted from their respective sample types (Sections 2.8.1.1, 2.8.1.2, 2.8.1.3) and 

measured according to the details in Section 2.8.1.4.  

 

2.8.1.1 Faecal Homogenate 

 

200 µL of a faecal homogenate was added to 800 µL of ice-cold extraction solvent with internal 

standards (100% methanol with 3 µM 13C6-Sorbitol, 3 µM 13C6-Leucine, and 3 µM 

13C5,15N1-Valine) in a 1.5 mL microcentrifuge tube. The microcentrifuge tube was mixed on a 

dry block shaking incubator (temperature constantly maintained at 4°C) at 1200 rpm for 20 

minutes to homogenise the sample. A pipette tip was used to break through the top layer and 

redisperse the upper part of the sample in the microcentrifuge tube before returning to the dry 

block shaking incubator for another 10 minutes; the sample had to be evenly homogenised 

before proceeding. Following homogenisation, the samples were centrifuged at 14, 100 × g for 

10 minutes at 4°C to pellet precipitated proteins and cell debris. The supernatant was collected 

into a new 1.5 mL microcentrifuge tube and stored at -80°C until the instrument was ready for 

analysis. 20 µL of the supernatant was used from each sample to prepare the pooled biological 

quality control (PBQC).   

 

2.8.1.2 Urine  

 

20 µL of urine sample was added to 180 µL of ice-cold extraction solvent with internal standards 

(acetonitrile:methanol: water 1:1:1 with 3 µM 13C6-Sorbitol, 3 µM 13C6-Leucine, and 3 µM 

13C5,15N1-Valine) in a 1.5 mL microcentrifuge tube. The microcentrifuge tube was vortexed for 

20 seconds before being put into an ultrasonic bath for 5 minutes. The bath water in the 

sonicator was pre-chilled with ice and replaced to maintain a cold temperature throughout. 

Following sonication, the microcentrifuge tubes were centrifuged at 14, 100 × g for 10 minutes 

at 4°C to pellet precipitated proteins and cell debris. The supernatant was collected into a new 
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1.5 mL microcentrifuge tube and stored at -80°C until the instrument was ready for analysis. 10 

µL of the supernatant was used from each sample to prepare the PBQC.  

 

2.8.1.3 Blood Plasma 

 

20 µL of plasma sample was added to 180 µL of ice-cold extraction solvent with internal 

standards (acetonitrile:methanol: water 40:40:20 with 3 µM 13C6-Sorbitol, 3 µM 13C6-Leucine, 

and 3 µM 13C5,15N1-Valine) in a 1.5 mL microcentrifuge tube. The microcentrifuge tube was 

vortexed for 20 seconds before being put into an ultrasonic bath for 5 minutes. The bath water 

in the sonicator was pre-chilled with ice and replaced to maintain a cold temperature throughout. 

Following sonication, the microcentrifuge tubes were incubated on a dry block shaking incubator 

(temperature constantly maintained at 4°C) for 10 minutes. The microcentrifuge tubes were then 

centrifuged at 14, 100 × g for 10 minutes at 0°C to pellet precipitated protein and cell debris. 

The supernatant was collected into a new 1.5 mL microcentrifuge tube. 10 µL of the supernatant 

was used from each sample to prepare the PBQC.   

 

2.8.1.4 LCMS Analysis of Polar Metabolites  

 

Polar metabolite analysis of the extracted samples, PBQCs, and 13 mixtures of authentic 

standard mixes was performed on an Agilent 6545B series quadrupole time-of-flight mass 

spectrometer (QTOF-MS, Agilent Technologies) using a hydrophilic column (ZIC-pHILIC) as 

described previously (Kong et al., 2021). The PBQC was analysed as quality control in set 

intervals between the extracted samples; the PBQC was run with every fifth sample. Data 

analysis and the generation of targeted data matrices were done using MassHunter Quantitative 

Analysis Software (Version B.09.00, Agilent Technologies) based on the retention time and 

molecular masses matching an authentic standard as described previously (Sumner et al., 

2007).  
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2.8.2 NMR Sample Preparation and Data Acquisition 

 

Polar metabolites were extracted from their respective sample types and quantified using NMR. 

All biological samples underwent a similar sample preparation process involving the addition of 

297 µL of the biological sample material, 363 µL NMR buffer, vortex mixing, and centrifugation 

before transferring to NMR tubes for analysis. The plasma samples were prepared using a 

liquid-liquid extraction technique (Sheedy et al., 2010). The faecal homogenate and urine 

samples did not use this technique (Beckonert et al., 2007; Dona et al., 2014). Pooled biological 

quality control samples were prepared for NMR. For each sample set and type, 200 µL from four 

control samples were pooled in a 1.5 mL microcentrifuge tube. From this PBQC stock, a 297 µL 

aliquot of sample was taken, prepared, and treated the same way for their respective sample 

type. Two replicates from the PQBC stock were prepared and analysed. The spectrometer 

parameters and settings used to acquire NMR data are detailed in Section 2.8.2.4.  

 

The NMR buffer, per sample, contained 297 µL 200 mM sodium phosphate in deuterium oxide 

(pH 7.4), and 66 µL of deuterium oxide containing 5 mM 3-(trimethylsilyl)-1-propanesulfonic 

acid-d6 sodium salt (DSS) and 0.2% (w/v) sodium azide. The NMR buffer stock was freshly 

prepared and used within 12 hours; 363 µL of NMR buffer was transferred into a 1.5 mL 

microcentrifuge tube. 297 µL of the biological sample (faecal homogenate, urine, or blood 

plasma) was added to the tube with the buffer after it was handled according to sample-specific 

preparation requirements (Section 2.8.2.1, 2.8.2.2, 2.8.2.3). This made a total of 660 µL of the 

sample. These samples were kept at -80°C until the NMR instruments were available for 

analysis (Section 2.8.2.4). The samples were thawed on ice, mixed by vortex, centrifuged at 16, 

000 × g for 1 minute, and 550 µL of the supernatant was transferred into a new 177.8 x 4.97 

mm, 0.38 mm wall thickness, 507-grade NMR tube for NMR analysis.  
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2.8.2.1 Faecal Homogenate 

 

The faecal homogenate was prepared according to the steps in Section 2.8.2; 297 µL of faecal 

homogenate sample was added to 363 µL of NMR buffer in a 1.5 mL microcentrifuge tube and 

mixed by vortexing.  

 

2.8.2.2 Urine  

 

Part One and Part Two urine samples were prepared as separate batches for NMR analysis. 

The urine samples were filtered using a 0.2 µM, 25 mm diameter syringe filter unit then 

dispensed into a 1.5 mL microcentrifuge tube, and stored at minus 80°C. The filtered urine 

samples were thawed on ice and prepared for NMR analysis according to the steps in Section 

2.8.2; 297 µL of filtered urine sample was added to 363 µL of NMR buffer in a 1.5 mL 

microcentrifuge tube and mixed by vortexing.  

 

2.8.2.3 Blood Plasma 

 

200 µL of plasma sample was added to 200 µL of ice-cold deuterated chloroform and 200 µL of 

ice-cold deuterated methanol in a 1.5 mL microcentrifuge tube. The sample tubes were mixed 

by vortexing and then left to sit on ice for 15 minutes. The samples were then centrifuged at 16, 

000 × g at 4°C for 10 minutes to produce a biphasic mixture with an upper hydrophilic phase 

of water/deuterated methanol containing polar metabolites, and a lower phase of deuterated 

chloroform containing lipophilic compounds. The upper phase of the sample was prepared 

according to the steps in Section 2.8.2; 297 µL of the sample from the top hydrophilic layer was 

added to 363 µL of NMR buffer in a 1.5 mL microcentrifuge tube and mixed by vortexing.  

 

2.8.2.4 NMR Spectroscopy of Polar Metabolites 

 

Two NMR instruments operating at different frequencies were used due to instrument 

availability. Part One faecal homogenate and urine samples were measured on a Bruker 600 

MHz spectrometer. Part Two urine and blood plasma samples were measured on a Bruker 700 

MHz spectrometer. Both spectrometers were equipped with a 5 mm triple resonance cryoprobe 

and set to a constant temperature of 298 K. Standard one-dimensional (1D) 1H spectra were 

acquired for all prepared biological samples using 1D Carr-Purcell-Meiboom-Gill (CPMG) pulse 
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sequence with presaturation for solvent suppression and T2 relaxation filtering. The CPMG 

presat pulse sequence had the form –RD-90°-(t-180°-t)n-ACQ. The RD (relaxation delay) was 4 

s, t (spin-echo delay) was 300 us, n (number of loops) was 128 and 180° is a 180° RF 

(radiofrequency) pulse, and ACQ is the data acquisition period depending on the sample type. 

The 90° pulse width was calibrated, and the receiver gain was optimised. The faecal 

homogenate spectra were collected over 65, 536 time domain points and 128 scans. The blood 

plasma spectra were collected over 73, 728 time domain points and 32 scans. The urine 

samples were collected over 65, 536 time domain points and 64 scans. All spectra were 

collected with a spectral width of 20 ppm. Water suppression was achieved by presaturation of 

the water signal during RD (4 s).  

 

Using the Chenomx NMR Suite Professional Version 6.0 software package, the free induction 

decay was multiplied by 0.3 Hz exponential line broadening and zero-filled before Fourier 

transformation (all biological sample types). Spectra were manually phased, baseline corrected, 

and referenced to DSS with a chemical shift of 0 ppm. The compound libraries in the Chenomx 

software were used to identify and quantify metabolites in the NMR 1D 1H spectra based on 

their characteristic chemical shifts using 0.5 mM DSS as an internal chemical shift reference. 

Reference lists of NMR-measured metabolites in the urine, blood, and faecal samples were 

provided by the Wishart Lab; these lists were used to guide the selection of metabolites from the 

compound library (B. Lee and D. Wishart, personal communication, January 2023). A total of 36 

faecal, 26 urine, and 47 blood plasma metabolite features per sample assayed were identified 

from the NMR experiments. 2D 1H TOCSY experiments for each sample type were also 

collected using WATERGATE solvent suppression and a DIPSI-2 mixing sequence with 60 ms 

mixing time and 4096 t2 and 1024 t1 data points. States-TPPI was used for quadrature 

detection along the indirect dimension and the 2D NMR data was processed using TOPSPIN 

1.3. These 2D 1H TOCSY spectra with NMRFAM-Sparky were used to confirm the identities of 

metabolites observed in the 1D. 
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2.9 Analyses of Metabolomics Data 

 

2.9.1 LCMS Data Analysis 

 

Following Section 2.8.1.4, Metabolomics Australia (MA) provided Excel data matrices of the 

faecal, urine, and blood plasma samples that were used for downstream analyses. Each data 

matrix output contained the relative concentrations (peak area) of metabolites assayed from the 

participant and pooled biological control (PBQC) samples. The LCMS method used by MA could 

not differentiate between stereoisomers and metabolites eluting in the same region (retention 

time) with similar mass. However, initial inspection of the data matrices indicated otherwise with 

similar relative concentration values assigned (0 to 2% difference) suggesting that these 

features were “duplicates” of the metabolite. Clarification and advice were sought and given by 

MA on this. To ensure that the data matrices were reflective of the LCMS methodology used, 

each metabolite was assigned its molecular mass and sorted accordingly. HMDB (hmdb.ca) 

was used to acquire the mass and structural information on the metabolites that assisted with 

the consolidation of the data matrices. This process highlighted metabolite features that were 

potentially ambiguous in the data matrix. For metabolites that were initially listed but were 

stereoisomers of each other, the features were merged, and the average of their relative 

concentrations was taken. For example, the original matrix listed D- and L- aspartic acid, and 

their relative concentration values for all the samples were nearly identical to each other (0 to 

2% difference). In the refined matrix, this metabolite feature was considered as one (aspartic 

acid), and its relative concentration was taken from the D- and L-aspartic acid. For non-

stereoisomer metabolites that had the same mass, but different relative concentrations, these 

were reported independently as their retention times were different. The data matrices were 

consolidated accordingly and subsequently used for data analyses with MetaboAnalyst (Section 

2.9.3). A total of 137 faecal, 147 urine, and 128 blood plasma metabolite features per sample 

assayed were identified from the LCMS experiments. 

 

2.9.2 NMR Data Analysis 

 

Following the assignment of metabolites, NMR data matrices of the faecal, urine, and blood 

plasma samples were generated and exported from Chenomx as Excel files. These data 

matrices were subsequently used for the data analyses with MetaboAnalyst (Section 2.9.3). 
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2.9.3 MetaboAnalyst for Metabolomics Data Analysis  

 

Consolidated LCMS (Section 2.9.1) and NMR (Section 2.9.2) metabolomic data matrices were 

analysed with MetaboAnalyst 5.0. MetaboAnalyst (https://www.metaboanalyst.ca/) is a well-

maintained, open-source analytical tool provided by the Xia lab (Pang et al., 2021). CSV-

formatted files were prepared using Microsoft Excel according to the stipulated format (samples 

in rows, unpaired). In Excel, participant metadata was assigned to the LCMS and NMR data 

matrices in the second column following the first column which contained the sample labels. 

LCMS and NMR data matrices for the faecal samples were corrected to their sample dry weight 

in Excel. For the urine samples, the LCMS and NMR PBQCs were averaged and merged into 

one entity in Excel; this was used in the normalisation section of the MetaboAnalyst module. 

Initially, data matrices for all sample types were analysed in MetaboAnalyst with the PBQC 

samples; close clustering of these quality control samples indicated that the differences 

observed between the groups were attributable to biological factors. In total, eight CSV files 

were prepared to reflect the metadata groupings of Comparisons A, B, C, and D using the 

LCMS and NMR data matrices (Appendix 8 and Appendix 10). HMDB (https://hmdb.ca/) was 

searched to obtain information about the differential metabolites post-acquisition and data 

analysis.  

 

The final CSV-Excel files were uploaded into the MetaboAnalyst “Statistical Analysis One 

Factor” module as “concentrations”. At the data integrity check step, missing values were 

detected, and default settings for this were accepted i.e., missing values were replaced by 1/5 of 

the minimum positive values of their corresponding variables. Following this, sample 

normalisation, data transformation, and scaling options were selected. This data pre-treatment 

step was performed to achieve a data matrix with a more Gaussian-type distribution. For the 

faecal (as already done in Excel) and plasma samples, no sample normalisation was selected. 

For the urine samples, normalisation by a reference sample was selected (averaged PBQCs). 

All samples were log-transformed (base 10) and auto-scaled (mean-centred and divided by the 

standard deviation of each variable). From this point, univariate (volcano plot (VP)) and 

multivariate (unsupervised principal component analysis (PCA) and supervised partial least-

squares discriminant (PLS-DA)) analyses were conducted. Multivariate and univariate analyses 

were used to determine whether metabolites measured by LCMS and NMR were significantly 

different from the comparative groups of interest. All plots for the metabolomic results present 

https://www.metaboanalyst.ca/
https://hmdb.ca/
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the LCMS outcomes first, followed by NMR outcomes in sections that are organised according 

to Comparisons A to D.  

 

PCA, presented as a 2D scores plot with ellipses representing the 95% confidence interval of 

the group clustering, was performed to search for trends by visual inspection in group 

separation and to identify potential outliers. PLS-DA was performed to maximise the separation 

of the groups observed and assess the extent of the top 15 different metabolites that may reveal 

potential features and pathophysiological states of interest. PLS-DA was presented as a 2D 

scores plot with ellipses representing a 95% confidence interval of the group clustering, and 

Variable Importance in the Projection (VIP) score results > 1.0 from Component 1. Separation of 

the PLS-DA plots was inspected visually, and the VIP plots show the rank of the top 15 different 

metabolites identified by PLS-DA according to the VIP score on the x-axes. The most 

discriminating metabolites in the VIP plots are shown in descending order of their coefficient 

scores and the coloured boxes indicate whether the metabolite relative concentration is 

increased (red/high) or decreased (blue/low). For both the PCA and PLS-DA 2D score plots, 

samples in the comparative group of interest are represented by the coloured and shaped 

markers denoted in the legend. Further, the separation of the ellipses in the 2D score plots was 

described as overlapping, very partial, partial, distinguished, or complete.  

 

Univariate statistical analysis, presented as volcano plots, was used to focus on the 

independent changes in metabolite levels and detect more strictly the significant differences in 

the metabolome profiles. All volcano plots followed the same direction: Comparison A Control 

minus ME/CFS, Comparison B ME/CFS with FM minus ME/CFS without FM, Comparison C 

ME/CFS with IBS minus ME/CFS without IBS, and Comparison D age-matched ME/CFS with 

IBS minus age-matched ME/CFS without IBS. For LCMS volcano plot analyses, a fold change 

(FC) threshold of 1.5, along with raw and FDR-adjusted p-values of 0.05, to identify significant 

differences was applied. However, an exception was made for the Part Two LCMS plasma 

analysis comparison of age-matched ME/CFS with IBS and ME/CFS without IBS groups (Figure 

5.1.25) as these parameters did not yield any data points; instead, a FC threshold of 1.0 with a 

raw p-value of 0.1 was used. For NMR volcano plot analyses, a FC threshold of 1.0, along with 

raw and FDR-adjusted p-values of 0.1, to identify significant differences was applied. However, 

an exception was made for the Part One NMR faecal analysis comparison of ME/CFS overall 

and Control groups (Figure 4.1.1) where a FC threshold of 1.0 with a raw and FDR-adjusted p-

value of 0.05 was used instead.  
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3 CHAPTER THREE: Gut Microbiome (Part One) 

 

The plausible involvement or implications of the gut microbiome emerge from its critical role in 

several complex functions that are closely juxtaposed. The gut-brain axis, germ-free mouse 

models, and observations from antibiotic, probiotic, diet, faecal transplantation, and other gut-

mediated or involved therapeutic interventions provide further compelling support for the integral 

role of the gut microbiome in the disease (Carding et al., 2015; König et al., 2022; Varesi et al., 

2021). It has been hypothesised that gut dysbiosis or disturbed alterations in the composition, 

capacity, and function of the gut microbiome may contribute to the development, exacerbation, 

and perpetuation of the disease. Indeed, it has been proposed that ME/CFS patients with IBS 

might encompass a distinct subgroup based on microbiome and metabolic profiling (Maes et al., 

2014; Nagy-Szakal et al., 2017). If it is not IBS per se, GI symptoms, and dysregulation might 

constitute a potential subtype in ME/CFS (Aaron et al., 2001; Frémont et al., 2013; Germain et 

al., 2018, 2020; Giloteaux, Goodrich, et al., 2016; Guo, Che, et al., 2023; Milivojevic et al., 2020; 

Nagy-Szakal et al., 2017, 2018; Shukla et al., 2015; Xiong et al., 2023). However, while there is 

a considerable amount of evidence for the gut in ME/CFS, findings remain limited, inconsistent, 

and unresolved (Du Preez et al., 2018).  

 

Research has not elucidated any definite gut-related mechanistic, pathophysiological, unique 

subgroupings/categories, cause-effect, or before-during-after relationships in ME/CFS (G. He et 

al., 2023; Newberry et al., 2018; Varesi et al., 2021). Pursuing the role of the gut, and gut 

dysbiosis in disease considers not only its composition but also its diversity, functionality, and 

capacity to impart influence, respond, and interact with the host. In ME/CFS, many studies have 

found disturbances and alterations in the taxonomic composition and community structure of the 

gut microbiota from their cohorts; however, these datasets are not necessarily “first stop” or 

“final destination” answers (König et al., 2022; Olesen & Alm, 2016; Proal & Marshall, 2018; 

Varesi et al., 2021). It is becoming more and more suggested and indicated that the complex 

link between dysbiosis and host responses is a representation of increased intestinal 

hyperpermeability and bacterial translocation (Varesi et al., 2021). A “leaky gut” has been 

observed via the unusual and unbalanced measurements of various pro-inflammatory, immune-

mediated markers and/or metabolites (König et al., 2022; Navaneetharaja et al., 2016; Seton et 

al., 2023; Varesi et al., 2021). Under a “healthy” or “normal” gut composition, passage through 

the gut barrier should not be possible, and the gut microbiome would be in favour of regulation, 

defence, protection, and repair (De Vos et al., 2022; König et al., 2022). This aligns with the 
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broader concept that the chronicity, perturbations, and breakdown of homeostasis in ME/CFS 

are accompanied by presentations of affected and/or triggered stress, and systemic immune 

and inflammatory responses.  

 

This chapter focused on the gut microbiome characterised by the faecal samples from Part One. 

This included the overall microbial composition, alpha and beta diversity measures, and 

differential abundance analyses from the 16S rRNA sequencing and culture MALDI-TOF MS 

datasets. A similar data analytical workflow was applied to both methodological platforms; 

therefore, a discussion of the results and findings is presented here simultaneously. Generally, 

the 16S rRNA outcomes are displayed or discussed first, followed by the culture MALDI-TOF 

MS outcomes. PICRUSt2 and MiMeDB results will be presented here; however, also be 

discussed more in the context of Chapter 4. Subsequent chapters (Chapters 4 and 5) of this 

thesis will look at the metabolomic profiles from Part One and Part Two of the study. These 

metabolomic measurements may provide further insight into the metabolic functionality of the 

gut microbiome, and differences and similarities among the assigned comparative participant 

groups (Comparison A-D). The faecal and urine metabolomic outcomes from Part One are 

presented in Chapter 4, and the plasma and urine from Part Two are in Chapter 5. Part One 

looked at 40 ME/CFS and 43 Control participants which included males and females (Section 

2.1). Table 2.2.1 shows the baseline characteristics of the four comparative groups 

(Comparison A-D). Comparison A compares the ME/CFS overall and Control groups, 

Comparison B compares the ME/CFS +/- FM groups, Comparison C compares the ME/CFS +/- 

IBS groups, and Comparison D compares the age-matched ME/CFS +/- IBS** groups.  

 

3.1 Overall Microbial Composition  

 

From the non-rarefied 16S rRNA data (Section 3.1.1), absolute abundance (Figure 3.1.1) and 

relative abundance (Figure 3.1.2) values showed that Bacteroidota (or its synonym 

Bacteroidetes) and Firmicutes overall were the most highly represented phyla across the 

dataset. These are two major important phyla of bacteria and together they comprise up to 

about 90% of the total human gut community (König et al., 2022; Stojanov et al., 2020). A visual 

comparison between the ME/CFS overall and Control groups (Comparison A) showed that both 

Bacteroidetes and Firmicutes phyla appeared to be reduced in the ME/CFS overall group 

(Figure 3.1.1 and Figure 3.1.2). The decrease in Bacteroidetes was also observed in some 

other ME/CFS studies (König et al., 2022; Raijmakers et al., 2020); however, others have found 
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an increased or comparable abundance between their ME/CFS and non-ME/CFS cases 

(Frémont et al., 2013; Giloteaux, Goodrich, et al., 2016; König et al., 2022; Lupo et al., 2021; 

Varesi et al., 2021). The decreasing trend in Firmicutes appeared to be consistent with some of 

the other ME/CFS studies (Frémont et al., 2013; Giloteaux, Goodrich, et al., 2016; König et al., 

2022; Lupo et al., 2021; Varesi et al., 2021). Where the data has taken a “traditional” approach 

to handling abundance values, it appeared that phyla Patescibacteria, Proteobacteria, and 

Verrucomicrobiota were different with the shifts in Bacteroidetes and Firmicutes between the 

ME/CFS overall and Control groups (Figure 3.1.1 and Figure 3.1.2). However, the other phyla 

features, Actinobacteriota, Campilobacterota, Cyanobacteria, Desulfobacterota, Fusobacteriota, 

and Synergiosta, were more obscure to visually discriminate between the two groups (Figure 

3.1.1 and Figure 3.1.2). Instead, the centred-log ratio (CLR) transformed non-rarefied data, a 

“newer” compositional approach to data analyses, displayed a more obvious and apparent 

comparison in abundance across all 11 of the bacteria phyla features (Figure 3.1.3). Note, that 

the negative CLR values from the transformation indicated a low/lower microbial abundance 

(Figure 3.1.3).  

 

The CLR data transformation was applied to the non-rarefied dataset to address the 

compositional bias and issue inherent in 16S rRNA gene amplicon sequencing data (Gloor et 

al., 2017). It has been said that applying the CLR transformation brings new perspectives and 

“opens up” the data (Mullineaux et al., 2021). Interestingly, while the decrease in Bacteroidetes 

was observed in the ME/CFS overall group, Firmicutes appeared to be increased from the CLR-

transformed data (Figure 3.1.3). Although the CLR transformation was not applied to them, an 

increase in Firmicutes has also been observed by other ME/CFS studies (Giloteaux, Hanson, et 

al., 2016; König et al., 2022; Newberry et al., 2018; Raijmakers et al., 2020). Similarly, different 

observations in abundance being higher or lower for all the other phyla can be made depending 

on whether the data is in its absolute abundance values (Figure 3.1.1), relative abundance 

values (Figure 3.1.2), or CLR-transformed state (Figure 3.1.3). This indicates that the approach 

to data analysis should be considered when describing shifts and trends in the gut microbiome. 

The phylum features of the non-rarefied data converted to relative abundance values were 

visualised with distribution plots (Figure 3.1.4, Figure 3.1.5, Figure 3.1.6, and Figure 3.1.7). 

These plots provided a general overview of data when grouped according to ME/CFS overall 

versus the Control group (Comparison A), or with and without the FM and IBS comorbidities 

(Comparison C-D). The pattern of each line which represents a bacterial phylum all varied 

slightly according to the comparison involved. Comparison C and D, where D is the ME/CFS 
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age-matched cohort for the IBS comorbidity, showed a more similar pattern to each other than 

the comparison involving FM (Comparison B). Noticeably, the Synergistota phylum did not 

appear in the ME/CFS - FM (Figure 3.1.5), ME/CFS - IBS (Figure 3.1.6), and age-matched 

ME/CFS - IBS (Figure 3.1.7) groups. It is not possible to make direct comparisons and account 

for every microbial taxonomic feature with the results from this thesis and other studies given 

the differences in cohorts, platforms, study designs, and the variety of data analytical 

approaches used. Despite the discrepancies across study outcomes, the data presented here 

supports the overall evidence that suggests alterations in the gut microbiota composition exist 

between ME/CFS and non-ME/CFS cohorts. It also provides some indication of microbial 

alterations within ME/CFS, with or without the FM, or IBS comorbidity.    

 

Rarefied 16S rRNA data was also used to characterise the gut microbiome (Section 3.1.2). 

Compared to the non-rarefied faceted box plots, the rarefied box plots of absolute abundance 

(Figure 3.1.8) and relative abundance (Figure 3.1.9) values showed that the sequences for 

Campilobacterota were lost from rarefying the data; however, all of the other phylum features 

were retained. It was apparent in the rarefied 16S rRNA data that the Bacteroidota (or its 

synonym Bacteroidetes) and Firmicutes phylum features were the most dominant phyla 

regardless of the disease state. It was also observed in the rarefied data that these two 

predominant phyla were reduced in the ME/CFS overall compared to the Control group 

(Comparison A). From visual inspection of Figure 3.1.8 and Figure 3.1.9, Actinobacteriota, 

Proteobacteria, and Verrucomicrobiota at the phylum level were different between the ME/CFS 

overall and Control groups (Comparison A). Actinobacteriota was decreased in this ME/CFS 

group which was inconsistent with other studies that identified it; decreased in the Giloteaux, 

Hanson et al. (2016) ME/CFS cohort yet increased in the Raijmakers et al. (2020) ME/CFS 

cohort. Proteobacteria was more abundant in the ME/CFS group compared to Controls which 

aligned with the findings from Giloteaux, Goodrich et al. (2016) but conflicted with Giloteaux, 

Hanson et al. (2016). Like the non-rarefied data, all comparisons, Comparison A-D, were 

visualised with distribution plots using rarefied data (Figure 3.1.10, Figure 3.1.11, Figure 3.1.12, 

and Figure 3.1.13). The pattern of each line which represents a bacterial phylum varied slightly 

according to the respective comparison and group involved. Comparison C and D, where D is 

the age-matched cohort for the IBS comorbidity, showed a more similar pattern to each other 

than the comparison involving FM (Comparison B). Again, the data here does not contribute to 

finding a consistent microbial signature for dysbiosis and alterations in ME/CFS. Instead, it 
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reiterates the issues with heterogeneity of the ME/CFS cohort, study designs, and analytical 

approaches used.  

 

Across all of the comparisons for the culture MALDI-TOF dataset (Section 3.1.3), Bacteroides 

and related genera at the genus level were the most abundant in all samples (Figure 3.1.14, 

Figure 3.1.15, Figure 3.1.16, and Figure 3.1.17). Armstrong et al. (2017) and Wallis et al. (2018) 

also identified that Bacteroides at the genus level were a major fraction of the gut microbiota 

findings. However, as the same culturing methods and data approaches were not used (Section 

2.1.1), direct comparisons to these studies were not possible. Other high relative abundance 

genera observed in all samples from this study included Bifidobacterium and related genera, 

Eubacterium and related genera, Prevotella, and Escherichia. At an initial glance, there does 

not appear to be any standout differences or patterns between the ME/CFS overall and the 

Control group (Comparison A) that could suggest dysbiosis; in fact, each sample regardless of 

its assigned cohort appears unique (Figure 3.1.14). However, when the Control group is 

removed from the comparisons, some differences in the ME/CFS group depending on FM or 

IBS comorbidity, become more apparent, indicating some bearing of the comorbidities in 

ME/CFS (Comparison B-D). However, further comparisons of the groups were examined with 

alpha and beta diversity metrics and differential abundance analysis testing.  
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3.1.1 Non-Rarefied Taxonomic Composition (16S rRNA) 

 

 

Figure 3.1.1 Overview of taxonomy and absolute abundance values at the phylum level from 

the non-rarefied Part One dataset (ME/CFS overall (n = 40) vs. Control (n = 43)) 
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Figure 3.1.2 Overview of the taxonomy and relative abundance values at the phylum level from 

the non-rarefied Part One dataset (ME/CFS overall (n = 40) vs. Control (n = 43)) 
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Figure 3.1.3 Overview of the taxonomy and centred-log ratio (CLR) transformed abundance 

values at the phylum level from the non-rarefied Part One dataset (ME/CFS overall (n = 40) vs. 

Control (n = 43)) 
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Figure 3.1.4 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

overall (n = 40) and Control (n = 43) Part One Comparison A, non-rarefied, converted to relative 

abundance dataset 
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Figure 3.1.5 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

with FM (n = 19) and ME/CFS without FM (n = 21) Part One Comparison B, non-rarefied, 

converted to relative abundance dataset 
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Figure 3.1.6 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

with IBS (n = 20) and ME/CFS without IBS (n = 20) Part One Comparison C, non-rarefied, 

converted to relative abundance dataset 
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Figure 3.1.7 Overview of the distribution of the taxonomy at the phylum level from the age-

matched ME/CFS with IBS (n = 14) and ME/CFS without IBS (n = 14) Comparison D, Part One 

non-rarefied, converted to relative abundance dataset 



 

CHAPTER THREE: Gut Microbiome (Part One) | 128 

3.1.2 Rarefied Taxonomic Composition (16S rRNA) 

 

 

Figure 3.1.8 Overview of taxonomy and absolute abundance values at the phylum level from 

the rarefied Part One dataset (ME/CFS overall (n = 40) vs. Control (n = 43)) 
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Figure 3.1.9 Overview of taxonomy and relative abundance values at the phylum level from the 

rarefied Part One dataset (ME/CFS overall (n = 40) vs. Control (n = 43)) 
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Figure 3.1.10 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

overall (n = 40) and Control (n = 43) Part One rarefied, converted to relative abundance dataset  
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Figure 3.1.11 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

with FM (n = 19) and ME/CFS without FM (n = 21) Part One rarefied, converted to relative 

abundance dataset 
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Figure 3.1.12 Overview of the distribution of the taxonomy at the phylum level from the ME/CFS 

with IBS (n = 20) and ME/CFS without IBS (n = 20) Part One rarefied, converted to relative 

abundance dataset  
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Figure 3.1.13 Overview of the distribution of the taxonomy at the phylum level from the age-

matched ME/CFS with IBS (n = 14) and ME/CFS without IBS (n = 14) Part One rarefied, 

converted to relative abundance dataset 
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3.1.3 Data Composition (Culture MALDI-TOF) 

 

 

Figure 3.1.14 Stacked bar plot showing the relative abundance at the genus level from the 

culture MALDI-TOF dataset in the ME/CFS overall (n = 40) and Control (n = 43) Part One 

participants.  

 

 

Figure 3.1.15 Stacked bar plot showing the relative abundance at the genus level from the 

culture MALDI-TOF dataset in ME/CFS with FM (n = 19) and ME/CFS without FM (n = 21) Part 

One participants.  
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Figure 3.1.16 Stacked bar plot showing the relative abundance at the genus level from the 

culture MALDI-TOF dataset in ME/CFS with IBS (n = 20) and ME/CFS without IBS (n = 20) Part 

One participants.  

 

 

Figure 3.1.17 Stacked bar plot showing the relative abundance at the genus level from the 

culture MALDI-TOF dataset in age-matched ME/CFS with IBS (n = 14) and ME/CFS without IBS 

(n = 14) Part One participants.  
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3.2 Alpha Diversity  

 

Bacterial alpha diversity metrics were calculated from the rarefied 16S rRNA data at the ASV 

level for all comparisons, Comparison A-D (Figure 3.2.1, Figure 3.2.2, Figure 3.2.3, and Figure 

3.2.4, respectively). Although the ME/CFS overall group had a lower number across all alpha 

diversity metrics, univariate analyses between each comparative group (Comparison A-D) were 

not significantly different (Table 3.2.1). Alpha diversity findings throughout ME/CFS gut 

microbiome studies are inconsistent although the general message is that it is reduced or lower 

compared to non-ME/CFS cohorts (König et al., 2022; Varesi et al., 2021). Some studies have 

found differences in their cohorts for alpha diversity (Frémont et al., 2013; Giloteaux, Goodrich, 

et al., 2016; Giloteaux, Hanson, et al., 2016; Guo, Che, et al., 2023; Lupo et al., 2021; Xiong et 

al., 2023). In some cases, alpha diversity metrics were not extensively presented in their 

publication which is possibly a missed opportunity for using the data (Armstrong et al., 2017; 

Nagy-Szakal et al., 2017; Raijmakers et al., 2020; Sheedy et al., 2009; Shukla et al., 2015; 

Wallis et al., 2018). In other cases, there was no evidence of differences (Seton et al., 2023).  

 

Bacterial alpha diversity metrics were calculated at the species level from the culture MALDI-

TOF MS data that had been corrected to its faecal sample dry weight for Comparison A-D 

(Figure 3.2.5, Figure 3.2.6, Figure 3.2.7, and Figure 3.2.8). The alpha diversity metrics were 

compared in univariate analyses between each comparative group involved in Comparison A-D 

(Table 3.2.2). In Comparison A, the Chao 1 index and observed species were significantly 

different with lower numbers presented in the ME/CFS overall group versus the Control group. 

There were no statistically significant differences calculated in Comparison B which evaluated 

the presence or absence of FM comorbidity in ME/CFS. Interestingly, there were statistically 

significant differences observed in Comparisons C and D for some of the alpha diversity 

metrics. For Comparison C (ME/CFS +/- IBS), it was the Shannon index, although the Inverse 

Simpson and Simpson metrics approached a 0.05 alpha significance level. While Comparison D 

with the ME/CFS +/- IBS groups that have been age-matched were compared to each other 

throughout this thesis, it was noted that when these groups were compared with the Control 

group, a statistically significant difference was observed for Chao1 and observed number of 

species. To some extent, these observations in ME/CFS +/- IBS or age-matched IBS** 

(Comparison C and D) provide some insight into the IBS comorbidity, and how the overall 

ME/CFS cohort could be characteristically influenced and distinguished by it.  
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3.2.1 Alpha Diversity (16S rRNA) 

 

 

Figure 3.2.1 Box plots of the alpha diversity from ME/CFS overall and Control groups using 

different parameters on rarefied data at the ASV level.  

 

Figure 3.2.2 Box plots of the alpha diversity from Control, ME/CFS with FM and ME/CFS 

without FM groups using different parameters on rarefied data at the ASV level.  
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Figure 3.2.3 Box plots of the alpha diversity from Control, ME/CFS with IBS and ME/CFS 

without IBS groups using different parameters on rarefied data at the ASV level.  

 

 

Figure 3.2.4  Box plots of the alpha diversity from Control, age-matched ME/CFS with IBS and 

age-matched ME/CFS without IBS groups using different parameters on rarefied data at the 

ASV level. 
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Table 3.2.1 Comparison of alpha diversity metrics from rarefied data at the ASV level  

 

 

 

 

 

 

 

ACE Chao1 Fisher
Inv 

Simpson
Observed Shannon Simpson

All participants (n = 83) 228 ± 81 228 ± 82 37 ± 15 19 ± 11 191 ± 62 3.5 ± 0.6 0.92 ± 0.05

ME/CFS overall (n = 40) 217 ± 68 218 ± 70 34 ± 12 17 ± 8 180 ± 52 3.4 ± 0.5 0.92 ± 0.05

Control (n = 43) 238 ± 90 238 ± 92 39 ± 17 20 ± 13 201 ± 69 3.6 ± 0.6 0.93 ± 0.05

p-value † 0.3961 0.4659 0.2085 0.4063 0.2085 0.2285 0.4063

ME/CFS with FM (n = 19) 220 ± 69 222 ± 72 34 ± 12 15 ± 8 178 ± 51 3.5 ± 0.5 0.91 ± 0.05

ME/CFS without FM (n = 21) 214 ± 68 214 ± 70 35 ± 12 19 ± 9 182 ± 54 3.5 ± 0.6 0.92 ± 0.06

p-value † 0.9147 1 0.7349 0.2257 0.7349 0.145 0.2257

p-value ‡ 0.6884 0.7499 0.432 0.332 0.432 0.203 0.332

ME/CFS with IBS (n = 20) 207 ± 61 205 ± 56 33 ± 11 16 ± 8 174 ± 50 3.4 ± 0.5 0.91 ± 0.07

ME/CFS without IBS (n = 20) 226 ± 74 231 ± 81 36 ± 12 18 ± 9 186 ± 54 3.5 ± 0.5 0.93 ± 0.05

p-value † 0.3983 0.2648 0.4407 0.4777 0.4407 0.5117 0.4777

p-value ‡ 0.4924 0.4724 0.3177 0.5576 0.3177 0.4045 0.5576

ME/CFS with IBS age matched (n = 14) 217 ± 63 214 ± 57 34 ± 12 16 ± 9 181 ± 51 3.4 ± 0.6 0.91 ± 0.07

ME/CFS without IBS age matched (n = 14) 218 ± 75 222 ± 84 34 ± 13 18 ± 10 178 ± 55 3.4 ± 0.6 0.92 ± 0.05

p-value † 0.982 0.8388 0.8722 0.7345 0.8722 0.9459 0.7345

p-value ‡ 0.7462 0.825 0.49 0.5996 0.49 0.4327 0.5996

Values are shown as mean ± standard deviation 

Alpha diversity comparisons of two groups was done using a Wilcoxon rank sum test †

Alpha diversity comparisons among multiple groups (Control, ME/CFS with Subgrouping of Interest, ME/CFS without Subgrouping of Interest) was done using a Kruskall-Wallis test ‡

Part One

Alpha Diversity Metric



 

CHAPTER THREE: Gut Microbiome (Part One) | 140 

3.2.2 Alpha Diversity (Culture MALDI-TOF) 

 

 

Figure 3.2.5 Box plots of the alpha diversity from ME/CFS overall and Control groups using 

different parameters on the culture MALDI-TOF data at the species level. 

 

 

Figure 3.2.6 Box plots of the alpha diversity from ME/CFS with FM and ME/CFS without FM 

groups using different parameters on the culture MALDI-TOF data at the species level. 
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Figure 3.2.7 Box plots of the alpha diversity from ME/CFS with IBS and ME/CFS without IBS 

groups using different parameters on the culture MALDI-TOF data at the species level. 

 

 

Figure 3.2.8 Box plots of the alpha diversity from age-matched ME/CFS with IBS and age-

matched ME/CFS without IBS groups using different parameters on the culture MALDI-TOF 

data at the species level. 
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Table 3.2.2 Comparison of alpha diversity metrics from faecal culture MALDI-TOF data at the species level 

 

 

 

 

 

 

Chao1
Inv 

Simpson
Observed Shannon Simpson

All participants (n = 83) 14.4 ± 3.1 2.9 ± 1.2 14.4 ± 3.1 1.2 ± 0.4 0.6 ± 0.2

ME/CFS overall (n = 40) 13.6 ± 2.6 2.8 ± 1.0 13.6 ± 2.6 1.2 ± 0.3 0.6 ± 0.2

Control (n = 43) 15.1 ± 3.3 3.1 ± 1.3 15.1 ± 3.3 1.3 ± 0.4 0.6 ± 0.2

p-value † 0.04556 * 0.4379 0.04556 * 0.4012 0.4379

ME/CFS with FM (n = 19) 13.4 ± 2.8 2.6 ± 0.7 13.4 ± 2.8 1.2 ± 0.3 0.6 ± 0.1

ME/CFS without FM (n = 21) 13.8 ± 2.5 3.0 ± 1.2 13.8 ± 2.5 1.2 ± 0.4 0.6 ± 0.2

p-value † 0.5847 0.2701 0.5847 0.3902 0.2701

p-value ‡ 0.1197 0.4636 0.1197 0.4805 0.4636

ME/CFS with IBS (n = 20) 13.8 ± 2.8 2.5 ± 0.9 13.8 ± 2.8 1.1 ± 0.3 0.5 ± 0.2

ME/CFS without IBS (n = 20) 13.4 ± 2.5 3.1 ± 1.1 13.4 ± 2.5 1.3 ± 0.3 0.6 ± 0.1

p-value † 0.5759 0.05589 0.5759 0.02447 * 0.05589

p-value ‡ 0.1216 0.1362 0.1216 0.06243 0.1362

ME/CFS with IBS age matched (n = 14) 14.1 ± 2.1 2.6 ± 1.0 14.1 ± 2.1 1.1 ± 0.3 0.6 ± 0.2

ME/CFS without IBS age matched (n = 14) 12.8 ± 2.5 3.0 ± 1.2 12.8 ± 2.5 1.2 ± 0.4 0.6 ± 0.2

p-value † 0.1198 0.4544 0.1198 0.3287 0.4544

p-value ‡ 0.04924 * 0.5402 0.04924 * 0.3402 0.5402

Values are shown as mean ± standard deviation 

Alpha diversity comparisons of two groups was done using a Wilcoxon rank sum test †

Alpha diversity comparisons among multiple groups (Control, ME/CFS with Subgrouping of Interest, ME/CFS without Subgrouping of Interest) was done using a Kruskall-Wallis test ‡

* p-value < 0.05
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3.3 Beta Diversity 

 

Two approaches to beta diversity were calculated for the 16S rRNA data (Section 2.6.2.2) at the 

amplicon sequence variant (ASV), family, genus, and species levels. Briefly, the first approach 

was unweighted and weighted Unifrac metrics that were ordinated using principal coordinate 

analysis (PCoA) (Figure 3.3.1, Figure 3.3.2, Figure 3.3.3, and Figure 3.3.4 for Comparison A-D, 

respectively in Section 3.3.1). The second approach was Aitchison distances that were 

ordinated using principal component analysis (PCA) (Figure 3.3.5, Figure 3.3.6, Figure 3.3.7, 

and Figure 3.3.8 for Comparison A-D, respectively in Section 3.3.2). Beta diversity 

differences/dissimilarities were observed in this study. For similar reasons stated in the previous 

sections with overall composition and alpha diversity, other ME/CFS studies have inconsistently 

found differences in their beta diversity calculations. However, the beta diversity findings provide 

support for the overall gut dysbiosis hypothesis in ME/CFS.  

 

Each plot in Comparison A-D of the 16S rRNA data, by visual inspection, showed that the 

samples could be clustered together differently depending on how it was defined with their FM 

or IBS comorbidity. The majority of the ellipsoids appeared to be broad clusters. However; 

tighter clusters were observed in Figure 3.3.2 H, Figure 3.3.3 H,  and Figure 3.3.4 H which 

signalled a possible association or commonality due to the IBS comorbidity. Table 3.3.1 and 

Table 3.3.2 summarise the PERMANOVA and PERMDISP analyses that tested and assessed 

beta diversity statistical differences. Both approaches showed a statistically significant 

difference between the ME/CFS overall and Control groups (Comparison A) at all levels. Neither 

approach showed any differences in ME/CFS +/- FM (Comparison B). Both approaches showed 

statistically significant differences in ME/CFS +/- IBS or age-matched IBS** (Comparison C and 

D) at some levels. This indicated that beta diversity differences are associated with IBS 

comorbidity and that some distinction of these samples could be achieved out of the entire 

cohort.   

 

Similarly, two approaches were used to calculate beta diversity for the culture MALDI-TOF data 

(Section 2.6.6.2). Briefly, the first approach used the Bray Curtis metric, and the second 

approach used the Jaccard metric. Both approaches were ordinated using PCoA; plots are 

presented in the figures together with the Bray Curtis metric outcomes first, followed by the 

Jaccard metric outcomes. Figure 3.3.9, Figure 3.3.10, Figure 3.3.11, and Figure 3.3.12 present 

the beta diversity outcomes for Comparison A-D, respectively in Section 3.3.3. Unlike the 16S 
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rRNA data stratifications with IBS and FM in Comparisons C-D where IBS appeared to be 

significantly different, and FM not significantly different, the culture MALDI-TOF statistical 

analyses revealed the opposite (Table 3.3.3). Table 3.3.3 summarises the PERMANOVA AND 

PERMDISP analyses; while it shows that there was a significant difference between the 

ME/CFS +/- FM groups in beta diversity (PERMANOVA), the PERMDISP outcomes indicated 

that the groups do not have similar dispersion. In other words, the significant difference in 

PERMDSIP of the ME/CFS +/- FM groups signified that there might be dispersion or variability 

in these groups which needs to be considered further with the PERMANOVA outcomes.  
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3.3.1 Unifrac Beta Diversity (16S rRNA) 

   

 

Figure 3.3.1 PCoAs based on the unweighted and weighted Unifrac distances showing the beta 

diversity between the ME/CFS overall and Control groups at the ASV, family, genus, and 

species taxonomic levels. The ellipses represent 95% confidence intervals for each group.  
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Figure 3.3.2 PCoAs based on the unweighted and weighted Unifrac distances showing the beta 

diversity between the ME/CFS with FM and ME/CFS without FM groups at the ASV, family, 

genus, and species taxonomic levels. The ellipses represent 95% confidence intervals for each 

group.  
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Figure 3.3.3 PCoAs based on the unweighted and weighted Unifrac distances showing the beta 

diversity between the ME/CFS with IBS and ME/CFS without IBS groups at the ASV, family, 

genus, and species taxonomic levels. The ellipses represent 95% confidence intervals for each 

group.  
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Figure 3.3.4 PCoAs based on the unweighted and weighted Unifrac distances showing the beta 

diversity between the Age-matched ME/CFS with IBS and ME/CFS without IBS groups at the 

ASV, family, genus, and species taxonomic levels. The ellipses represent 95% confidence 

intervals for each group.  
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Table 3.3.1 PERMANOVA and PERMDISP statistical analyses of unweighted and weighted 

Unifrac beta diversity metrics using the 16S rRNA data for the comparative groups of interest at 

the ASV, family, genus, and species levels  

 

R2 Pseudo-F Pr(>F) F Pr(>F)
ME/CFS overall vs. Control

Unweighted UniFrac

ASV level 0.02418 2.0069 0.000999 *** 1.4477 0.2228

Family level 0.02709 2.2552 0.01399 * 0.0097 0.9271

Genus level 0.02808 2.3403 0.003996 ** 0.2641 0.6364

Species level 0.02616 2.176 0.000999 *** 0.3712 0.5894

Weighted UniFrac

ASV level 0.00896 0.7321 0.5894 0.0388 0.8541

Family level 0.01391 1.1423 0.3017 1.4576 0.2288

Genus level 0.01634 1.3452 0.2048 0.8625 0.3497

Species level 0.01649 1.3579 0.1938 0.0034 0.9441

ME/CFS with FM vs. ME/CFS without FM

Unweighted UniFrac

ASV level 0.02499 0.9741 0.5165 2.5195 0.1219

Family level 0.02738 1.0696 0.3786 3.1689 0.08392

Genus level 0.02407 0.9374 0.5345 1.1814 0.2987

Species level 0.02829 1.1064 0.2687 1.1911 0.3177

Weighted UniFrac

ASV level -0.00037 -0.0139 1 1.1556 0.3287

Family level 0.02147 0.8338 0.4765 0.0277 0.8741

Genus level 0.01912 0.7405 0.5864 0.1189 0.7283

Species level 0.03116 1.222 0.2657 0.0014 0.96

ME/CFS with IBS vs. ME/CFS without IBS

Unweighted UniFrac

ASV level 0.03344 1.3147 0.05195 1.2041 0.3057

Family level 0.02791 1.0909 0.3586 0.2128 0.6593

Genus level 0.02905 1.1371 0.2757 0.1402 0.7263

Species level 0.04111 1.6292 0.01698 * 0.0792 0.8132

Weighted UniFrac

ASV level 0.00836 0.3204 0.9211 0.0008 0.981

Family level 0.06338 2.5715 0.04196 * 0.0003 0.988

Genus level 0.06073 2.4569 0.03996 * 0.0078 0.9401

Species level 0.0439 1.7446 0.1289 0.2159 0.6633

Age-matched ME/CFS with IBS vs. ME/CFS without IBS

Unweighted UniFrac

ASV level 0.04415 1.201 0.1069 3.1536 0.08591

Family level 0.03684 0.9945 0.4286 2.4496 0.1289

Genus level 0.03998 1.0827 0.3277 1.503 0.2507

Species level 0.05028 1.3766 0.06494 0.5941 0.4655

Weighted UniFrac

ASV level 0.0112 0.2944 0.9301 0.0494 0.8272

Family level 0.0511 1.4002 0.1898 0.2991 0.5944

Genus level 0.05162 1.4152 0.1748 0.4008 0.5425

Species level 0.03854 1.0422 0.3307 0.2237 0.6074

1000 permutations used for all tests

Significance Codes (Pr(>F)):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All Pr(>F) values are uncorrected P-values

PART ONE
PERMANOVA PERMDISP
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3.3.2 Aitchison Beta Diversity (16S rRNA) 

 

 

Figure 3.3.5 PCAs based on the Aitchison distances showing the beta diversity between the 

ME/CFS overall and Control groups at the ASV, family, genus, and species taxonomic levels. 

The ellipses represent 95% confidence intervals for each group.  
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Figure 3.3.6 PCAs based on the Aitchison distances showing the beta diversity between the 

ME/CFS with FM and ME/CFS without FM groups at the ASV, family, genus, and species 

taxonomic levels. The ellipses represent 95% confidence intervals for each group.  
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Figure 3.3.7 PCAs based on the Aitchison distances showing the beta diversity between the 

ME/CFS with IBS and ME/CFS without IBS groups at the ASV, family, genus, and species 

taxonomic levels. The ellipses represent 95% confidence intervals for each group.  
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Figure 3.3.8 PCAs based on the Aitchison distances showing the beta diversity between the 

Age-matched ME/CFS with IBS and ME/CFS without IBS groups at the ASV, family, genus, and 

species taxonomic levels. The ellipses represent 95% confidence intervals for each group.  
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Table 3.3.2 PERMANOVA and PERMDISP statistical analyses of the Aitchison Distance beta 

diversity metric using the 16S rRNA data for the comparative groups of interest at the ASV, 

family, genus, and species levels  

 

 

 

 

 

 

 

 

 

 

 

 

 

PART ONE

Aitchison Distance R2 Pseudo-F Pr(>F) F Pr(>F)
ME/CFS overall vs. Control

ASV level 0.02045 1.6913 0.000999 *** 0.3234 0.5654

Family level 0.03028 2.5293 0.04595 * 0.5981 0.4426

Genus level 0.03648 3.0664 0.00999 ** 0.2138 1.5277

Species level 0.02429 2.0162 0.004955 ** 0.6383 0.4296

ME/CFS with FM vs. ME/CFS without FM

ASV level 0.02548 0.9936 0.4895 0.0112 0.9271

Family level 0.01561 0.6024 0.7073 0.1436 0.6823

Genus level 0.02439 0.9501 0.4575 0.1695 0.6673

Species level 0.02523 0.9835 0.4915 0.0432 0.8392

ME/CFS with IBS vs. ME/CFS without IBS

ASV level 0.02905 1.1371 0.05594 0.0528 0.8232

Family level 0.07549 3.103 0.01299 * 1.3559 0.2418

Genus level 0.04779 1.907 0.04795 * 0.9468 0.3556

Species level 0.03941 1.5591 0.01898 * 0.1831 0.6813

Age-matched ME/CFS with IBS vs. ME/CFS without IBS

ASV level 0.04108 1.1138 0.06494 0.0342 0.8531

Family level 0.08769 2.499 0.02997 * 0.0346 0.8611

Genus level 0.04945 1.3527 0.1718 0.0036 0.95

Species level 0.0458 1.248 0.1139 0.394 0.5405

1000 permutations used for all tests

Significance Codes (Pr(>F)):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All Pr(>F) values are uncorrected P-values

PERMANOVA PERMDISP
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3.3.3 Bray Curtis and Jaccard Beta Diversity (Culture MALDI-TOF) 

 

 

Figure 3.3.9 PCoAs comparing the ME/CFS overall and Control groups based on the Bray-

Curtis and Jaccard beta diversity metrics using the culture MALDI-TOF data at the species 

level. The ellipses represent 95% confidence intervals for each group. PCoA plots are 

annotated with the species feature of interest.  
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Figure 3.3.10 PCoAs comparing the ME/CFS with FM and ME/CFS without FM groups based 

on the Bray-Curtis and Jaccard beta diversity metrics using the culture MALDI-TOF data at the 

species level. The ellipses represent 95% confidence intervals for each group. PCoA plots are 

annotated with the species feature of interest.  
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Figure 3.3.11 PCoAs comparing the ME/CFS with IBS and ME/CFS without IBS groups based 

on the Bray-Curtis and Jaccard beta diversity metrics using the culture MALDI-TOF data at the 

species level. The ellipses represent 95% confidence intervals for each group. PCoA plots are 

annotated with the species feature of interest.  
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Figure 3.3.12 PCoAs comparing the Age-matched ME/CFS with IBS and ME/CFS without IBS 

groups based on the Bray-Curtis and Jaccard beta diversity metrics using the culture MALDI-

TOF data at the species level. The ellipses represent 95% confidence intervals for each group. 

PCoA plots are annotated with the species feature of interest.  
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Table 3.3.3 PERMANOVA and PERMDISP statistical analyses of the Bray-Curtis and Jaccard 

beta diversity metrics using the faecal culture MALDI-TOF data for the comparative groups of 

interest at the species level. 

 

 

3.4 Differential Abundance Analysis 

 

The alpha and beta diversity measures from the 16S rRNA and culture MALDI-TOF data 

revealed some variability in the gut microbiota between the ME/CFS overall compared to a non-

ME/CFS cohort, and within the ME/CFS cohort depending on the FM or IBS comorbidity. The 

presence and absence of different comorbidities demonstrate different gut microbiota profiles 

that may be a display of gut dysbiosis, although it does not prove or confirm it. The diversity 

metrics, PERMANOVA, and PERMDISP results suggested that ME/CFS with or without IBS 

warrants further consideration as far as subgrouping and stratifying ME/CFS individuals go. 

Given that IBS has been associated with gut microbiota changes, it is necessary to account for 

it so that it does not detract, obscure, or confound but instead enhances the overall 

understanding of ME/CFS (Ghaffari et al., 2022; Guo, Che, et al., 2023; Nagy-Szakal et al., 

2017; Napolitano et al., 2023; Xiong et al., 2023). This is not to say that FM is not an important 

issue in ME/CFS, but each comorbidity may play a different and unique role in the disease and 

capability to distinguish and disentangle the heterogeneity via distinct subgrouping or subtyping.   

 

Even though all gut microbiome studies, including this one, have not reproduced or represented 

consistent findings for the composition and diversity of a “ME/CFS gut microbiota profile”, they 

all observe alterations that generally and broadly support the gut dysbiosis and microbiome 

hypothesis in ME/CFS. Beta diversity was evaluated by some of the ME/CFS studies, all with 

PART ONE

Species level R2 Pseudo-F Pr(>F) F Pr(>F)
ME/CFS overall vs. Control

Bray-Curtis 0.01318 1.0815 0.3666 1.9208 0.1838
Jaccard 0.01326 1.0887 0.3187 1.8468 0.1948

ME/CFS with FM vs. ME/CFS without FM
Bray-Curtis 0.04745 1.893 0.01998 * 5.3997 0.02498 *
Jaccard 0.03996 1.5816 0.01998 * 5.5725 0.02398 *

ME/CFS with IBS vs. ME/CFS without IBS
Bray-Curtis 0.01527 0.5893 0.8781 0.1355 0.7313
Jaccard 0.01798 0.6959 0.9321 0.1332 0.7323

Age-matched ME/CFS with IBS vs. ME/CFS without IBS
Bray-Curtis 0.03202 0.86 0.5934 0.2087 0.6494
Jaccard 0.03411 0.918 0.5844 0.2038 0.6543
1000 permutations used for all tests
Significance Codes (Pr(>F)):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

All Pr(>F) values are uncorrected P-values

PERMANOVA PERMDISP
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varying extents of significance which could likely be due to the selection of diversity metrics and 

ordination, study design, sequencing platform, read numbers, normalisation, and other data 

analytical handling considerations (Giloteaux, Goodrich, et al., 2016; Guo, Che, et al., 2023; 

Lupo et al., 2021; Nagy-Szakal et al., 2017; Xiong et al., 2023). The other consideration is that 

more participants are required for the cohort sizes and the inherent complexity and 

heterogeneity of the disease that underpins much of the discrepancies and difficulties in 

ME/CFS research (Du Preez et al., 2018; König et al., 2022; Varesi et al., 2021). Aside from 

these limitations and considerations, differential abundance analysis tests were performed with 

the datasets to provide further insight into the gut microbiome of the cohort involved in this 

study.    

 

Linear discriminant analysis (LDA) of effect size (LEfSe) and Differential gene expression 

analysis (DESeq2) were used to perform differential abundance analysis (DAA) testing from the 

16S rRNA data. These approaches were used to determine the taxonomic features that most 

likely explained the differences between the comparative groups of interest, irrespective of 

whether there was a statistically significant difference observed in the alpha and beta diversity 

measures. The outcomes from these analyses are shown in Section 3.4.1. All tests were 

performed at the A) family B) genus and C) species taxonomic level. DESeq2 was performed 

with non-rarefied data and LEfSe was performed with non-rarefied and rarefied data (Section 

2.6.3); therefore three figures per comparative group of interest are displayed for Comparison A-

D. Figure 3.4.1, Figure 3.4.2, and Figure 3.4.3 reflect the outcomes from Comparison A 

(ME/CFS overall versus Control). Figure 3.4.4, Figure 3.4.5, and Figure 3.4.6 reflect the 

outcomes from Comparison B (ME/CFS +/- FM). Figure 3.4.7, Figure 3.4.8, and Figure 3.4.9 

reflect the outcomes from Comparison C (ME/CFS +/- IBS). Figure 3.4.10, Figure 3.4.11, and 

Figure 3.4.12 reflect the outcomes from Comparison D (age-matched ME/CFS +/- IBS**).  

 

Linear discriminant analysis (LDA) of effect size (LEfSe) was used to perform DAA from the 

culture MALDI-TOF dataset. This approach was used to determine the species (features) that 

most likely explained the differences between the comparative groups of interest, irrespective of 

whether there was a statistically significant difference observed in the diversity measures. The 

outcomes from the analyses are shown in Section 3.4.2. The test was performed with a p-value 

significance threshold of 0.05 (A) and 0.1 (B) and the outcomes are presented in the same 

figure. Figure 3.4.13, Figure 3.4.14, Figure 3.4.15, and Figure 3.4.16 represent the outcomes 

from Comparison A-D, respectively. **Continued just before the start of Section 3.5**  
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3.4.1 Differential Abundance Analysis (16S rRNA) 

 

 

Figure 3.4.1 DESeq2 at the A) family B) genus and C) species taxonomic level between 

ME/CFS overall and Control groups (Part One) from non-rarefied data. Purple circles represent 

features with increased expression in the ME/CFS group. Green circles represent features with 

decreased expression in the ME/CFS group. Grey circles represent non-significant features 

(log2FC threshold 0.5 and uncorrected p-values ≥ 0.05).  
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Figure 3.4.2 LEfSe at the A) family B) genus and C) species taxonomic level from non-rarefied 

data between ME/CFS overall and Control groups (Part One). The horizontal bars represent the 

effect size for each taxon. The length of the bar represents the log10-transformed LDA score 

indicated by vertical dotted lines. The red bars represent the significant ASVs of the Control 

group and the blue bars of the ME/CFS group. Non-adjusted p-values 0.05 and (log) LDA score 

>2 were used as the threshold values for significance.  
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Figure 3.4.3 LEfSe at the A) family B) genus and C) species taxonomic level from rarefied data 

between ME/CFS overall and Control groups (Part One). The horizontal bars represent the 

effect size for each taxon. The length of the bar represents the log10-transformed LDA score 

indicated by vertical dotted lines. The red bars represent the significant ASVs of the Control 

group and the blue bars of the ME/CFS group. Non-adjusted p-values 0.05 and (log) LDA score 

>2 were used as the threshold values for significance. 
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Figure 3.4.4 DESeq2 at the A) family B) genus and C) species taxonomic level between 

ME/CFS with FM and ME/CFS without FM groups (Part One) from non-rarefied data. Purple 

circles represent features with increased expression in the ME/CFS without FM group. Green 

circles represent features with decreased expression in the ME/CFS without FM group. Grey 

circles represent non-significant features (log2FC threshold 0.5 and uncorrected p-values ≥ 

0.05). 
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Figure 3.4.5 LEfSe at the A) family B) genus and C) species taxonomic level from non-rarefied 

data between ME/CFS with FM and ME/CFS without FM groups (Part One). The horizontal bars 

represent the effect size for each taxon. The length of the bar represents the log10-transformed 

LDA score indicated by vertical dotted lines. The red bars represent the significant ASVs of the 

ME/CFS with FM group and the blue bars of the ME/CFS without FM group. Non-adjusted p-

values 0.05 and (log) LDA score >2 were used as the threshold values for significance. 
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Figure 3.4.6 LEfSe at the A) family B) genus and C) species taxonomic level from rarefied data 

between ME/CFS with FM and ME/CFS without FM groups (Part One). The horizontal bars 

represent the effect size for each taxon. The length of the bar represents the log10-transformed 

LDA score indicated by vertical dotted lines. The red bars represent the significant ASVs of the 

ME/CFS with FM group and the blue bars of the ME/CFS without FM group. Non-adjusted p-

values 0.05 and (log) LDA score >2 were used as the threshold values for significance. 
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Figure 3.4.7 DESeq2 at the A) family B) genus and C) species taxonomic level between 

ME/CFS with IBS and ME/CFS without IBS groups (Part One) from non-rarefied data. Purple 

circles represent features with increased expression in the ME/CFS without IBS group. Green 

circles represent features with decreased expression in the ME/CFS without IBS group. Grey 

circles represent non-significant features (log2FC threshold 0.5 and uncorrected p-values ≥ 

0.05). 
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Figure 3.4.8 LEfSe at the A) family B) genus and C) species taxonomic level from non-rarefied 

between ME/CFS with IBS and ME/CFS without IBS groups (Part One). The horizontal bars 

represent the effect size for each taxon. The length of the bar represents the log10-transformed 

LDA score indicated by vertical dotted lines. The red bars represent the significant ASVs of the 

ME/CFS with IBS group and the blue bars of the ME/CFS without IBS group. Non-adjusted p-

values 0.05 and (log) LDA score >2 were used as the threshold values for significance. 
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Figure 3.4.9 LEfSe at the A) family B) genus and C) species taxonomic level from rarefied data 

between ME/CFS with IBS and ME/CFS without IBS groups (Part One). The horizontal bars 

represent the effect size for each taxon. The length of the bar represents the log10-transformed 

LDA score indicated by vertical dotted lines. The red bars represent the significant ASVs of the 

ME/CFS with IBS group and the blue bars of the ME/CFS without IBS group. Non-adjusted p-

values 0.05 and (log) LDA score >2 were used as the threshold values for significance. 
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Figure 3.4.10 DESeq2 at the A) family B) genus and C) species taxonomic level between age-

matched ME/CFS with IBS and ME/CFS without IBS groups (Part One) from non-rarefied data. 

Purple circles represent features with increased expression in the age-matched ME/CFS without 

IBS group. Green circles represent features with decreased expression in the age-matched 

ME/CFS without IBS group. Grey circles represent non-significant features (log2FC threshold 

0.5 and uncorrected p-values ≥ 0.05). 
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Figure 3.4.11 LEfSe at the A) family B) genus and C) species taxonomic level from non-rarefied 

data between age-matched ME/CFS with IBS and ME/CFS without IBS groups (Part One). The 

horizontal bars represent the effect size for each taxon. The length of the bar represents the 

log10-transformed LDA score indicated by vertical dotted lines. The red bars represent the 

significant ASVs of the age-matched ME/CFS with IBS group and the blue bars of the age-

matched ME/CFS without IBS group. Non-adjusted p-values 0.05 and (log) LDA score >2 were 

used as the threshold values for significance. 
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Figure 3.4.12 LEfSe at the A) family B) genus and C) species taxonomic level from rarefied 

data between age-matched ME/CFS with IBS and ME/CFS without IBS groups (Part One). The 

horizontal bars represent the effect size for each taxon. The length of the bar represents the 

log10-transformed LDA score indicated by vertical dotted lines. The red bars represent the 

significant ASVs of the age-matched ME/CFS with IBS group and the blue bars of the age-

matched ME/CFS without IBS group. Non-adjusted p-values 0.05 and (log) LDA score >2 were 

used as the threshold values for significance. 
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3.4.2 Differential Abundance Analysis (Culture MALDI-TOF) 

 

 

Figure 3.4.13 LEfSe at the species taxonomic level from faecal culture MALDI-TOF data 

between ME/CFS overall and Control groups (Part One). Plot A) and Plot B) show the 

significant features with a non-adjusted p-value threshold of 0.05 and 0.1, respectively. The 

horizontal bars represent the effect size for each taxon. The length of the bar represents the 

log10-transformed LDA score indicated by vertical dotted lines. The red bars represent the 

significant ASVs of the Control group and the blue bars of the ME/CFS group. A (log) LDA score 

>2 was used as the threshold for significance for both plots.  
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Figure 3.4.14 LEfSe at the species taxonomic level from faecal culture MALDI-TOF data 

between ME/CFS with FM and ME/CFS without FM groups (Part One). Plot A) and Plot B) show 

the significant features with a non-adjusted p-value threshold of 0.05 and 0.1, respectively. The 

horizontal bars represent the effect size for each taxon. The length of the bar represents the 

log10-transformed LDA score indicated by vertical dotted lines. The red bars represent the 

significant ASVs of the Control group and the blue bars of the ME/CFS group. A (log) LDA score 

>2 was used as the threshold for significance for both plots.  
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Figure 3.4.15 LEfSe at the species taxonomic level from faecal culture MALDI-TOF data 

between ME/CFS with IBS and ME/CFS without IBS groups (Part One). Plot A) and Plot B) 

show the significant features with a non-adjusted p-value threshold of 0.05 and 0.1, 

respectively. The horizontal bars represent the effect size for each taxon. The length of the bar 

represents the log10-transformed LDA score indicated by vertical dotted lines. The red bars 

represent the significant ASVs of the Control group and the blue bars of the ME/CFS group. A 

(log) LDA score >2 was used as the threshold for significance for both plots.  
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Figure 3.4.16 LEfSe at the species taxonomic level from faecal culture MALDI-TOF data 

between age-matched ME/CFS with IBS and ME/CFS without IBS groups (Part One). Plot A) 

and Plot B) show the significant features with a non-adjusted p-value threshold of 0.05 and 0.1, 

respectively. The horizontal bars represent the effect size for each taxon. The length of the bar 

represents the log10-transformed LDA score indicated by vertical dotted lines. The red bars 

represent the significant ASVs of the Control group and the blue bars of the ME/CFS group. A 

(log) LDA score >2 was used as the threshold for significance for both plots.  
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**Continued from the beginning of Section 3.4** 

 

The DAA results showed that an assortment of taxonomic features from both 16S rRNA and 

culture MALDI-TOF are differentially abundant between the comparative groups in Comparison 

A-D. The intention of using DAA in microbiome data analysis is to help identify microbial 

features for further biological validation and biomarker discovery based on observed count data 

(Cappellato et al., 2022; Nearing et al., 2022; L. Yang & Chen, 2022). The use of DAA is now 

commonplace in microbiome data analysis; although only DESeq2 and LEfSe were used in this 

thesis, there are 14 (several) DAA testing methods (Nearing et al., 2022). The use of DAA is 

currently problematic given that microbiome data has special characteristics and challenges 

such as its compositionality, normalisation, constraints imposed by sequencing depth between 

samples, zero inflation, and computational burden (Cappellato et al., 2022; Weiss et al., 2017; 

L. Yang & Chen, 2022). It is one of the more controversial areas of microbiome data analysis. 

Over the past decade, these DAA methods have been developed to address the issues in 

microbiome data and differ mainly where compositional effects and zero inflation are involved 

(L. Yang & Chen, 2022). No single method or approach to DAA has been able to circumvent or 

mitigate all of the difficulties that the complexity of the microbiome sequencing data poses. The 

full technical and analytical details of the drawbacks that each DAA approach poses are detailed 

elsewhere in the literature (Cappellato et al., 2022; Lin & Peddada, 2020; Nearing et al., 2022; 

Weiss et al., 2017; L. Yang & Chen, 2022). It is therefore recommended that researchers use a 

consensus approach based on DAA methods to help biological interpretations (Nearing et al., 

2022). However, the concern and issue are that the different DAA tools could sometimes 

produce quite discordant results, opening up the possibility of bias and cherry-picking 

misleading results (Nearing et al., 2022; L. Yang & Chen, 2022). This inconsistency was also 

observed in the DAA results covered in this thesis and a “consensus” of microbial candidates 

remains vague.  

 

There is a lack of consistent known biological truth and a priori information which makes DAA 

validation difficult (Cappellato et al., 2022; L. Yang & Chen, 2022). Combined with the DAA data 

issues, and its scope for errors/false discovery, this makes it difficult to wholly rely on the DAA 

results as features that have been identified as potentially “dysbiotic”. These data performance 

considerations are important to be mindful of when attempting to interpret its biological meaning. 

It also became apparent that the DAA results may not be the most efficient, practical, or 

biologically realistic basis to evaluate “gut dysbiosis” in the cohort. While the results do show 
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some taxonomic features that may be of interest, DAA only identifies microbial features that are 

differentially abundant based on count data. The compositional nature of the data can 

sometimes make it look like all the other taxa are changing even if the absolute abundances 

remain constant  (Morton et al., 2019). While the vast majority of the dominant human gut 

microbiota belong to a few phyla, low abundant microbes should not be overlooked (Puig-

Castellví et al., 2023). Low-abundant microbes can still exert major influence and functionality in 

its community and DAA may not necessarily identify this (Puig-Castellví et al., 2023). By this 

token, higher-abundance microbes do not necessarily mean more metabolic and enzymatic 

activity, and therefore increased metabolite production/concentration as a direct result. Perhaps 

this widespread assumption in research has made identifying microbial consortia elusive and 

challenging (Moya & Ferrer, 2016).  

 

The microbial features are identified in an individual fashion and DAA does not reveal much as 

far as the overall impact on and outlook of the gut microbiome – it risks being a “stamp 

collecting” undertaking. The gut microbiome is often said to exhibit balance, stability, resilience, 

and maintenance of homeostasis. The DAA results cannot provide any indication of whether 

these microbial features that have been identified with the respective comparative groups in 

Comparison A-D are involved with disease (or repair) processes and presentation. With this, 

functionally redundant taxa may be identified as differentially abundant. Further, the metabolic 

pool and functional potential of the gut microbiome often outweigh the sheer number of 

microbes (Visconti et al., 2019; Wilmanski et al., 2021). Most microbial metabolic processes 

occur in the context of communities, not that of a single microorganism feature or pure cultures 

in isolation (Bowman & Ducklow, 2015; Turnbaugh & Gordon, 2008). With microbial 

communities in an environment as complex and dynamic as the human gut microbiome, it is 

therefore preferable at a conceptual and practical level to consider the functionality and 

metabolic structure of a community over its taxonomic structure (Bowman & Ducklow, 2015). 

Therefore, this thesis generally takes a metabolic/metabolomic-centric approach in the attempt 

to describe microbial communities versus a “one-by-one” exploration of each DAA-microbe-

identified feature to its metabolites and metabolic pathways approach. That is, where host 

metabolomic outcomes in this study indicate potential gut dysbiosis linked to certain 

microbes/microbial features, the associations to the DAA test outcomes and taxonomy will then 

be made in light of current literature.  
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3.5 Gut Microbiome Discussion 

 

3.5.1 Gut Microbiome Variations in Taxonomic Structure 

 

The study revealed some differences in the composition, alpha, and beta diversity (taxonomic 

structures) of the gut microbiota among the comparative groups in Comparison A-D. The two 

applications broadened the coverage and taxonomic levels of the gut microbiome characterised 

using the faecal samples. As far as I am aware, no other ME/CFS study has used the two 

methods or considered as many data analytical approaches concurrently. The lack of 

consistency and direct comparability with other ME/CFS studies remains a widespread issue in 

finding any definitive dysbiosis taxonomic signatures. Nonetheless, the study did contribute to 

the overall understanding that there are alterations in the gut microbiota taxonomic structures 

across a range of taxa levels. The results also provided some demonstration that the FM and 

IBS comorbidities are relevant when attempting to understand some aspects of the 

heterogeneity in ME/CFS. It appeared that there may be some involvement of the IBS 

comorbidity in ME/CFS that warrants further consideration. Although subtle, these results 

provided some initial indication that looking beyond the usual ME/CFS versus Control/non-

ME/CFS was likely warranted, intricate, and involved. It became obvious from the DAA 

outcomes that a more robust approach via metabolomic and functional-based measurements 

would be required. Exactly defined gut microbiomes in health and ME/CFS remain elusive and 

tricky to define, and many combinations of gut commensal taxa could be considered “balanced” 

(Rinninella et al., 2019; Wilmanski et al., 2021). Gut microbiota composition is highly variable, 

and it is often difficult to ascertain whether a change is beneficial, detrimental, or of any 

consequence (Rinninella et al., 2019). While further definition of “gut dysbiosis” was involved in 

this study with metabolomics, the taxonomic findings from this chapter still provide valuable 

information that should be taken into consideration.  

 

The alpha and beta diversity metrics showed that ME/CFS is potentially associated with gut 

dysbiosis, and there may be some involvement of IBS in ME/CFS. Similar observations and 

commentary have been expressed by previous ME/CFS studies (Giloteaux, Goodrich, et al., 

2016; Guo, Che, et al., 2023; König et al., 2022; Nagy-Szakal et al., 2017). IBS, regardless of 

ME/CFS, has been associated with changes in the taxonomic structure of the gut microbiome. 

FM irrespective of ME/CFS has been too, although this study did not observe its taxonomic 

structure to be a point of distinction as a unique subgroup in the ME/CFS cohort. It is important 
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to clarify that the taxonomic results from this study do not suggest that FM in ME/CFS is devoid 

of any dysbiosis or microbial alterations and that such changes are exclusive to cases where 

ME/CFS is accompanied by IBS. Significantly lower alpha diversity and varied beta diversity 

have generally been associated with IBS (P. P. Chong et al., 2019; Ghaffari et al., 2022; 

Napolitano et al., 2023). Generally, higher alpha diversity and stability in beta diversity are often 

thought to reflect a healthier gut microbiome (Wilmanski et al., 2021). Studies in IBS have 

shown various shifts in taxonomic composition including both higher and lower ratios of 

Firmicutes/Bacteroidetes. The F/B ratio is widely accepted to have an important influence on 

maintaining normal intestinal homeostasis; any increased or decreased ratio is regarded as 

dysbiosis (Ghaffari et al., 2022; Stojanov et al., 2020). Other microbial patterns in various IBS 

studies have shown a range of differences in microbial features such as an increase in E.Coli, 

Dorea, Enterobacteriaceae, Clostridia, Clostridiales, and Prevotella, while Bifidobacterium and 

Lactobacillus were decreased compared to controls (Napolitano et al., 2023). However, 

evidence of a consistent IBS taxonomic signature also remains conflicting, heterogeneous, and 

unclear. It is also unclear from the study and in the literature whether the presentation of IBS is 

a cause or consequence of microbial alterations, and whether IBS and/or gut dysbiosis is an 

optional, partial, or an entire explanation for ME/CFS pathogenesis and pathophysiology. 

Indeed, IBS has been observed and linked with many other gastrointestinal and extraintestinal 

pathologies including FM and chronic pain. Despite this vagueness across both the ME/CFS 

and IBS diagnostic entities, it can be reasonably thought that the shifts and differences, even 

slight disturbances, in gut taxonomic structure contribute to, or are associated with, the ME/CFS 

symptom presentation, and underlying pathophysiology involving inflammation, immune 

responses, stress, intestinal permeability, and microbial translocation across the mucosa 

(Ghaffari et al., 2022; Napolitano et al., 2023; Varesi et al., 2021).  

 

3.5.2 Gut Microbiome Variations in Metabolic and Functional Structure 

 

Compositional changes do not always translate directly into functional changes in the gut 

microbiome (Moya & Ferrer, 2016). Functional redundancy and metabolic plasticity are 

concepts of the gut microbiome that shape its dynamics and functioning, and how it interacts 

and works with the host and environment in health and disease. It is a paradoxical concept but 

while there is considerable inter-individual and intra-individual heterogeneity in gut microbiome 

composition, the collective gene composition and functional capacity of the gut microbiome 

tends to show greater preservation across individuals (Rinninella et al., 2019; Tian et al., 2020; 
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Wilmanski et al., 2021). In other words, the taxonomic variability indicates a high degree of 

functional redundancy across human gut microbes, giving rise to a myriad of taxonomic 

compositions that result in comparable and interchangeable microbiome functioning (L. Tian et 

al., 2020; Wilmanski et al., 2021). Such functional redundancy has been hypothesised to 

underlie the stability, resistance, and resilience of the human microbiome up to a point even 

though it is continuously exposed and responding to various external challenges and 

interactions with the host (Fassarella et al., 2021; Tian et al., 2020). High microbial diversity is 

thought to result in an increased level of functional redundancy which has a role in stabilising 

microbiota functions during perturbations and thus supporting resilience (Fassarella et al., 2021; 

Moya & Ferrer, 2016). While many microbiome functions remain well conserved due to the 

functional redundancy among microbial species, the existence of individual variations has been 

found to rely on strain-specific functions (Puig-Castellví et al., 2023). On the other hand, 

metabolic plasticity refers to the ability of the microorganism, or a microbial community, to adapt 

and change its metabolic processes in response to environmental changes or stressors. The 

plasticity implies that similar microbiome compositions may have significantly different 

functionalities (Mayneris-Perxachs & Fernández-Real, 2020). While the exact mechanisms and 

degree of expression of these concepts between different states and fluctuations of “health” and 

“unhealthy” are not fully understood, metabolomics can play a pivotal role in characterising the 

endpoints of these processes and reflect a close metabolic phenotype.  

 

Metagenomics and metabolomics with metataxanomics/taxonomic investigations are suitably 

positioned to provide a more comprehensive and insightful understanding of the complex gut 

microbiome-host interactions and dysbiosis (Mayneris-Perxachs & Fernández-Real, 2020; 

Wilmanski et al., 2021). In the situation that the microbiota changes, due to “unhealthy” 

perturbations, changes, stress, or exposures that it cannot protect or restore itself from, a state 

of dysbiosis is acquired (Fassarella et al., 2021; Moya & Ferrer, 2016). The transition to a 

different state is thought to be a breach of the functional redundancy, resiliency, stability, and 

the harmonious coexistence of the microbes, and their interactions with each other which then 

affect the interplay with the host. However, it is not possible to capture the entire landscape of 

this with only a time point, nor the different stages of ME/CFS progression or severity which 

come into consideration of the microbiome’s robustness and capacity to perform, recover, and 

respond over time. Interestingly, the recent study from Xiong et al. (2023) observed that their 

long-term patients returned to a gut microbiome composition more similar to the healthy controls 

but had more severe clinical symptoms and metabolic dysbiosis (Xiong et al., 2023). While this 
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study cannot look beyond the associations from a snapshot in time, the consideration of the 

stability and resiliency of the gut microbiome should be factored in with the context of ME/CFS. 

PICRUSt2 can be used to study the functional redundancy in the gut microbiome by predicting 

the functional potential of the community and identifying the functions that are performed by 

multiple taxonomic features. It provides the flexibility for marker gene metagenome inference. 

PICRUSt2 was used with the acknowledgement that it is an amplicon-based functional 

prediction that relies on the existing reference genomes. More importantly, PICRUSt2 cannot 

provide resolution to distinguish strain-specific functionality; it can only differentiate taxa to the 

degree they differ at the amplified marker gene sequence (Douglas et al., 2020). MiMeDB 

contains consolidated information from the taxonomy of several microbes and the metabolites 

they produce. It can help with understanding the potential functional redundancy by providing a 

summary of the multiple databases that it draws from. MiMeDB houses extensive data about the 

metabolites generated by the microbes including their various reactions, bioactivities, 

processes, and pathways. The work with MiMeDB is by no means complete but an offering of 

how more insightful understanding to the microbes, host metabolism, and their connection might 

be achieved with related information drawn from one source (Wishart et al., 2023). Section 3.6 

shows the outcomes of PICRUSt2 and MiMeDB and is considered with the faecal and urine 

metabolome in Chapter 4.  

 

3.5.3 Gut Microbiome Study Considerations 

 

3.5.3.1 Next Generation Sequencing (NGS)  

 

This study has followed a standard 16S rRNA gene amplicon sequencing (16S analysis) 

workflow using Illumina, QIIME2, and R packages. The use of 16S rRNA has provided insight 

into the gut microbiome of the study cohorts. 16S analysis has been a mainstay of bacterial 

analysis for decades and has played an important role in efforts to identify and compare 

bacteria diversity and communities from complex microbiomes such as the human gut (Bharti & 

Grimm, 2021; Johnson et al., 2019). It is now one of the most widely used applications to 

investigate the microbiome at any given body site in research with many experimental and 

analytical amplicon sequencing protocols targeting the 16S rRNA gene (S. Gupta et al., 2019; 

Kameoka et al., 2021; Satam et al., 2023). However, there are no gold standard protocols and 

the standardisation of various applications in the workflow is an issue (Bharti & Grimm, 2021; 

Kameoka et al., 2021). There are many applications (sequencing chemistry, bioinformatic, and 
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analytical) and platforms (for example, Illumina, Oxford Nanopore, Pacific Biosciences) both 

within 16S analysis itself and in the wider scheme of NGS (Marizzoni et al., 2020; Satam et al., 

2023). While options are plentiful and accessible, there are general concerns and discussions in 

the field that inconsistent and poor practices with all components involved in the NGS workflow 

might lead to inconsistent, non-comparable, and misleading outcomes (Bharti & Grimm, 2021). 

There is no doubt that NGS-based technologies have made possible several research 

discoveries and advancements, but there are analytical, experimental, and computational 

challenges and limitations that need to be considered when interpreting outcomes and planning 

future projects.  

 

One of the most controversial issues in 16S analysis protocol variations is the selection of the 

hypervariable region(s) to target (Kameoka et al., 2021). The 16S rRNA gene is conserved in 

most bacteria and archaea and is approximately 1500 bp long with nine different hypervariable 

regions (Kameoka et al., 2021). Various universal primers targeting the partial sequences in 

hypervariable regions have been developed for microbiome analysis (Kameoka et al., 2021). 

This project only considered the V3 and V4 regions as adopted by the official Illumina protocol. 

These regions are widely used in gut microbiome studies; however, studies have shown that 

this primer-pair selection causes bias, amplification artifacts and has a deviating composition 

compared to other regions (Kameoka et al., 2021; Wensel et al., 2022). Several studies have 

also demonstrated that primer selection matters for different environments, such as the soil, 

oral, vaginal, and skin microbiomes, and different conditions such as autism spectrum disorder 

and colorectal cancer where the gut microbiome is of interest (Fadeev et al., 2021; Kameoka et 

al., 2021; Na et al., 2023; Osman et al., 2018; Palkova et al., 2021; Wasimuddin et al., 2020). 

Choice and design of primer pairs is an ongoing effort and perhaps future ME/CFS studies 

would benefit from looking at a different primer set from the standard Illumina protocol 

(Kameoka et al., 2021). Another consideration of the study design is workflows and protocols 

that can provide better species and strain resolution. The culture MALDI-TOF work presented 

here provided a valuable complement and contribution to the species information. However, a 

concession is that it was much more labour-intensive than 16S in the wet laboratory and did not 

have as much of an offering as far as data analysis, and other publications using similar 

approaches for their work. Future datasets could benefit from NGS applications, such as 

sequencing the full 16S gene, shotgun metagenomic sequencing, and RNA sequencing, that 

now can provide this taxonomic resolution and differentiation (Satam et al., 2023; Wensel et al., 
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2022). Further, neither of the methods used in this study could achieve strain-level resolution; 

these NGS offerings are better geared to provide this offering (Wensel et al., 2022).  

 

3.5.3.2 Faecal Samples as Proxies  

 

This thesis, as the majority of ME/CFS microbiome studies have, focused on the faecal bacterial 

component of the gut. However, other microorganisms such as archaea, eukaryotes and viruses 

in the gut, and communities of other microorganisms at different sites like the oral microbiome, 

could also be possibly involved in ME/CFS (Briese et al., 2023; Giloteaux, Hanson, et al., 2016; 

K. Hou et al., 2022; S.-Y. Hsieh et al., 2023; Lupo et al., 2021; Mandarano et al., 2018; 

Navaneetharaja et al., 2016; Newberry et al., 2018). While faecal samples are frequently used, 

they are only proxies to characterise the gut microbiome (Tang et al., 2020). Faecal samples 

are usually used with sequencing technologies for gut microbiome investigations as the 

specimens are naturally collected, non-invasive, and can be sampled repeatedly (Tang et al., 

2020). However, it has become apparent that faecal samples cannot accurately reflect the entire 

composition of the intestinal microbiome and therefore provide only a partial view of the 

microbial diversity (Levitan et al., 2023; Tang et al., 2020). Physiological changes in different 

areas of the small intestine and colon, including chemical and nutritional gradients and isolated 

host immune activity, are thought to affect the composition of bacterial communities (Levitan et 

al., 2023; S. Sun et al., 2021; Tang et al., 2020). Thus, different biospecimen types may be 

needed to sample microorganisms residing in different niches or to reflect different anatomical 

and physiological conditions (Rinninella et al., 2019; Sun et al., 2021). There are other sample 

types or sampling approaches that can be considered, including rectal swabs, mucosal tissue 

biopsies, and luminal brushings.  

 

Further, it is not only the biochemical and molecular considerations of the gut microbiome. The 

more physical and external anatomy of the intestinal region in dysbiosis requires further 

understanding of transit times, motility, mucosal and structural changes. All approaches have 

their unique pros and cons depending on what information about the gastrointestinal system is 

required (S. Sun et al., 2021; Tang et al., 2020). Investigations are ongoing to find improved 

alternatives to faecal samples with NGS capabilities for several clinical applications in the 

gastroenterological field (Levitan et al., 2023). While faecal samples are still highly useful 

specimen types for microbiome and metabolomic studies, it is also important to consider their 

collection methods. There are a few options available with varying degrees of sophistication for 
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faecal collection systems which aid with convenience, preservation, storage, and transport 

between the collection point and arrival at the laboratory (Z. Wang et al., 2018). While standard 

and mainstream practice currently remains with faecal samples and a supplied container that 

are kept in cold or frozen conditions, new approaches to tackle gut microbiome investigations 

may at some point be of further interest and importance in ME/CFS research and diagnostic 

applications.  

 

3.5.3.3 Other Study Considerations  

 

The overarching limitation and difficulty in the development of validated and routinely used 

diagnostic biomarkers, treatment, and management protocols for ME/CFS is that it is endlessly 

multifactorial and heterogeneous in many dimensions. This may mean that a single biomarker 

that can capture all ME/CFS cases with the accuracy, efficiency, and reliability required of a 

clinically useful test cannot be guaranteed. FM and IBS within their respective current diagnostic 

directives also have the challenge of plausible subtypes that have yet to be fully defined. 

Whether these subtypes also exist and are important within the sphere of ME/CFS and its 

comorbidities is also unclear. According to the Rome IV criteria, IBS can be subclassified into 

four types based on the main clinical presentation: diarrhoea-predominant IBS, constipation-

dominant IBS, mixed IBS, and unclassified IBS, (Napolitano et al., 2023). This study did not 

capture any further details of these comorbidities. No specific or consistent signatures have 

been found for the IBS subtypes, nor with the severity of its symptoms (Ghaffari et al., 2022). 

Different studies have investigated changes in gut microbiome composition and microbial-

associated metabolites and their implications in different IBS subtypes (Ghaffari et al., 2022; 

Napolitano et al., 2023). Diet and therapeutic modulation of the gut microbiome have shown that 

it may improve clinical outcomes in some IBS patients which further leans into the subtype 

categorisation of patients, and the need for personalised interventions. Therefore, in the context 

of ME/CFS, the use of therapeutic and gut modulatory tools, such as diets, prebiotics, 

probiotics, synbiotics, postbiotics, and faecal transplants, need to be expanded to establish their 

role and utility in the future (Ghaffari et al., 2022; Napolitano et al., 2023).  

 

Differences in taxonomic composition can be explained by several extrinsic and intrinsic factors. 

Other than highlighting their FM and IBS comorbidity with some control for the age variable 

attempted, this study did not investigate the many other factors that could serve as possible 

explanations for the shifts in taxa. Section 6.2.1 details the challenges and limitations of the 
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study overall, ultimately highlighting the need for studies with more data points over time and for 

individuals to be their own control (longitudinal). However, it is worth mentioning here that in any 

gut microbiome (and metabolomic) investigation, there are considerations for issues such as 

other host characteristics and comorbidities, environmental changes, living conditions, lifestyle, 

medication and supplements, diet, nutrition, feeding patterns, BMI, bowel activity, and exercise. 

Studies have extensively looked at a number of these variables and shown that the dynamic gut 

microbiome is influenced and impacted as either a cause or consequence (Moya & Ferrer, 

2016; Puig-Castellví et al., 2023; Rinninella et al., 2019; Wilmanski et al., 2021). It is not 

uncommon for individuals, whether they are ME/CFS patients or not to partake in a range of 

interventions from prescription medication, non-prescription medication, supplements, and 

special diets, that impact or influence their gut microbiome and host metabolism. It is almost 

impossible to absolutely “level the playing field” for studies if any participants, patients, controls, 

or otherwise, are to be involved in a study. Seton et al. (2023) provide a good example of this 

where their recruitment for matched healthy-household controls to account for environmental 

confounders was challenging because of other confounders such as age and sex (Seton et al., 

2023). Asking participants to cease or change any of their routines specifically for the study 

(especially where antibiotics, probiotics, and antivirals are concerned) is a whole other caveat of 

consideration for a study design, ethics, and recruitment (Armstrong et al., 2017; Du Preez et 

al., 2018; Sheedy et al., 2009; Shukla et al., 2015; Wallis et al., 2018). Study participants were 

not asked to change anything especially for the project but were asked to record any of these 

details in their questionnaire responses (see Section 2.1). Apart from the priority of completing 

recruitment for this project before the recruitment site, CFS Discovery, closed permanently, 

many participants said they would be reluctant to participate if they had to change anything. 

One also must accept the limitations of a one-off sample time-point whether or not any changes 

were made for study participation. Nonetheless, any observations made from this study are 

mindful of these factors as potential confounders for the gut microbiome and host metabolome.  
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3.6 Functional Predictions from Gut Microbiome  

 

3.6.1 PICRUSt2 (16S rRNA) 

 

 

Figure 3.6.1 Prediction of different KEGG pathways between ME/CFS and Control groups using 

PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R package. Left-hand side bar 

plots display the relative abundance of each predicted KEGG pathway. Right-hand side bar 

plots display the log2 fold change of the p-values calculated using Wilcoxon rank-sum test 

(uncorrected) from ALDEx2 results; only p-values ≤ 0.01 are displayed. Positive direction of log2 

gold change bar presents increased expression in Control group. Negative direction of log2 fold 

change bar represents increased expression in the ME/CFS group.  
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Figure 3.6.2 Prediction of different KEGG pathways between ME/CFS with FM and ME/CFS 

without FM groups using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R 

package. Left-hand side bar plots display the relative abundance of each predicted KEGG 

pathway. Right-hand side bar plots display the log2 fold change of the p-values calculated using 

Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; only p-values ≤ 0.05 are displayed. 

Positive direction of log2 fold change bar represents increased expression in ME/CFS with FM 

group. Negative direction of log2 fold change bar represents increased expression in ME/CFS 

without FM group. 
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Figure 3.6.3 Prediction of different KEGG pathways between ME/CFS with IBS and ME/CFS 

without IBS groups using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R 

package. Left-hand side bar plots display the relative abundance of each predicted KEGG 

pathway. Right-hand side bar plots display the log2 fold change of the p-values calculated using 

Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; only p-values ≤ 0.01 are displayed. 

Positive direction of log2 fold change bar represents increased expression in ME/CFS with IBS 

group.  
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Figure 3.6.4 Prediction of different KEGG pathways between age-matched ME/CFS with IBS 

and ME/CFS without IBS groups using PICRUSt2 and ALDEx2 analysis and visualised using 

ggpicrust2 R package. Left-hand side bar plots display the relative abundance of each predicted 

KEGG pathway. Right-hand side bar plots display the log2 fold change of the p-values 

calculated using Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; only p-values ≤ 

0.05 are displayed. Positive direction of log2 fold change bar represents increased expression in 

ME/CFS with IBS group. Negative direction of log2 fold change bar represents increased 

expression in ME/CFS without IBS group. 
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Figure 3.6.5 Prediction of different MetaCyc pathways between ME/CFS and Control groups 

using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R package. Left-hand 

side bar plots display the relative abundance of each predicted MetaCyc pathway. Right-hand 

side bar plots display the log2 fold change of the p-values calculated using Wilcoxon rank-sum 

test (uncorrected) from ALDEx2 results; positive direction of log2FC bar represents increased 

expression in the Control group. Only the top 20 features with p-values ≤ 0.05 are displayed. 
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Figure 3.6.6 Prediction of different MetaCyc pathways between ME/CFS with FM and ME/CFS 

without FM groups using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R 

package. Left-hand side bar plots display the relative abundance of each predicted MetaCyc 

pathway. Right-hand side bar plots display the log2 fold change of the p-values calculated using 

Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; positive direction of log2FC bar 

represents increased expression in the ME/CFS with FM group. Only the features with p-values 

≤ 0.10 are displayed. 
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Figure 3.6.7 Prediction of different MetaCyc pathways between ME/CFS with IBS and ME/CFS 

without IBS groups using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R 

package. Left-hand side bar plots display the relative abundance of each predicted MetaCyc 

pathway. Right-hand side bar plots display the log2 fold change of the p-values calculated using 

Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; positive direction of log2FC bar 

represents increased expression in the ME/CFS with IBS group. Only the features with p-values 

≤ 0.05 are displayed. 
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Figure 3.6.8 Prediction of different MetaCyc pathways between age-matched ME/CFS with IBS 

and ME/CFS without IBS groups using PICRUSt2 and ALDEx2 analysis and visualised using 

ggpicrust2 R package. Left-hand side bar plots display the relative abundance of each predicted 

MetaCyc pathway. Right-hand side bar plots display the log2 fold change of the p-values 

calculated using Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; positive direction 

of log2FC bar represents increased expression in the age-matched ME/CFS with IBS group. 

Only the features with p-values ≤ 0.05 are displayed. 
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Figure 3.6.9 Prediction of different Enzyme Classification (EC) gene families between ME/CFS 

and Control groups using PICRUSt2 and ALDEx2 analysis and visualised using ggpicrust2 R 

package. Left-hand side bar plots display the relative abundance of each predicted EC gene 

family. Right-hand side bar plots display the log2 fold change of the p-values calculated using 

Wilcoxon rank-sum test (adjusted) from ALDEx2 results; positive direction of log2FC bar 

represents increased expression in the Control group. Only FDR-adjusted p-values ≤ 0.05 are 

displayed. 
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Figure 3.6.10 Prediction of different Enzyme Classification (EC) gene families between ME/CFS 

with FM and ME/CFS without FM groups using PICRUSt2 and ALDEx2 analysis and visualised 

using ggpicrust2 R package. Left-hand side bar plots display the relative abundance of each 

predicted EC gene family. Right-hand side bar plots display the log2 fold change of the p-values 

calculated using Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; positive direction 

of log2FC bar represents increased expression in the ME/CFS with FM group. Only the top 20 

features with p-values ≤ 0.05 are displayed. 
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Figure 3.6.11 Prediction of different Enzyme Classification (EC) gene families between ME/CFS 

with IBS and ME/CFS without IBS groups using PICRUSt2 and ALDEx2 analysis and visualised 

using ggpicrust2 R package. Left-hand side bar plots display the relative abundance of each 

predicted EC gene family. Right-hand side bar plots display the log2 fold change of the p-values 

calculated using Wilcoxon rank-sum test (uncorrected) from ALDEx2 results; positive direction 

of log2FC bar represents increased expression in the ME/CFS with IBS group. Only the top 20 

features with p-values ≤ 0.05 are displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER THREE: Gut Microbiome (Part One) | 198 

 

Figure 3.6.12 Prediction of different Enzyme Classification (EC) gene families between age-

matched ME/CFS with IBS and ME/CFS without IBS groups using PICRUSt2 and ALDEx2 

analysis and visualised using ggpicrust2 R package. Left-hand side bar plots display the relative 

abundance of each predicted EC gene family. Right-hand side bar plots display the log2 fold 

change of the p-values calculated using Wilcoxon rank-sum test (uncorrected) from ALDEx2 

results; positive direction of log2FC bar represents increased expression in the age-matched 

ME/CFS with IBS group. Only the top 20 features with p-values ≤ 0.05 are displayed. 
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3.6.2 MiMeDB (Culture MALDI-TOF) 

 

 

Figure 3.6.13 Interactive network visualisation using the Flourish tool of the microbe, disease, 

and host biospecimen connections with metabolite Propionic Acid (each represented by a 

differently coloured node). The larger width of the links/edges represents a more important 

connection between the nodes of interest. The graphic is interactive and can be viewed at the 

following link provided by the Wishart Lab: https://public.flourish.studio/visualisation/15853980/ 

 

 

Figure 3.6.14 Interactive network visualisation using the Flourish tool of the microbe, disease, 

and host biospecimen connections with metabolite Isovaleric Acid (each represented by a 

differently coloured node). The larger width of the links/edges represents a more important 

connection between the nodes of interest. The graphic is interactive and can be viewed at the 

following link provided by the Wishart Lab: https://public.flourish.studio/visualisation/16057354/  

 

https://public.flourish.studio/visualisation/15853980/
https://public.flourish.studio/visualisation/16057354/
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Figure 3.6.15 Interactive network visualisation using the Flourish tool of the microbe, disease, 

and host biospecimen connections with metabolite Butyric Acid (each represented by a 

differently coloured node). The larger width of the links/edges represents a more important 

connection between the nodes of interest. The graphic is interactive and can be viewed at the 

following link provided by the Wishart Lab: https://public.flourish.studio/visualisation/16057533/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://public.flourish.studio/visualisation/16057533/
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4 CHAPTER FOUR: Faecal and Urine Host Metabolome (Part One) 

 

Complex diseases like ME/CFS are time-consuming, difficult, and expensive to diagnose and 

monitor (Naviaux et al., 2016). Currently, there are no approved laboratory tests sensitive and 

specific for ME/CFS although metabolomic studies so far have provided evidence of disturbed, 

irregular metabolic processes and pathophysiology (Huth et al., 2020; Maksoud et al., 2023; 

Taccori et al., 2023). Over the past few years, one of the most striking aspects of metabolomics 

has been its potential for differentiating disease subtypes via screening of systemic metabolome 

(metabolite) alterations (Qiu et al., 2023). This study is mainly concerned with the various 

endogenous metabolites (host-derived, microbe-derived, and host-microbial-co-metabolites) in 

human urine, blood plasma, and faeces(Lamichhane et al., 2018; Wishart, 2019). Metabolomics 

with its continually improving analytical technologies, platforms, and workflow approaches, 

offers the possibility for the tandem advancements of elucidating disease pathophysiology, 

reliable biomarkers, and the development of novel diagnostics and therapeutics. Metabolomics 

with a precision medicine scope and edict has much to offer to ME/CFS research and clinical 

applications. 

 

Common endogenous metabolites include but are not limited to, cholesterol, lipids, amino acids, 

bile acids, short peptides, nucleic acids, sugars, alcohols, fatty acids, and organic acids. 

Endogenous metabolites are poised to provide a unique metabolic reflection of a healthy or 

diseased state and the metabolic pathways involved. Metabolomics (or the metabolome) is a 

useful, sensitive probe of an individual’s phenotype and is fundamentally different from the 

genome (Qiu et al., 2023; Wishart, 2019). The metabolome represents both the downstream 

outputs of the genome, transcriptome, or proteome, and the upstream input from the 

environment (Qiu et al., 2023). Although the endogenous metabolites are largely conserved, 

individual metabolomes are not invariant and they are constantly very sensitive to several 

internal and external variables (Wishart, 2019). Metabolic phenotypes can provide a more 

timely, accurate snapshot of what is happening in a participant and their current health and 

functional state.  

 

Beyond the role of cellular functioning and energetics/energy metabolism, metabolomics has 

revealed that metabolites have much more varied, specific, and important roles (Qiu et al., 

2023; Wishart, 2019). It is therefore generally hypothesised that disease pathophysiology is 

closely underpinned or governed by a constellation of interrelated metabolic changes, 
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abnormalities, and dysfunction. Of particular interest in this study is the host’s interplay or 

bidirectional connection with gut physiology and the gut microbiome. The gut microbiome is 

made up of trillions of bacteria and other microbial cells that co-exist with other human cells. 

The gut (lower GI tract, especially the small and large intestine) or GI tract is the organ system 

that is most central to metabolism (Wishart, 2019). Endogenous metabolites are derived from 

the metabolism of the microbes in the gut microbiome or the human host. However, most of 

these metabolites are produced in the gut by the microbiota and these metabolites may 

modulate and significantly affect host metabolism (Y. Zhang et al., 2023). The metabolic activity 

of the gut microbiome is essential in maintaining host homeostasis and health (Visconti et al., 

2019). Without a gut microbiome, humans are essentially unable to survive and perform 

necessary tasks, hence the common calling of “forgotten, hidden metabolic organ”, “the 

additional organ”, and “the second brain and endocrine system” among other similar phrases. 

Although the presence of the microbiota is vital, variations in its composition (gut dysbiosis, 

dysfunction, disturbances) induce metabolic shifts that may result in changes in host phenotype, 

and vice versa (Turnbaugh et al., 2006; Visconti et al., 2019). Interestingly, where changes may 

not be observed or obvious in the composition of the gut microbiome from metataxonomic 

investigations, using other omic approaches including metabolomics, can provide information 

regarding the metabolically active microbes (Visconti et al., 2019; Whon et al., 2021; Wishart, 

2019; Wishart et al., 2023). Monitoring taxonomic and metagenomic profiles can help with 

marking certain microbiome perturbations; however, small molecular-weight microbial products 

have the potential to result in more reproducible signals that translate readily across vastly 

diverse cohorts and disease states (Wilmanski et al., 2021).  

 

Metabolomics is an extremely useful tool to understand the complex metabolic interactions 

between gut microbes and the host (Lamichhane et al., 2018). However, before metabolomics 

can be used for any urgently needed routine monitoring and testing needs in ME/CFS, the 

disease requires clarification of the comorbidities and heterogeneity. This chapter (Chapter 4) 

focused on the faecal and urine metabolome from Part One of the study. Metabolomic 

outcomes from plasma and urine samples in Part Two are in Chapter 5. Both chapters utilised a 

LCMS and NMR metabolomics workflow. As NMR is much less sensitive than LCMS, leading to 

much-reduced metabolic coverage, it can be reasonably assumed that metabolites measured 

by both platforms are present at relatively high concentrations (Dona et al., 2016; Karu et al., 

2018). Part One looked at 40 ME/CFS overall and 43 Control participants which included males 

and females (Section 2.1). Table 2.2.1 shows the baseline characteristics of all four comparative 
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groups of interest (Comparison A-D). Comparison A compares the ME/CFS overall and Control 

groups, Comparison B compares the ME/CFS +/- FM groups, Comparison C compares the 

ME/CFS +/- IBS groups, and Comparison D compares the age-matched ME/CFS +/- IBS** 

groups. Results relevant to faecal metabolomics are in Section 4.1. Results relevant to urinary 

metabolomics are in Section 4.2. Lastly, Section 4.3 covers the discussion for the Part One 

metabolomic outcomes from the faeces and urine, both independently and when compared to 

each other.  

 

4.1 Faecal Metabolomics Results  

 

Globally, LCMS detected 137 and NMR detected 36 faecal metabolite features from all samples 

(Appendix 8). 99 significantly different metabolite features in total from LCMS and NMR were 

highlighted from the volcano plots (VPs) and PLS-DA VIP plots across all the comparisons, 

Comparison A-D (Table 4.1.1). These significantly different metabolites, categorised according 

to the HMDB database, included bile acids, alcohols and derivatives (12.12%), amino acids, 

peptides and analogues (24.24%), purines and purine derivatives (3.03%), other metabolites 

(15.15%), alcohols (3.03%), carboxylic acids and derivatives (11.11%), fatty acyls and acids 

(21.21%), sugar, carbohydrates and carbohydrate conjugates (8.08%), and pyrimidines and 

pyrimidine derivatives (2.02%). There were eight significant differential faecal metabolite 

features (nicotinic acid, malonic acid, glycine, xanthine, glutamic acid, propionic acid, butyric 

acid, and fumaric acid) that were measured by both analytical platforms, LCMS and NMR (Table 

4.1.1). The relative concentrations found for these shared metabolites were consistent in their 

direction as either up/higher/red or down/lower/blue from the VP and PLS-DA analyses 

(Appendix 9). The individual plots from the VP, PCA, and PLS-DA analyses for the faecal 

metabolomic outcomes in Comparisons A-D are shown in Sections 0 (ME/CFS overall vs. 

Control), 4.1.2 (ME/CFS +/- FM), 4.1.3 (ME/CFS +/- IBS), and 4.1.4 (age-matched ME/CFS +/- 

IBS**), respectively.  
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Table 4.1.1 LCMS and NMR Faecal Metabolome (Part One) Significant Features and Results 

  Faecal Metabolite 
Comparative 
Group (A-D) 

Group with significant elevation in relative 
concentration 

LCMS or NMR  

 

 

Bile acids, alcohols 
and derivatives 

3-Oxocholic acid A ME/CFS LCMS  

Allocholic acid/Cholic acid A ME/CFS LCMS  

Allocholic acid*        

Cholic acid*        

Deoxycholic/Hyodeoxycholic/Ursodeoxycholic C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Deoxycholic acid*        

Hyodeoxycholic acid*        

Ursodeoxycholic acid*        

7a-Hydroxy-3-oxo-5b-cholanoic/Nutriacholic D ME/CFS + IBS** LCMS  

7a-Hydroxy-3-oxo-5b-cholanoic acid*        

Nutriacholic acid*        

3b-Hydroxy-5-cholenoic acid* C ME/CFS - IBS LCMS  

Amino acids, 
peptides and 

analogues 

Glycine ‡ A ME/CFS LCMS, NMR  

Serine A, B, C ME/CFS, ME/CFS - FM, ME/CFS - IBS NMR  

Glutamine B ME/CFS - FM NMR  

Proline B ME/CFS - FM NMR  

Glutamate (aka. Glutamic acid) ‡ B, D ME/CFS - FM, ME/CFS + IBS ** NMR, LCMS  

Tyrosine D ME/CFS + IBS** NMR  

Histidine B ME/CFS + FM NMR  

Methionine B ME/CFS - FM NMR  

Lysine C, D ME/CFS + IBS, ME/CFS + IBS** NMR  

Phenylalanine D ME/CFS + IBS** NMR  

Taurine A, C ME/CFS, ME/CFS + IBS NMR  

Beta-Leucine/L-Alloisoleucine/L-Isoleucine A ME/CFS LCMS  

L-Leucine/L-Norleucine A ME/CFS LCMS  

L-Alloisoleucine*        

L-Isoleucine*        

L-Valine A ME/CFS LCMS  

L-Leucine*        

Pyroglutamic acid A ME/CFS LCMS  

Beta-Leucine*        

N-Alpha-acetyllysine D ME/CFS + IBS** LCMS  

N6-Acetyl-L-lysine C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Citrulline D ME/CFS + IBS** LCMS  
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Ornithine D ME/CFS + IBS** LCMS  

L-Norleucine*        

Purines and purine 
derivatives 

Adenine B ME/CFS + FM LCMS  

Xanthine ‡ A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR, LCMS  

Hypoxanthine A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Other metabolites 

Homogentisic acid/Vanillic acid C ME/CFS + IBS LCMS  

Homogentisic acid*        

Alpha-Tocopherol B ME/CFS - FM LCMS  

Beta-Glycerophosphoric acid/Glycerol 3-phosphate A Control LCMS  

Beta-Glycerophosphoric acid*        

Glycerol 3-phosphate*        

Oxoglutaric acid A ME/CFS LCMS  

Acetone B, C, D ME/CFS - FM, ME/CFS - IBS, ME/CFS - IBS** NMR  

Vanillic acid*        

4-Hydroxyphenylpyruvic acid A ME/CFS LCMS  

Guanosine A, B Control, ME/CFS + FM LCMS  

2-Pyrocatechuic acid B, C ME/CFS + FM, ME/CFS + IBS LCMS  

Trimethylamine A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

3-Methylphenylacetic acid D ME/CFS + IBS** LCMS  

Nicotinic acid (aka. Nicotinate) ‡ A, B, C Control, ME/CFS + FM, ME/CFS + IBS LCMS, NMR  

Alcohols 

Ethanolamine B ME/CFS - FM NMR  

Ethanol A ME/CFS NMR  

Methanol B, C, D ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Carboxylic acid and 
derivatives 

L-Malic acid/Malic acid C ME/CFS + IBS LCMS  

Succinate A, B, C ME/CFS, ME/CFS + FM, ME/CFS - IBS NMR  

Malonic acid (aka. Malonate) ‡ A, B, C, D ME/CFS, ME/CFS - FM, ME/CFS + IBS, ME/CFS + 
IBS** 

LCMS, NMR  

Oxalic acid B ME/CFS + FM LCMS  

Succinic anhydride B ME/CFS + FM LCMS  

Fumaric acid (aka. Fumarate) ‡ C, D ME/CFS + IBS, ME/CFS + IBS** LCMS, NMR  

Phenylacetate A, B ME/CFS, ME/CFS - FM NMR  

3.4-Dihydroxyhydrocinnamic acid A Control LCMS  

Hydrocinnamic acid B ME/CFS + FM LCMS  

Formate A ME/CFS NMR  

Citric acid B ME/CFS + FM LCMS  

Fatty acyls and acids 

Butyric acid (aka. Butyrate) ‡ A, D Control, ME/CFS + IBS** LCMS, NMR  

Acetate A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Isovalerate A, B ME/CFS, ME/CFS - FM NMR  

Valerate B ME/CFS - FM NMR  

Propionic acid (aka. Propionate) ‡ C, D ME/CFS + IBS, ME/CFS + IBS** LCMS, NMR  

Pelargonic acid (aka. 1-nonanoic acid) B ME/CFS - FM LCMS  

Adipic acid*        
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3-Methyladipic acid/Pimelic acid C ME/CFS - IBS LCMS  

3-Methyladipic acid*        

Pimelic acid*        

12-Hydroxydodecanoic acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Suberic acid C ME/CFS - IBS LCMS  

Pentadecanoic acid B ME/CFS - FM LCMS  

Heptadecanoic acid B ME/CFS - FM LCMS  

Myristic acid B ME/CFS - FM LCMS  

Octadecanedioic acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Linoleic acid C ME/CFS + IBS LCMS  

2-Methylglutaric acid/Adipic acid B ME/CFS - FM LCMS  

2-Methylglutaric acid*        

3-Methyl-2-oxovaleric acid A ME/CFS LCMS  

Erucic acid B ME/CFS - FM LCMS  

Sugar; 
carbohydrates and 

carbohydrate 
conjugates 

Fructose 6-phosphate/Glucose 6-phosphate A Control LCMS  

Fructose 6-phosphate*        

Glucose 6-phosphate*        

N-Acetylneuraminic acid A ME/CFS LCMS  

D-Glucose D ME/CFS + IBS** LCMS  

Glyceric acid B ME/CFS + FM LCMS  

Galacturonic acid D ME/CFS + IBS** LCMS  

Glycerol C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Pyrimidines and 
pyrimidine 
derivatives 

Uracil A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Orotic acid A ME/CFS LCMS  

NOTE 

* From LCMS consolidated metabolite feature   Refer to Appendix 9 for electronic version of this table and 
raw data input 

   

Comparative Group (A-D)        

A) ME/CFS overall vs. Control [ME/CFS, Control]        

B) ME/CFS with FM vs. ME/CFS without FM [ME/CFS + FM, ME/CFS - FM]        

C) ME/CFS with IBS vs. ME/CFS without IBS [ME/CFS + IBS, ME/CFS - IBS]        

D) ME/CFS with IBS vs. ME/CFS without IBS (age-matched) [ME/CFS + IBS**, 
ME/CFS - IBS**] 

       

‡ "Duplicate" metabolite assayed by LCMS and NMR        
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4.1 Faecal Metabolomics Results continued… 

 

The significantly differential faecal metabolite features were elevated in their relative 

concentrations depending on how the samples were grouped with their ME/CFS, FM, or IBS 

metadata that comprised Comparison A-D (Table 4.1.1). Not every single faecal metabolite 

appeared in all the comparisons when observing the significant differences between the 

involved groups. A total of 17, 19, 6, and 9 metabolite features were found only to be 

significantly different in Comparison A (ME/CFS overall vs. Control), B (ME/CFS +/- FM), C 

(ME/CFS +/- IBS), and D (age-matched ME/CFS +/- IBS**), respectively; for example, 3-

Oxocholic acid was only differential and elevated in the ME/CFS overall group from Comparison 

A. The metabolites, for example, xanthine and propionic acid, that were highlighted in the 

ME/CFS +/- IBS and ME/CFS +/- IBS** groups (Comparison C and D), were always consistently 

lower or higher in their relative concentration providing some indication of IBS involvement 

where an attempt to mitigate the age variable has been made. Methanol and 2-Pyrocatechuic 

acid were consistently elevated in ME/CFS + either FM, IBS, or IBS** (Comparison B-D). 

Acetone was consistently elevated in ME/CFS - either FM, IBS, or IBS** (Comparison B-D).  

 

VPs of the LCMS faecal data matrix highlighted 17 metabolites (12 down and 5 up) in the 

Control vs. ME/CFS (Figure 4.1.1), 6 metabolites (5 down and 1 up) in the ME/CFS +/- FM 

(Figure 4.1.9), 4 metabolites (1 down and 3 up) in the ME/CFS +/- IBS (Figure 4.1.17), and 6 

metabolites (all up) in the ME/CFS +/- IBS** (Figure 4.1.25) comparisons that were significantly 

different. VPs of the NMR faecal data matrix highlighted 8 metabolites (4 down and 4 up) in the 

Control vs. ME/CFS (Figure 4.1.2), 3 metabolites (2 down and 1 up) in the ME/CFS +/- FM 

(Figure 4.1.10), 6 metabolites (all up) in the ME/CFS +/- IBS (Figure 4.1.18), and 8 metabolites 

(all up) in the ME/CFS +/- IBS** (Figure 4.1.26) comparisons that were significantly different. 

The metabolites from the VPs that were also found to be significantly different by PLS-DA VIP 

analyses reflected and supported the same pattern as either high or low in relative 

concentration (Appendix 9). The PCAs from the LCMS and NMR data matrices did not show a 

clear separation between the groups for all comparisons (Table 4.1.2). Although the PCAs did 

not discriminate between the groups, the clusters extended in different directions. Tighter 

clusters identified by the ellipsoid shape were observed from LCMS and NMR ME/CFS + IBS 

(Figure 4.1.19, Figure 4.1.20), and LCMS and NMR ME/CFS + IBS** (Figure 4.1.27, Figure 

4.1.28). Further, the ellipsoid from the NMR ME/CFS + IBS** group also resided within the 

broader ME/CFS - IBS** ellipsoid (Figure 4.1.28); this inner group may represent a subset of a 
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more specific subgroup within the broader category of ME/CFS. The PLS-DAs demonstrated 

improved clustering and separation for Comparison A-D (Table 4.1.2). The PLS-DA for the 

LCMS data matrix found a partial to distinguished separation between the ME/CFS +/- FM 

(Figure 4.1.13) and ME/CFS +/- IBS (Figure 4.1.21) comparisons. A partial to distinguished 

separation for LCMS (Figure 4.1.29) and NMR (Figure 4.1.31) was also observed between the 

ME/CFS +/- IBS** groups.  

 

Table 4.1.2 Summary of the total variance from the first two components of the PCA and PLS-

DA analyses (LCMS and NMR Faecal Metabolome (Part One)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1 PC2 Total† Comp. 1 Comp. 2 Total‡

A) ME/CFS vs. Control LCMS 18 15.8 33.8 Overlapping 9.5 12.2 21.7 Partial

NMR 47.3 12.2 59.5 Overlapping 11.7 4.1 15.8 Partial

B) ME/CFS +/- FM LCMS 20.1 15 35.1 Overlapping 13.1 5.8 18.9 Partial-Distinguished

NMR 54.7 9 63.7 Overlapping 45.5 16.5 62 Partial

C) ME/CFS +/- IBS LCMS 20.1 15 35.1 Overlapping 14.1 10 24.1 Partial-Distinguished

NMR 54.7 9 63.7 Overlapping 41.4 21.6 63 Partial

D) ME/CFS +/- IBS** LCMS 21.6 16.5 38.1 Overlapping 19.4 6.8 26.2 Partial-Distinguished

NMR 55.1 9.8 64.9 Overlapping 51.1 12.1 63.2 Partial-Distinguished

† PC1 and PC2 added together

‡ Component 1 and Component 2 added together

Partial-Distinguished to complete separation between groupings

Faeces Part One

PCA PLSDA

% of the variance
Separation

% of the variance
Separation
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4.1.1 Faecal Comparison A) ME/CFS Overall vs. Control Groups  

 

4.1.1.1 Univariate Analysis 

 

 

Figure 4.1.1 Volcano plot of LCMS Faecal Part 1 ME/CFS overall vs Control groups using test 

outcomes from the raw p-values. Metabolites with significantly higher (blue) or lower (red) 

concentrations in the ME/CFS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. The q-values of significant 

FDR-adjusted metabolites are shown (NS = q-value ≥ 0.05). 
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Figure 4.1.2 Volcano plot of NMR Faecal Part 1 ME/CFS overall vs Control groups using test 

outcomes from the raw p-values. Metabolites with significantly higher (blue) or lower (red) 

concentrations in the ME/CFS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. The q-values of significant 

FDR-adjusted metabolites are shown (NS = q-value ≥ 0.05).  
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4.1.1.2 Multivariate Analysis (PCA) 

 

 

Figure 4.1.3 PCA plots A) overview B) PC1 and PC2 only of LCMS Faecal Part 1 ME/CFS 

overall vs. Control groups  

 

 

Figure 4.1.4 PCA plots A) overview B) PC1 and PC2 only of NMR Faecal Part 1 ME/CFS 

overall vs. Control groups 
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4.1.1.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.1.5 PLSDA A) overview B) components 1 and 2 only of LCMS Faecal Part 1 ME/CFS 

overall vs. Control groups 

 

 

Figure 4.1.6 VIP scores of corresponding PLSDA for LCMS Faecal Part 1 ME/CFS overall vs. 

Control groups  
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Figure 4.1.7 PLSDA A) overview B) components 1 and 2 only of NMR Faecal Part 1 ME/CFS 

overall vs. Control groups 

 

 

Figure 4.1.8 VIP scores of corresponding PLSDA of NMR Faecal Part 1 ME/CFS overall vs. 

Control groups 
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4.1.2 Faecal Comparison B) ME/CFS with FM vs. ME/CFS without FM  

 

4.1.2.1 Univariate Analysis 

 

 

Figure 4.1.9 Volcano plot of LCMS Faecal Part 1 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-significant 

metabolites represented in grey.  
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Figure 4.1.10 Volcano plot of NMR Faecal Part 1 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey.  
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4.1.2.2 Multivariate Analysis (PCA) 

 

 

Figure 4.1.11 PCA plots A) overview B) PC1 and PC2 only of LCMS Faecal Part 1 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 4.1.12 PCA plots A) overview B) PC1 and PC2 only of NMR Faecal Part 1 ME/CFS with 

FM versus ME/CFS without FM 
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4.1.2.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.1.13 PLSDA A) overview B) components 1 and 2 only of LCMS Faecal Part 1 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 4.1.14 VIP scores of corresponding PLSDA for LCMS Faecal Part 1 ME/CFS with FM 

versus ME/CFS without FM 
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Figure 4.1.15 PLSDA A) overview B) components 1 and 2 only of NMR Faecal Part 1 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 4.1.16 VIP scores of corresponding PLSDA for NMR Faecal Part 1 ME/CFS with FM 

versus ME/CFS without FM 
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4.1.3 Faecal Comparison C) ME/CFS with IBS vs. ME/CFS without IBS   

 

4.1.3.1 Univariate Analysis 

 

 

Figure 4.1.17 Volcano plot of LCMS Faecal Part 1 ME/CFS with IBS versus ME/CFS without 

IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-

significant metabolites represented in grey. 
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Figure 4.1.18 Volcano plot of NMR Faecal Part ME/CFS with IBS versus ME/CFS without IBS. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with IBS 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey. 
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4.1.3.2 Multivariate Analysis (PCA) 

 

 

Figure 4.1.19 PCA plots A) overview B) PC1 and PC2 only of LCMS Faecal Part 1 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.20 PCA plots A) overview B) PC1 and PC2 only of NMR Faecal Part 1 ME/CFS with 

IBS versus ME/CFS without IBS 
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4.1.3.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.1.21 PLSDA A) overview B) components 1 and 2 only of LCMS Faecal Part 1 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.22 VIP scores of corresponding PLSDA for LCMS Faecal Part 1 ME/CFS with IBS 

versus ME/CFS without IBS 
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Figure 4.1.23 PLSDA A) overview B) components 1 and 2 only of NMR Faecal Part 1 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.24 VIP scores of corresponding PLSDA for NMR Faecal Part 1 ME/CFS with IBS 

versus ME/CFS without IBS 
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4.1.4 Faecal Comparison D) Age-matched ME/CFS with IBS vs. ME/CFS without IBS  

 

4.1.4.1 Univariate Analysis 

 

 

Figure 4.1.25 Volcano plot of LCMS Faecal Part 1 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. 
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Figure 4.1.26 Volcano plot of NMR Faecal Part 1 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. 
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4.1.4.2 Multivariate Analysis (PCA) 

 

 

Figure 4.1.27 PCA plots A) overview B) PC1 and PC2 only of LCMS Faecal Part 1 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.28 PCA plots A) overview B) PC1 and PC2 only of NMR Faecal Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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4.1.4.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.1.29 PLSDA A) overview B) components 1 and 2 only of LCMS Faecal Part 1 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.30 VIP scores of corresponding PLSDA for LCMS Faecal Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 



 

CHAPTER FOUR: Faecal and Urine Host Metabolome (Part One) | 228 

 

Figure 4.1.31 PLSDA A) overview B) components 1 and 2 only of NMR Faecal Part 1 age- 

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.1.32 VIP scores of corresponding PLSDA for NMR Faecal Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 

 

 



 

CHAPTER FOUR: Faecal and Urine Host Metabolome (Part One) | 229 

4.2 Urine Metabolomics Results 

 

Globally, LCMS detected 147 and NMR detected 26 urine metabolite features from all samples 

(Appendix 8). 90 significantly different metabolite features in total from LCMS and NMR were 

highlighted from the volcano plots (VPs) and PLS-DA VIP plots across all the comparisons, 

Comparison A-D (Table 4.2.1). These significantly different metabolites, categorised according 

to the HMDB database, included amino acids, peptides and analogues (27.78%), sugar, 

carbohydrates and carbohydrate conjugates (14.44%), carboxylic acids and derivatives 

(16.67%), bile acids and derivatives (2.22%), fatty acyls, fatty acids and conjugates (10.00%), 

benzenoids (6.67%), other metabolites (12.22%), alcohols (2.22%), and organic acids and 

derivatives (7.78%). There were five differential urine metabolite features (glycine, valine, lactic 

acid, malonic acid, and citric acid) that were measured by both analytical platforms, LCMS and 

NMR (Table 4.2.1). The relative concentrations found for these shared metabolites were 

consistent in their direction as either up/higher/red or down/lower/blue from the VP and PLS-DA 

analyses (Appendix 9). The individual plots from the VP, PCA, and PLS-DA analyses for the 

urine metabolomic outcomes in Comparisons A-D are shown in Sections 4.2.1 (ME/CFS overall 

vs. Control), 4.2.2 (ME/CFS +/- FM), 4.2.3 (ME/CFS +/- IBS), and 4.2.4 (age-matched ME/CFS 

+/- IBS**), respectively.  
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Table 4.2.1 LCMS and NMR Urine Metabolome (Part One) Significant Features and Results 

  Urine Part One Metabolite 
Comparative Group 

(A-D) 
Group with significant elevation in relative 

concentration 
LCMS or NMR  

 
 

Amino acids, 
peptides and 

analogues 

Glycine ‡ B, D ME/CFS - FM, ME/CFS + IBS** NMR, LCMS  

Glutamic acid (Glutamate) A ME/CFS LCMS  

Cysteine A, B, C, D Control, ME/CFS - FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Alanine A, C Control, ME/CFS - IBS NMR  

Histidine A, B, C, D ME/CFS, ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

L-Threonine* B, D ME/CFS - FM, ME/CFS + IBS** LCMS  

L-Phenylalanine C ME/CFS - IBS LCMS  

Taurine C, D ME/CFS - IBS, ME/CFS - IBS** NMR  

Valine (aka. L-Valine) ‡ A, B, C, D Control, ME/CFS + FM, ME/CFS - IBS, ME/CFS - IBS** NMR, LCMS  

3-Aminoisobutanoic acid/D-Alpha-aminobutyric acid B ME/CFS - FM LCMS  

L-Allothreonine/L-Threonine B, D ME/CFS - FM, ME/CFS + IBS** LCMS  

Creatinine A, C, D Control, ME/CFS - IBS, ME/CFS - IBS** NMR  

L-Cystathionine A Control LCMS  

Guanidoacetate B, C, D ME/CFS - FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Creatine B, C ME/CFS - FM, ME/CFS + IBS NMR  

Dimethylglycine B ME/CFS - FM LCMS  

3-Aminoisobutanoic acid* B ME/CFS - FM LCMS  

D-Alpha-aminobutyric acid* B ME/CFS - FM LCMS  

N6-Acetyl-L-lysine B ME/CFS - FM LCMS  

5-Hydroxylysine/5-Hydroxylysine B ME/CFS - FM LCMS  

L-Allothreonine* B, D ME/CFS - FM, ME/CFS + IBS** LCMS  

Isobutyrylglycine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Phenylacetylglycine D ME/CFS + IBS** LCMS  

Alanylglycine B ME/CFS - FM LCMS  

Carnosine B ME/CFS - FM LCMS  

Sugar; 
carbohydrates 

and 
carbohydrate 

conjugates  

1.5-Anhydrosorbitol B ME/CFS + FM LCMS  

Dihydroxyacetone/D-Lactic acid/Glyceraldehyde C, D ME/CFS - IBS, ME/CFS - IBS** LCMS, NMR  

Dihydroxyacetone* C ME/CFS - IBS LCMS  

Glyceraldehyde* C ME/CFS - IBS LCMS  

Glucose A, B, C, D ME/CFS, ME/CFS + FM, ME/CFS - IBS, ME/CFS - IBS** NMR  

Galactitol/Mannitol/Sorbitol C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Gluconic acid A Control LCMS  

Threonic acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Glyceric acid D ME/CFS + IBS** LCMS  

Galactitol* C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  
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Mannitol* C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Sorbitol* C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Glycerol A ME/CFS LCMS  

Carboxylic 
acids and 

derivatives 

Glycolate B, D ME/CFS - FM, ME/CFS + IBS** NMR  

Succinate A, B ME/CFS, ME/CFS + FM NMR  

Oxalic acid A ME/CFS LCMS  

Malonate (aka. Malonic acid) ‡ A, B, C, D Control, ME/CFS - FM, ME/CFS - IBS, ME/CFS - IBS** NMR, LCMS  

Dimethylmalonic acid/Ethylmalonic acid B ME/CFS - FM LCMS  

Dimethylmalonic acid* B ME/CFS - FM LCMS  

Fumarate C, D ME/CFS - IBS, ME/CFS - IBS** NMR  

Indoleacetic acid A ME/CFS LCMS  

2-Indolecarboxylic acid D ME/CFS + IBS** LCMS  

p-Hydroxyphenylacetic acid B, C ME/CFS - FM, ME/CFS + IBS LCMS  

Formate D ME/CFS + IBS** NMR  

cis-Aconitic acid A ME/CFS LCMS  

Citrate (aka. Citric acid) * ‡ A, B ME/CFS, ME/CFS + FM NMR, LCMS  

D-threo-Isocitric acid* B ME/CFS + FM LCMS  

Isocitric acid* B ME/CFS + FM LCMS  

Bile acids and 
derivatives 

Glycocholic acid A ME/CFS LCMS  

Deoxycholic acid glycine conjugate D ME/CFS + IBS** LCMS  

Fatty acyls; 
fatty acids 

and 
conjugates 

Ethylmalonic acid* B ME/CFS - FM LCMS  

Myristic acid A ME/CFS LCMS  

Oleic acid A ME/CFS LCMS  

Stearic acid A ME/CFS LCMS  

Palmitic acid A ME/CFS LCMS  

Caprylic acid A ME/CFS LCMS  

Caproic acid A ME/CFS LCMS  

Adipic acid A ME/CFS LCMS  

Succinic acid semialdehyde (MH2) A ME/CFS LCMS  

Benzenoids   

Hippurate A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Phenol C ME/CFS + IBS LCMS  

Pyrocatechol C ME/CFS + IBS LCMS  

Vanillin B ME/CFS + FM LCMS  

4-Hydroxyphenylpyruvic acid A Control LCMS  

2.6-Dihydroxybenzoic acid A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** LCMS  

Other 
metabolites 

Maleate A ME/CFS NMR  

Loperamide A, B Control, ME/CFS + FM LCMS  

Sumiki's acid/5-(Hydroxymethyl)furoic acid B ME/CFS + FM LCMS  

Beta-Glycerophosphoric acid/Glycerol 3-phosphate A Control LCMS  

Beta-Glycerophosphoric acid* A Control LCMS  

Glycerol 3-phosphate* A Control LCMS  

Phosphoric acid A, C, D Control, ME/CFS - IBS, ME/CFS - IBS** LCMS  
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Dimethylamine A, B, C, D Control, ME/CFS + FM, ME/CFS - IBS, ME/CFS - IBS** NMR  

7-Methylguanine A, B ME/CFS, ME/CFS + FM LCMS  

Kynurenic acid C ME/CFS - IBS LCMS  

Trimethylamine N-oxide C, D ME/CFS + IBS, ME/CFS + IBS** NMR  

Alcohols 
Ethanolamine A Control NMR  

Methanol A, B Control, ME/CFS + FM NMR  

Organic acids 
and 

derivatives 

D-Lactic acid (aka. Lactate) * ‡ C, D ME/CFS - IBS, ME/CFS - IBS** LCMS, NMR  

Hydroxypropionic acid A ME/CFS LCMS  

Oxoglutaric acid/Oxoglutaric acid C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

O-Phosphoethanolamine A, C, D Control, ME/CFS - IBS, ME/CFS - IBS** LCMS  

Acetate A, B, C, D ME/CFS, ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

2-Ketobutyric acid A ME/CFS LCMS  

Urea B ME/CFS + FM NMR  

NOTE 

* From LCMS consolidated metabolite feature        

Comparative Group (A-D)       

A) ME/CFS overall vs. Control [ME/CFS, Control]       

B) ME/CFS with FM vs. ME/CFS without FM [ME/CFS + FM, 
ME/CFS - FM]  

     

C) ME/CFS with IBS vs. ME/CFS without IBS [ME/CFS + IBS, 
ME/CFS - IBS]  

  
  

 

D) ME/CFS with IBS vs. ME/CFS without IBS (age-matched) 
[ME/CFS + IBS**, ME/CFS - IBS**]  

     

‡ "Duplicate" metabolite assayed by LCMS and NMR       

Refer to Appendix 9 for electronic version 
of this table and raw data input 
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4.2 Urine Metabolomics Results continued… 

 

The significantly differential urine metabolite features were elevated in their relative 

concentrations depending on how the samples were grouped with their ME/CFS, FM, or IBS 

metadata that comprised Comparison A-D (Table 4.2.1). Not every single urine metabolite 

appeared in all the comparisons when observing the significant differences between the 

involved groups. A total of 24, 17, 6, and 5 metabolite features were found only to be 

significantly different in Comparison A (ME/CFS overall vs. Control), B (ME/CFS +/- FM), C 

(ME/CFS +/- IBS), and D (age-matched ME/CFS +/- IBS**), respectively; for example, succinic 

acid semialdehyde (MH2) and glutamic acid were only differential and elevated in the ME/CFS 

overall group from Comparison A. The metabolites, for example, isobutyrylglycine and threonic 

acid, that were highlighted in the ME/CFS +/- IBS and ME/CFS +/- IBS** groups (Comparison C 

and D), were always consistently lower or higher in their relative concentration providing some 

indication of IBS involvement where an attempt to mitigate the age variable has been made. 

Histidine and acetate were consistently elevated in the ME/CFS overall (Comparison A) and the 

ME/CFS + either FM, IBS, or IBS** (Comparison B-D) groups.  

 

VPs of the LCMS urine data matrix highlighted 22 metabolites (15 down and 7 up) in the Control 

vs. ME/CFS (Figure 4.2.1), 6 metabolites (3 down and 3 up) in the ME/CFS +/- FM (Figure 

4.2.9), 4 metabolites (1 down 3 up) in the ME/CFS +/- IBS (Figure 4.2.17), and 1 metabolite 

(down only) in the ME/CFS +/- IBS** (Figure 4.2.25) comparisons that were significantly 

different. VPs of the NMR urine data matrix highlighted 5 metabolites (2 down and 3 up) in the 

Control vs. ME/CFS (Figure 4.2.2), 2 metabolites (1 down and 1 up) in the ME/CFS +/- FM 

(Figure 4.2.10), 6 metabolites (2 down and 4 up) in the ME/CFS +/- IBS (Figure 4.2.18), and 4 

metabolites (all up) in the ME/CFS +/- IBS** (Figure 4.2.26) comparisons that were significantly 

different. The metabolites from the VPs that were also found to be significantly different by PLS-

DA VIP analyses reflected and supported the same pattern as either high or low in relative 

concentration (Appendix 9). The PCAs from the LCMS and NMR data matrices did not show a 

clear separation between the groups for all comparisons (Table 4.2.2). Although the PCAs did 

not discriminate the groups, the clusters for these comparisons extended in different directions: 

LCMS ME/CFS vs. Control (Figure 4.2.3), LCMS and NMR ME/CFS +/- FM (Figure 4.2.11, 

Figure 4.2.12), NMR ME/CFS +/- IBS (Figure 4.2.20), and LCMS ME/CFS +/- IBS** (Figure 

4.2.27). Tighter clusters that resided within a broader cluster observed by ellipsoid shape and 

size were noted for LCMS and NMR ME/CFS vs. Control (Figure 4.2.3 and Figure 4.2.4), NMR 



 

CHAPTER FOUR: Faecal and Urine Host Metabolome (Part One) | 234 

ME/CFS +/- FM (Figure 4.2.12), LCMS ME/CFS +/- IBS (Figure 4.2.19), and LCMS ME/CFS +/- 

IBS** (Figure 4.2.27). These patterns in the PCAs of urine samples may reflect a subset or 

specific trait from a wider cohort. The PLS-DAs demonstrated improved clustering and 

separation for Comparison A-D (Table 4.2.2). The PLS-DA for the LCMS data matrix found a 

partial to distinguished separation between the ME/CFS vs. Control (Figure 4.2.5), and ME/CFS 

+/- FM (Figure 4.2.13). A partial to distinguished separation for LCMS (Figure 4.2.21) and NMR 

(Figure 4.2.23) was also observed between the ME/CFS +/- IBS groups. Similarly, a 

distinguished separation for LCMS (Figure 4.2.29), and a partial to distinguished separation for 

NMR (Figure 4.2.31), for ME/CFS +/- IBS** groups was also observed.  

 

Table 4.2.2 Summary of the total variance from the first two components of the PCA and PLS-

DA analyses (LCMS and NMR Urine Metabolome (Part One)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1 PC2 Total† Comp. 1 Comp. 2 Total‡

A) ME/CFS vs. Control LCMS 15.3 9.2 24.5 Overlapping 11 8.3 19.3 Partial-Distinguished

NMR 13.9 10.6 24.5 Overlapping 8 8 16 Overlapping-Partial

B) ME/CFS +/- FM LCMS 16.1 12.3 28.4 Overlapping 11.4 7.7 19.1 Partial-Distinguished

NMR 17.6 14.4 32 Overlapping 10.5 11.5 22 Partial

C) ME/CFS +/- IBS LCMS 16.1 12.3 28.4 Overlapping 7.6 11.1 18.7 Partial-Distinguished

NMR 17.6 14.4 32 Overlapping 13.3 10.4 23.7 Partial-Distinguished

D) ME/CFS +/- IBS** LCMS 18.8 14.3 33.1 Overlapping 9.8 12.9 22.7 Distinguished

NMR 17.2 12.7 29.9 Overlapping 11.7 11 22.7 Partial-Distinguished

† PC1 and PC2 added together

‡ Component 1 and Component 2 added together

Partial-Distinguished to complete separation between groupings

Urine Part One

PCA PLSDA

% of the variance
Separation

% of the variance
Separation
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4.2.1 Urine Comparison A) ME/CFS Overall vs. Control Group 

 

4.2.1.1 Univariate Analysis 

 

 

Figure 4.2.1 Volcano plot of LCMS Urine Part 1 ME/CFS overall vs Control groups using test 

outcomes from the raw p-values. Metabolites with significantly higher (blue) or lower (red) 

concentrations in the ME/CFS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. The q-values of significant 

FDR-adjusted metabolites are shown (NS = q-value ≥ 0.05). 
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Figure 4.2.2 Volcano plot of NMR Urine Part 1 ME/CFS overall vs Control groups using test 

outcomes from the raw p-values. Metabolites with significantly higher (blue) or lower (red) 

concentrations in the ME/CFS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. The q-values of significant 

FDR-adjusted metabolites are shown (NS = q-value ≥ 0.10). 
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4.2.1.2 Multivariate Analysis (PCA) 

 

 

Figure 4.2.3 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 1 ME/CFS 

overall vs. Control groups 

 

 

Figure 4.2.4 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 1 ME/CFS overall 

vs. Control groups 
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4.2.1.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.2.5 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 1 ME/CFS 

overall vs. Control groups  

 

 

Figure 4.2.6 VIP scores of corresponding PLSDA for LCMS Urine Part 1 ME/CFS overall vs. 

Control groups 
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Figure 4.2.7 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 1 ME/CFS 

overall vs. Control groups  

 

 

Figure 4.2.8 VIP scores of corresponding PLSDA for NMR Urine Part 1 ME/CFS overall vs. 

Control groups 
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4.2.2 Urine Comparison B) ME/CFS with FM vs. ME/CFS without FM  

 

4.2.2.1 Univariate Analysis 

 

 

Figure 4.2.9 Volcano plot of LCMS Urine Part 1 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-significant 

metabolites represented in grey. 
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Figure 4.2.10 Volcano plot of NMR Urine Part 1 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey. 
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4.2.2.2 Multivariate Analysis (PCA) 

 

 

Figure 4.2.11 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 1 ME/CFS with 

FM versus ME/CFS without FM 

 

 

Figure 4.2.12 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 1 ME/CFS with 

FM versus ME/CFS without FM 
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4.2.2.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.2.13 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 1 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 4.2.14 VIP scores of corresponding PLSDA for LCMS Urine Part 1 ME/CFS with FM 

versus ME/CFS without FM 
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Figure 4.2.15 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 1 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 4.2.16 VIP scores of corresponding PLSDA for NMR Urine Part 1 ME/CFS with FM 

versus ME/CFS without FM 
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4.2.3 Urine Comparison C) ME/CFS with IBS vs. ME/CFS without IBS  

 

4.2.3.1 Univariate Analysis 

 

 

Figure 4.2.17 Volcano plot of LCMS Urine Part 1 ME/CFS with IBS versus ME/CFS without 

IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-

significant metabolites represented in grey. 
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Figure 4.2.18 Volcano plot of NMR Urine Part 1 ME/CFS with IBS versus ME/CFS without IBS. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with IBS 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey. 
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4.2.3.2 Multivariate Analysis (PCA) 

 

 

Figure 4.2.19 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 1 ME/CFS with 

IBS versus ME/CFS without IBS 

 

 

Figure 4.2.20 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 1 ME/CFS with 

IBS versus ME/CFS without IBS 
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4.2.3.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.2.21 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 1 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 4.2.22 VIP scores of corresponding PLSDA for LCMS Urine Part 1 ME/CFS with IBS 

versus ME/CFS without IBS 
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Figure 4.2.23 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 1 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 4.2.24 VIP scores of corresponding PLSDA for NMR Urine Part 1 ME/CFS with IBS 

versus ME/CFS without IBS 
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4.2.4 Urine Comparison D) Age-matched ME/CFS with IBS vs. ME/CFS without IBS 

 

4.2.4.1 Univariate Analysis 

 

 

Figure 4.2.25 Volcano plot of LCMS Urine Part 1 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. 
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Figure 4.2.26 Volcano plot of NMR Urine Part 1 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. 
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4.2.4.2 Multivariate Analysis (PCA) 

 

 

Figure 4.2.27 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.2.28 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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4.2.4.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 4.2.29 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 1 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.2.30 VIP scores of corresponding PLSDA for LCMS Urine Part 1 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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Figure 4.2.31 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 1 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 4.2.32 VIP scores of corresponding PLSDA for NMR Urine Part 1 age-matched ME/CFS 

with IBS versus ME/CFS without IBS 
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4.3 Faeces and Urine Metabolomics Discussion 

 

4.3.1 Previous Metabolomic Studies in ME/CFS  

 

This chapter presents the faecal and urinary metabolomic outcomes with polar metabolites from 

Part One. Chapter 5 presents the plasma and urine outcomes from Part Two. Due to the 

similarity of many discussion points between the two chapters, they will mostly be covered here. 

To date, there have been a growing number of ME/CFS metabolomic studies published 

although inconsistences and lack of reproducibility remain an issue. Like the gut microbiome 

studies, no certain pathophysiological mechanisms or disease signature(s) via the use of 

metabolomics has been found (Huth et al., 2020; Maksoud et al., 2023; Taccori et al., 2023; 

Yamano et al., 2021). Again, heterogeneity across the board from the complexity of ME/CFS, 

the individuality of the participants, participant selection, sample types assayed, platforms used, 

and other analytical methodological variations, make it difficult to validate and draw consistent 

observations and fair comparisons. On this note, it is worth noting and clarifying that 

metabolomics is not a “contributor to the pathogenesis of ME/CFS” as the systematic review 

from Huth et al. (2020) have implied in their conclusions on the state of evidence for 

metabolomic dysregulation in ME/CFS (Huth et al., 2020). Instead, metabolomics should be 

viewed as an attractive field and domain capable of providing more unified and system-wide 

perspectives of the biology and processes at play in ME/CFS. While inconsistent in their specific 

details, metabolomics in ME/CFS has demonstrated the similarity of overall potential molecular 

pathophysiological changes, disturbances, and biological issues. 

 

Human blood (plasma and serum) and urinary metabolomics have been the most used sample 

types in ME/CFS studies. The publications by Glass et al. (2023), Germain et al. (2022), Huth et 

al. (2023), Taccori et al. (2023) and Yamano et al. (2021) provide a more extensive list of these 

ME/CFS studies from several labs across the world. Already, without considering any of the 

other potential factors, there is a potential source of discrepancy among studies, including the 

work from this study. In metabolomics research blood plasma and serum have been considered 

to possess similar compositions and properties; their perceived equivalence has resulted in 

researchers choosing arbitrarily between the two for analysis (L. Liu et al., 2010). They are both 

used to evaluate various biochemical parameters in medical science and in the study and 

diagnosis of disease. Currently, there is no consensus on which blood sample matrix type is 

preferable for metabolomics. However, differences in metabolite profiles have been shown 
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between the two (Huang et al., 2022; L. Liu et al., 2010; X. Liu et al., 2018). This caveat is 

something to be mindful of when evaluating blood metabolomic outcomes and planning any 

future studies.   

 

Metabolomics with faeces and other materials like cerebrospinal fluid and saliva have been 

much less common in ME/CFS. While faecal material has widely been used with the gut 

microbiome studies in ME/CFS with shotgun metagenomics and 16S rRNA sequencing work, 

they do not appear much in metabolomics. Even where a multi-omic focused study design has 

been implemented to investigate the gut microbiome-host metabolome relationship, the faeces 

do not necessarily go through a metabolomic platform and workflow. A search of “faecal/stool 

metabolomics in ME/CFS” yields studies from Armstrong et al. (2017) and Lupo et al. (2021), 

and one thesis by Daniel Vipond (2018) (Vipond, 2018). Guo et al. (2023) also performed some 

faecal metabolomics with their cohort; however, only short chain fatty acids were profiled. For 

the faecal metabolomic data outcome alone, this study contributes to ME/CFS research. So far 

in ME/CFS, any NMR-based metabolomics work is mainly by Armstrong, McGregor, and 

colleagues from Melbourne, Australia (Armstrong et al., 2012, 2015, 2017; McGregor et al., 

2016, 2019). Other groups have produced metabolomics work that are MS-based. As far as I 

am aware, this is the first ME/CFS study that has utilised both the LCMS and NMR platforms for 

metabolomics in urine, plasma, and faeces (Huth et al., 2020; Taccori et al., 2023; Yamano et 

al., 2021). Using both platforms has allowed the coverage of metabolites to be broadened 

compared to using a NMR-only approach and provided some confirmation of what is observed 

from the LCMS outcomes.  

 

While it is not necessarily the fairest comparison, as the details of the methodologies involved 

are not the same as other ME/CFS metabolomic studies, the number of LCMS metabolites is 

comparable to targeted metabolomic profiles (not untargeted), and NMR metabolites for faeces 

and blood is an improvement as far as total number of metabolites that were obtained from the 

respective 1D participant sample and 2D confirmation spectra. See Section 2.1.2 and 2.8.2.4 

regarding improvements and modifications sought for NMR work; instead of 24 faecal, 30 urine, 

and 29 blood metabolites, this study found 36, 26, and 47, respectively. The challenges of NMR 

metabolomics with urine are acknowledged, and future work with current raw spectra and any 

other NMR-based assays would look to improve these outcomes (Bouatra et al., 2013; A. H. 

Emwas et al., 2015). Further, the assay of two biospecimen types from the same time-point in 

Part One and Two of this study is a contribution. Many studies only utilised or considered one 
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biospecimen type for their metabolomics analysis, except for the work by Armstrong and 

colleagues, although they only used NMR-based metabolomics. The remainder of the 

discussion considers the biospecimen types separately and together in terms of what they could 

explain in the context of ME/CFS, the FM and IBS comorbidities, and the gut microbiome-host 

metabolome relationship.   

 

4.3.2 Variations in Faecal Metabolome  

 

The faecal metabolome provides a functional readout of microbial activity and can be used as 

an intermediate phenotype mediating host-microbiome interactions (Zierer et al., 2018). Faecal 

metabolomics has increasingly gained attention and shown promising results in characterising 

microbial metabolic functions and the gastrointestinal system (Karu et al., 2018; Lamichhane et 

al., 2018). The faecal metabolites were characterised by LCMS and NMR from ME/CFS and 

non-ME/CFS participants in Part One. The results revealed alterations in these metabolites 

across the comparative groups of interest (Comparison A-D). Some metabolites could explain 

the difference between the overall ME/CFS versus Control groups (Comparison A). With the 

same LCMS and NMR data matrices; Comparison C-D looked at the FM and IBS comorbidities 

in the ME/CFS cohort without the non-ME/CFS participants involved. The presence or absence 

of these comorbidities in the ME/CFS cohort revealed several patterns in the faecal metabolites 

that suggest potential heterogeneity in relevant metabolic activity, processes, and host interplay.  

 

There were faecal metabolite features that were highlighted across several of the comparisons 

which showed inconsistent trends in their relative concentration depending on the comorbidity 

grouping. There were eight metabolites, for example, nicotinic acid and butyric acid, that were 

elevated in both the Control group from Comparison A and in the groups from Comparison C-D 

which are ME/CFS participants overall that have been defined according to their FM and IBS 

metadata. Glutamate showed a contrasting trend in the presence or absence of FM and IBS 

comorbidities where it was elevated in ME/CFS - FM (Comparison B) and ME/CFS + IBS** 

(Comparison D). Further, metabolites elevated in the ME/CFS overall group of Comparison A 

and C-D (ME/CFS only participants) revealed another notable variation in trend. For example, 

succinate was elevated in the ME/CFS overall group (Comparison A) but when looking at 

Comparison C-D with the ME/CFS participants, it was elevated in ME/CFS - FM (Comparison 

B), and ME/CFS + IBS and ME/CFS + IBS** (Comparison C and D). All these incongruent or 
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interesting trends and patterns indicated that faecal metabolite characteristics may be different 

depending on the FM or IBS comorbidity and how participants are grouped.  

 

There were some more intriguing observations where metabolites were significantly elevated in 

both the Control group from Comparison A, and at least one of the groups from Comparison B-

D in the ME/CFS cohort. Regardless of the comparative group and the direction of the relative 

concentration being elevated, the metabolites and categories of metabolites identified have 

often been cited and discussed in the literature at the intersection of the gut microbiome and 

many health issues and chronic diseases. This includes short chain fatty acids, organic acids, 

branched chain amino acids, and bile acids (Agus et al., 2021; Fassarella et al., 2021). In 

addition to the previous ME/CFS microbiome studies, these findings provided further evidence 

and support of the gut microbiome and comorbidities having a critical role in ME/CFS. Further, 

the usefulness of faecal metabolomics with taxonomic and predicted functional findings has 

been demonstrated in the attempt to understand (the remainder of this section) what may be 

going on in ME/CFS heterogeneity and pathophysiology.  

ME/CFS research follows the general research trend that has seen more urine and plasma 

metabolomics studies than faecal ones. Armstrong et al. (2017), using NMR absolute 

concentration values, identified that valerate and isovalerate were increased and lactate was 

decreased in ME/CFS patients. When using relative concentration values, they found that 

valerate and isovalerate were again increased along with an increase of butyrate in their 

ME/CFS group (Armstrong et al., 2017). This study observed the same trend with isovalerate in 

the overall ME/CFS group; however, valerate was only elevated in the ME/CFS - FM. By 

contrast, with LCMS and NMR, butyrate in this study showed that relative concentration trends 

were increased in the Control (decreased in the overall ME/CFS) group from Comparison A and 

ME/CFS + IBS** from Comparison D. A comparison on NMR relative concentrations is difficult 

to draw as calculations were based on a total of 24 (Armstrong et al. 2017) and 36 faecal 

metabolites (this study). Lupo et al. (2021) profiled a subgroup of their cohort revealed high 

levels of glutamic acid and arginiosuccinic acid, together with a decrease of alpha-tocopherol in 

ME/CFS. This selection of participants was five ME/CFS individuals which were found to belong 

to the same cluster at a family taxonomic level, and five of their matched relatives as a control. 

Arginiosuccinic acid did not appear in any of the faecal metabolomic assays, and glutamic acid 

and alpha tocopherol only appeared elevated in certain comparisons.  
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More recently, Guo et al. (2023) used a GCMS metabolomics workflow that measured faecal 

short chain fatty acids (SCFAs), acetate, butyrate, and propionate. Where a ME/CFS overall 

versus Control group comparison is considered, their study and results here (LCMS and NMR 

with the same trends for butyrate and propionate) present similar observations with the acetate 

and butyrate levels being lower in ME/CFS, and propionate not being significantly different. 

However, where a stratification of the IBS comorbidity is compared in the ME/CFS cohort, their 

study and this study showed differences in trends across all three SCFAs. Instead of ME/CFS + 

IBS being reduced, this study observed an increased trend in relative concentration. That is, 

ME/CFS + IBS from this study was observed to be lower in trend for these faecal SCFAs, albeit 

with some difference in study and data approaches. While these trends were observed from the 

VIP analyses, they weren’t by the VP (Section 4.1.3) indicating that changes in concentrations, 

not just trends need to be considered. As mentioned in Section 4.3.4, Comparison B-D requires 

the additional consideration of the non-ME/CFS cohort as a third group with univariate analyses 

to determine if these findings are associated with ME/CFS overall or dependent on IBS 

comorbidity. The importance of propionate being flagged as important only in Comparison C 

and D with IBS stratified is of mention too. Further, these SCFAs did not appear as an important 

metabolite when the ME/CFS cohort for Comparison B was stratified according to FM. 

Independently co-published in the same issue as Guo and colleagues, Xiong and colleagues 

presented a multi-omics study of gut microbiome-host interactions in ME/CFS patients (Xiong et 

al., 2023). Although they did not perform faecal metabolomics, their shotgun metagenomic 

analyses observed a reduced genomic functional capacity for butyrate production in the 

ME/CFS microbiome of their early-stage patients. Despite the differences with ME/CFS study 

designs that have looked at faecal metabolites in some way, and some of their overall findings, 

the results presented here support and align with the theme of subtle but not trivial 

heterogeneity, gut microbiome disturbances, functional consequences of dysbiosis, and 

pathophysiological issues in ME/CFS.  

 

Short chain fatty acids, of which acetate, propionate, and butyrate are the most abundant, are 

important metabolites in maintaining intestinal homeostasis (Venegas et al., 2019). Propionic 

acid is likely to be associated with Bacteroides uniformis, Alistipes finegoldii, and Bacteroides 

thetaiotaomicron (Figure 3.6.13). Butyric acid is likely to be associated with Alistipes finegoldii, 

and Bacteroides thetaiotaomicron (Figure 3.6.15). As the main end products of colonic bacterial 

fermentation, they participate in the maintenance of intestinal mucosa integrity, improve glucose 

and lipid metabolism, control energy expenditure, and regulate the immune system and 
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inflammatory responses (Agus et al., 2021; Venegas et al., 2019). Figure 3.6.3 and Figure 3.6.4 

with PICRUSt2 provide some indication of this. Acetate and butyric acid showed a decrease in 

the ME/CFS overall group (Comparison A); however, an increased trend was also observed 

with ME/CFS + IBS/IBS** (Comparison C, D). Propionate was not observed as important in 

Comparison A; however, it came up as elevated in both ME/CFS + IBS/IBS** for Comparison C 

and D. Faecal SCFA deficiencies and alterations in the proportions of these metabolites have 

been observed in several IBS, (and different types of IBS) cases (Jiang et al., 2022; Q. Sun et 

al., 2019). Conversely, faecal SCFAs have also reported significantly higher levels of acetate, 

propionate, and total SCFAs compared to controls (Jiang et al., 2022; Q. Sun et al., 2019). 

Further investigation of these metabolite concentrations, ratios, IBS subtypes, gastrointestinal 

symptoms, and diet need to be considered. Just as there are no “good” or “bad” bacteria, there 

are probably no “good” or “bad” metabolites but rather how they exist with each other 

determines health and disease outcomes. Bacteroides thetaiotaomicron (Figure 3.4.15) are able 

to switch their metabolism to utilise host-derived glycans when dietary polysaccharides are 

scarce, showing a high metabolic flexibility, which also contributes to their persistence in the gut 

(Fassarella et al., 2021).  

 

The theme of bile acids was identified in this study. As far as I am aware, other than the small 

study by Lupo et al. (2021) and the thesis by (Vipond, 2018) with small cohort numbers that did 

not stratify these comorbidities, faecal bile acids and derivatives have not been extensively 

measured in any ME/CFS study using faecal metabolomics. Other studies have discussed bile 

acid metabolism in their findings; however, they did not use faecal metabolomics. Plasma 

metabolomics has often been the sample type to discuss anything related to possible issues 

with bile acid metabolism (Germain et al., 2017, 2020, 2022; Nagy-Szakal et al., 2018; Naviaux 

et al., 2016; Xiong et al., 2023). The findings here present some updated perspective with a 

panel assayed from the LCMS faecal matrix, and loose corroboration of these studies to date 

and metabolic dysregulation in ME/CFS. Indeed, these metabolites observed would not have 

been possible if only NMR was used. Of all the metabolite categories presented, ME/CFS with 

or without FM did not appear elevated for any of the bile acids. Bile acids are steroid 

compounds which have a primary function for lipid and vitamin digestion, absorption and 

excretion; however, are also heavily involved in gut-microbiome host interplay (Agus et al., 

2021; Collins et al., 2022). They are synthesised from cholesterol by the liver in a multi-enzyme 

process. 95% of them are reabsorbed actively from the terminal ileum and are recycled in the 

liver via enterohepatic circulation. Hence, decreased enterohepatic circulation could be an 
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indication of bile acid malabsorption that manifests as GI symptoms. Primary bile acids are also 

transformed into secondary bile acids and deconjugated by gut microbiota (Agus et al., 2021). 

They can either be passively reabsorbed to re-enter the circulation bile acid pool or excreted in 

the faeces (Agus et al., 2021). Not surprisingly, not only was there a difference between 

ME/CFS overall and Control, but observations were also made where IBS have been 

considered. Across all the bile acid metabolites identified as significantly different, the 

stratification with FM did not highlight any importance in the ME/CFS cohort. Bile acids in GI-

related conditions, symptoms, and IBS has been extensively discussed. Individuals with IBS 

have reported altered microbial profiles and modified bile acid profiles (Collins et al., 2022; Min 

et al., 2022). Like SCFAs, and the need to consider IBS subtypes, the type of IBS has observed 

a variety of trends in faecal bile acids. A significant increase in faecal primary bile acid and a 

corresponding decrease in secondary bile acid has been observed in IBS with predominant 

diarrhoea (Min et al., 2022). 

 

4.3.3 Variations in Urine Metabolome  

 

There were urine metabolite features that were highlighted across several of the comparisons 

which showed inconsistent trends in their relative concentration depending on the comorbidity 

grouping. There were 12 metabolites, for example, alanine and cysteine that were elevated in 

both the Control group from Comparison A and in the groups from Comparison C-D which are 

ME/CFS participants overall that have been assigned according to their FM and IBS metadata. 

Creatine, p-Hydroxyphenylacetic acid, glycine, threonine, allothreonine, glycolate, and 

guanidoacetate showed a contrasting trend in the presence or absence of FM and IBS 

comorbidities where it was elevated in its relative concentration, i.e. if the metabolite was 

elevated in ME/CFS - FM (Comparison B), it was elevated in ME/CFS + IBS and/or IBS** 

(Comparison C and D). Further, metabolites elevated in the ME/CFS group of Comparison A 

and C-D (ME/CFS only participants) revealed another notable variation in trend. For example, 

glucose was elevated in the ME/CFS overall group (Comparison A) but when looking at 

Comparison C-D with the ME/CFS participants, it was elevated in ME/CFS + FM (Comparison 

B), and ME/CFS - IBS and ME/CFS - IBS** (Comparison C and D). All these incongruent or 

interesting trends and patterns indicated that urine metabolite characteristics may be different 

depending on the FM or IBS comorbidity and how participants are grouped. 
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I acknowledge that further discussion of the remaining faecal metabolites and the urine and 

metabolites is by no means complete. Indeed, further analyses, particularly where a pathway 

overview is given, would be beneficial (see Section 4.3.5). While IBS comorbidity appears to be 

a potential subgroup of ME/CFS, the heterogeneity from FM should not be overlooked. There 

are several metabolites where Comparison B ME/CFS +/- FM has been the only comparison to 

highlight a significantly different or important metabolite. Although likely to be several 

differences and inconsistencies with other ME/CFS studies using the same sample matrix, this 

study will overlap with the observations that reflect a breakdown and dysfunction in overall host 

metabolism including energy, carbohydrate, lipid, amino acid, and redox metabolism that is 

closely governed by the relationship with the gut microbiome. 

 

4.3.4 Metabolites in Faeces and Urine  

 

Up until this point faeces and urine in Part One have been considered separately with respect to 

their sample-specific metabolomic profile. The following significantly differential metabolites 

appeared in both specimen types (Appendix 9): 4-Hydroxyphenylpyruvic acid, acetate, adipic 

acid, Beta-Glycerophosphoric acid, Glycerol 3-phosphate, citric acid, glucose, ethanolamine, 

formate, furmaric acid, glutamic acid, glyceric acid, glycerol, glycine, histidine, malonic acid, 

methanol, myristic acid, N6-Acetyl-L-lysine, oxalic acid, oxoglutaric acid, succinate, and taurine. 

Of these metabolites across the two sample types, only adipic acid, ethanolamine, formate, 

glutamic acid, glyceric acid, glycerol, glycine, myristic acid, N6-Acetyl-L-lysine, oxalic acid, 

oxoglutaric acid were highlighted as significant but in different comparative groups. Although 

these metabolites were highlighted in different comparative groups, the faecal, and urine sample 

types provide a different insight into the relative concentration trend of their respective grouping.  

 

Beta-Glycerophosphoric acid, Glycerol 3-phosphate, citric acid, histidine, methanol, and 

succinate, appeared in the same comparative groups between the sample types with a 

consistent trend of their relative concentration. However, 4-Hydroxyphenylpyruvic acid, acetate, 

glucose, fumaric acid, and taurine showed an opposite trend. These metabolites did not mirror 

each other in the relative concentration patterns of faeces and urine. For example, fumarate 

assayed by NMR for Comparison D was elevated in the faecal ME/CFS + IBS** group; 

however, it was elevated in the urinary ME/CFS - IBS** group. Lastly, malonic acid, which was 

observed across all comparisons, Comparison A-D, was both consistent and inconsistent 

between the sample types. Malonic acid, assayed by LCMS and NMR for Comparison A was 



 

CHAPTER FOUR: Faecal and Urine Host Metabolome (Part One) | 263 

elevated in the Control and ME/CFS groups, for urine and faeces, respectively. The opposite 

trend was also observed in Comparison C and D where malonic acid was elevated in the urinary 

ME/CFS - IBS/IBS** groups but it was instead elevated in the faecal ME/CFS + IBS/IBS** 

groups. However, for Comparison B, malonic acid was consistently elevated in the ME/CFS - 

FM groups in both sample types.  

 

The different and varied trends found when considering the faecal and urine metabolome results 

alone, and metabolites across both biospecimen types indicated that altered metabolic patterns 

associated with ME/CFS are subtle yet complex and detailed. Literature relevant to the specific 

pairings of faeces and urine, and plasma and urine in Part Two are becoming more available 

across a wide range of chronic disease topics. Indeed (gut microbiome related to) metabolomic 

studies across any pairing of sample type, or more than two sample types are as well (usually 

blood, faeces, and urine). The need for the different profiling patterns of different metabolic 

samples in analyses make it a matter of concern for which type of sample is most closely 

associated with gut microbes and disease (Zhao et al., 2022). However, regardless of the 

combination of sample looked at, these studies all appear to draw similar conclusions that 

further hypothesise the complex intricacies of the gut and host relationships. They all also 

reiterate that caution should be taken when attempting to make any inferences between the 

microbiome and disease association from any of the metabolomic data (the specific 

biospecimen type that data comes from is important). It is tempting to speculate from these 

paired sample metabolomic studies that these metabolites reflect a compensatory, adapted, 

unstable and/or inefficient physiological and biochemical system associated with the availability 

of metabolites, changes (but various and different changes, hence the array of trends and 

phenotypic presentations) in the gut microbiota, intermediate processes, immune modulation, 

and impaired intestinal barrier function (Armstrong et al., 2017; Deng et al., 2023; Hill et al., 

2023; Jain et al., 2019; Kolho et al., 2017; Lee et al., 2021; McGregor et al., 2019; Z. Tian et al., 

2020; X. J. Xu et al., 2021; Zhou et al., 2023). Variations in trends in these biospecimen types 

may reflect differences in homeostatic control that regulate absorption, transport, 

transformation, degradation, and excretion of these metabolites. Metabolites that are produced 

by the gut bacteria may experience complex intermediate processes, such as intestinal 

epithelial absorption, enterohepatic circulation, and liver absorption and transformation, when 

transporting from intestinal tract to the blood stream (Deng et al., 2023).  
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The metabolites that are measured by both biospecimen types require further analyses to 

remove the “noise” from the other metabolites. Given that each metabolite has shown 

differences in their patterns across each sample medium, it is assumed that each of these 

features reflects a different metabolic and biological situation. Further analyses would also 

require the Control participants, or at least a matched selection of them, to be compared with 

the groups from Comparison B-D to evaluate what is attributable to a comorbidity rather than 

ME/CFS, and vice versa. This would be a similar set up to the univariate analyses by Guo et al. 

(2023). Certainly, some data visualisations of these metabolites of interest and their absolute 

and relative concentrations across comparative groups and sample types will assist with 

deciphering their biological meaning. However, so far, malonic acid, is a “low hanging fruit” to 

make some commentary on, as it has appeared in all comparisons (A-D), and in both faecal and 

urine samples. Malonic acid is a dicarboxylic acid and participates in several enzymatic 

reactions in humans, it is involved in fatty acid biosynthesis (HMDB000691). It has been 

associated with several diseases and symptoms linked to the inborn metabolic disorder 

malonyl-CoA decarboxylase deficiency (for example, hypoglycaemia, malonic aciduria, renal 

dysplasia), vitamin B12 deficiency, and ethylmalonic encephalopathy (Ambati et al., 2017; J. 

Zhang et al., 2021). It has been attributed to inducing mitochondrial dysfunction by inhibiting 

succinate dehydrogenase therefore promoting the generation of superoxide radicals, apoptosis, 

and secondary excitotoxicity (J. Zhang et al., 2021). However, it has also been shown to exert 

anti-inflammatory effects and may protect against inflammatory reactions caused by the 

activation of microglia, which can lead to neurodegeneration and cause diseases such as 

Alzheimer's and Parkinson’s disease (Lee et al., 2021; Zhou et al., 2023). The malonic acid 

observations from this study indicate that the metabolite may have a variety of biological 

activities, perhaps at different levels or host circumstances, and how different systems utilise 

and excrete it. Further analysis with malonic acid, and its related metabolites, methylmalonic 

acid, and ethylmalonic acid across the samples with due consideration for medication and diet 

intake (some of this data is available from participant questionnaire data) is required before its 

role in ME/CFS can be established.  

 

4.3.5 Other Metabolomics Study Considerations 

 

These reflections apply to this chapter and Chapter 5. Section 3.5.3.3 is also relevant here for 

the metabolomics work, The LCMS and NMR datasets throughout this thesis were considered 

separately. That is, the same analytical workflow with MetaboAnalyst was applied then the most 
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significant or important outcomes were taken and subsequently put together into their respective 

summary tables. Another analytical workflow consideration with the metabolomic datasets 

would be to join the LCMS and NMR outcomes first of each respective sample type before using 

MetaboAnalyst. Instead of two separate data matrices put into MetaboAnalyst side-by-side, 

there is a “global metabolomic” one for urine, plasma, and faeces. In the first instance a 

normalisation and data scaling measure would be applied before sorting the combined dataset 

to identify and consolidate any metabolites measured by both platforms. This is made with the 

awareness that LCMS and NMR are inherently different in their quantitative characteristic, and it 

is potentially an “apple and pear” situation. Ideally, there would be no major discrepancies in the 

relative concentrations; however, this approach would be useful to investigate this. While the 

metabolites that appeared in both LCMS and NMR followed the same direction in their relative 

concentrations, a concession of this thesis is that a comparison of their relative concentrations 

was not more carefully considered. As it stands, this thesis has observed that dual-platform 

metabolites follow the same trends in concentration, but it is unclear whether concentrations 

recorded are consistent as well. A closer look in of these dual-platform metabolites with 

univariate-based statistics is worthwhile.  

 

The focus of the metabolomics work in this thesis was placed more so on overall trends and 

patterns. The summary tables of each sample datasets represent the most significantly 

important and different metabolites across the comparative groups of interest, with a mention of 

which group was elevated. These tables are a combination of the outcomes from the volcano 

plots (univariate analysis) and the PLS-DA (multivariate analysis). It is worth mentioning that 

some metabolite features were seen multivariately but not univariately, and vice versa. The 

metabolomics appendix files contain a summary of the results that have investigated this as part 

of the process in constructing the final summary tables. Although the results were similar in 

trend, it is not advisable to use the other as a means of validation – this thesis did not go any 

further than the seeing of any similarities or differences in the results. Saccenti et al. (2014) 

provide a more in-depth explanation of the univariate and multivariate data analysis of 

metabolomics data; however, they are different in terms of their assumptions, considerations, 

and offerings of the data (Saccenti et al., 2014). In general, multivariate methods focus on the 

relations between metabolites and their orchestrated or complementary behaviour in relation to 

biological processes, and univariate methods on independent changes in metabolite levels 

(Saccenti et al., 2014). It is common in the literature to see both modalities used to unveil 

information from metabolomic data with common practice dictating that both should be used 
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because they show different things. This is pertinent to situations like ME/CFS and this study 

where it is not known (or completely known) beforehand how the biological phenomenon studies 

express itself in (relations between) metabolite levels (Saccenti et al., 2014).  

 

Only these univariate and multivariate analyses were used in this thesis. With the raw 

metabolomics (and gut microbiome) data that is available for this study, several other analyses 

could be considered and done in the future. In the first instance, it would be to look at the 

performance and validation of the PLS-DA. No doubt the small numbers of the project will have 

some impact on this. Other approaches with the data that could be considered include various 

predictive machine learning analyses, biomarker analysis based on ROC curves, pathway 

analysis, ChemRICH analysis, pathway enrichment and topological analysis, and Pearson 

correlations between the biological sample types from the same part of the study. Beyond the 

metabolomics realm, there is the opportunity to perform further investigations with the gut 

microbiome data. This includes options for a more specifically integrated meta-analysis, multi-

omic take with clustering, correlational analyses, network analyses, and heat maps (Huang et 

al., 2022; Karczewski & Snyder, 2018; Krassowski et al., 2020; Muller et al., 2022; Y. Yang et 

al., 2019). This is made with the caution that any combination or attempt to integrate and 

combine omic data is challenging and has its limitations (Krassowski et al., 2020; Muller et al., 

2022). More than anything else, doing these further analyses with the data available from this 

study does not mean that it can predict or establish causality in ME/CFS.  

 

All metabolomic datasets from this thesis (and most ME/CFS studies) are based on relative or 

at best, semi-quantitative absolute measures that have been normalised and scaled 

accordingly. For both LCMS and NMR, future projects would highly benefit from the use of 

methods that involve absolute quantitation. This would involve the use of standards with known 

concentrations during sample preparation, which are then used to create a standard curve 

during downstream processing and analysis of spectra. While there may be some extra work 

and cost involved, and optimisation may sacrifice some sensitivity and coverage, there are 

advantages. This includes having a known concentration that is comparable and robust over 

time, amenable to establishing reference ranges, and the next step of deriving accurate and 

more meaningful and versatile biological insights. Larger organisations like Metabolon, TMIC, 

Nightingale Health, and Biocrates, and smaller ones like Metabolomics Australia and in-house 

university metabolomic groups have kits and workflows that facilitate this with varying degrees 

of arrangements, services and products offered between them and the enquiring 
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partner/client/research group. There is also the possibility to couple the LCMS (and GCMS) and 

NMR platforms from one sample tube and acquisition. Along with the consideration of absolute 

measurements comes the opportunity for better metabolomic practices in general including 

sample collection and handling, metabolite quenching and extraction procedures, reproducibility 

and repeatability, spectra processing and annotations, workflow efficiency, automation where 

possible, collaboration, and usage of data from other groups. Leveraging the experience, 

expertise and offerings of these companies or specific laboratory groups in both the 

metabolomics and gut microbiome fields offers a capacity to standardise and expand research 

interests and capabilities both within and between research groups. Further, while 

metabolomics has been a useful research tool and is increasingly recognised as “clinical 

metabolomics” in medicine, this may not translate practically and seamlessly to a clinical setting 

with routine laboratory testing environments. The fact that metabolomics is advantageously 

used to probe complex host systems does mean that sample collection and storage 

considerations need to ensure that it does not introduce high variability, interferences with 

instrumentation, or degradation of metabolites (Karu et al., 2018; Lamichhane et al., 2018; Le 

Gouellec et al., 2023; Smith et al., 2020).  
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5 CHAPTER FIVE: Plasma and Urine Host Metabolome (Part Two) 

 

The background and introduction and most of the discussion points presented in Chapter 4 is 

relevant to this chapter. This chapter (Chapter 5) focused on the plasma and urine metabolome 

from Part Two. Chapter 4 focused on the faecal and urine metabolome from Part One. Part Two 

looked at 28 ME/CFS and 28 Control participants which included males and females (Section 

2.1). Table 2.2.2 shows the baseline characteristics of the four comparative groups of interest 

(Comparison A-D). Comparison A compares the ME/CFS overall and Control groups, 

Comparison B compares the ME/CFS +/- FM groups, Comparison C compares the ME/CFS +/- 

IBS groups, and Comparison D compares the age-matched ME/CFS +/- IBS** groups. Results 

relevant to plasma metabolomics are in Section 5.1. Results relevant to urinary metabolomics 

(Part Two) are in Section 5.2. Lastly, Section 5.3 covers the discussion for the Part Two 

metabolomic outcomes from the plasma and urine, both independently and when compared to 

each other.   

 

5.1 Plasma Metabolomics Results 

 

Globally, LCMS detected 128 and NMR detected 47 plasma metabolite features from all 

samples (Appendix 10). 82 significantly different metabolite features in total from LCMS and 

NMR were highlighted from the volcano plots (VPs) and PLS-DA VIP plots across all the 

comparisons, Comparison A-D (Table 5.1.1). These significantly different metabolites, 

categorised according to the HMDB database, included bile acids and derivatives (9.76%), 

amino acids, peptides and analogues (29.27%), fatty acyls and acids (17.07%), sugar and sugar 

derivatives (8.54%), carboxylic acids and derivatives (7.32%), purines and purine derivatives 

(6.10%), other metabolites (14.63%), and organic acids (7.32%). There were seven significant 

differential plasma features (hypoxanthine, alanine, 2-Hydroxy-3-methylbutyric acid aka. 2-

Hydroxyisovalerate, 3-Hydroxyisovaleric acid, arginine, 3-Methyl-2-oxovaleric acid, and 

tryptophan) that were measured by both analytical platforms, LCMS and NMR (Table 5.1.1). 

The relative concentrations found for these shared metabolites were consistent in their direction 

as either up/higher/red or down/lower/blue from the VP and PLS-DA analyses (Appendix 11). 

The individual plots from the VP, PCA, and PLS-DA analyses for plasma Comparisons A-D are 

shown in Sections 5.1.1 (ME/CFS overall vs. Control), 5.1.2 (ME/CFS +/- FM), 5.1.3 (ME/CFS 

+/- IBS), and 5.1.4 (age-matched ME/CFS +/- IBS**), respectively. 
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Table 5.1.1 LCMS and NMR Plasma Metabolome (Part Two) Significant Features and Results  
  Plasma Part Two Metabolite 

Comparative 
Group (A-D) 

Group with significant elevation in relative concentration LCMS or NMR  

 
 

B
ile

 a
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d
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n
d

 d
er

iv
at

iv
e

s Deoxycholic acid glycine conjugate A Control LCMS  

7a-Hydroxy-3-oxo-5b-cholanoic acid/Nutriacholic acid B ME/CFS - FM LCMS  

7a-Hydroxy-3-oxo-5b-cholanoic acid        

Nutriacholic acid        

Allocholic acid/Cholic acid C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Allocholic acid        

Cholic acid        

Glycocholic acid C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

A
m

in
o

 a
ci

d
s,

 p
ep

ti
d

es
 a

n
d

 a
n

al
o

gu
es

 

Beta-Alanine A Control LCMS  

Alpha-N-Phenylacetyl-L-glutamine A, B ME/CFS, ME/CFS - FM LCMS  

D-Aspartic acid/L-Aspartic acid A Control LCMS  

D-Alanine/L-Alanine/Sarcosine (aka. Alanine) ‡ A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** LCMS, NMR  

Sarcosine A, B Control, ME/CFS + FM NMR  

Phenylalanine A, B, C Control, ME/CFS + FM, ME/CFS + IBS NMR  

Ornithine A, B, C, D Control, ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Tyrosine A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Arginine (aka. L-Arginine) ‡ A, C Control, ME/CFS + IBS NMR, LCMS  

Creatine A, B Control, ME/CFS + FM NMR  

Betaine A, B Control, ME/CFS - FM NMR  

L-Proline B ME/CFS - FM LCMS  

Histidine B, C ME/CFS + FM, ME/CFS + IBS NMR  

Carnitine B ME/CFS + FM NMR  

Glutamate B, D ME/CFS + FM, ME/CFS - IBS** NMR  

Threonine B ME/CFS + FM NMR  

L-Tryptophan (aka. Tryptophan) ‡ C, D ME/CFS + IBS, ME/CFS + IBS** LCMS, NMR  

3-Methylhistidine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Glutamine C, D ME/CFS + IBS, ME/CFS + IBS** NMR  

Lysine C ME/CFS + IBS NMR  

Glycine C ME/CFS - IBS NMR  

Acetylglycine D ME/CFS - IBS** LCMS  

Methylcysteine D ME/CFS + IBS** LCMS  

Serine D ME/CFS - IBS** NMR  

Fa
tt

y 

ac
yl

s 
an

d
 

ac
id

s Arachidic acid/Phytanic acid A Control LCMS  

Arachidic acid        

Phytanic acid        
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Capric acid A Control LCMS  

Alpha-Linolenic acid A Control LCMS  

Octadecanedioic acid A Control LCMS  

Tetradecanedioic acid A Control LCMS  

Acetate A Control NMR  

2-Hydroxy-2-methylbutyric acid/2-Hydroxy-3-methylbutyric acid/3-Hydroxyisovaleric acid D ME/CFS - IBS** LCMS  

2-Hydroxy-2-methylbutyric acid        

2-Hydroxy-3-methylbutyric acid (aka. 2-Hydroxyisovalerate) ‡ D ME/CFS - IBS** LCMS, NMR  

3-Hydroxyisovaleric acid (aka. 3-Hydroxyisovalerate) ‡ A, D Control, ME/CFS - IBS** LCMS, NMR  

Hydroxyoctanoic acid B ME/CFS + FM LCMS  

Hexadecanedioic acid C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Su
ga

r 
an

d
 s

u
ga

r 

d
er

iv
at

iv
es

 

Fructose 6-phosphate/Glucose 1-phosphate A, B Control, ME/CFS + FM LCMS  

Fructose 6-phosphate        

Glucose 1-phosphate        

myo-Inositol/myo-Inositol A, C Control, ME/CFS + IBS LCMS  

Sucrose A, C Control, ME/CFS + IBS LCMS  

Gluconic acid B ME/CFS + FM LCMS  

1.5-Anhydrosorbitol D ME/CFS - IBS** LCMS  

C
ar

b
o

xy
lic

 a
ci

d
s 

an
d

 d
er

iv
at

iv
es

 Formate A, B Control, ME/CFS + FM NMR  

Succinate A, D Control, ME/CFS - IBS** NMR  

Malonate B ME/CFS + FM NMR  

2.3-Dihydroxybutanedioic acid C ME/CFS + IBS LCMS  

Galactaric acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

cis-Aconitic acid C ME/CFS + IBS LCMS  

P
u

ri
n

es
 a

n
d

 

p
u

ri
n

e 
d

er
iv

at
iv

es
 Adenine A ME/CFS LCMS  

Hypoxanthine ‡ A, B Control, ME/CFS + FM LCMS, NMR  

Adenosine monophosphate B ME/CFS + FM LCMS  

9-Methyluric acid B ME/CFS + FM LCMS  

Inosine D ME/CFS - IBS** LCMS  

O
th

er
 m

et
ab

o
lit

es
 

Alpha-Tocopherol A, B ME/CFS, ME/CFS - FM LCMS  

Hippuric acid A, D Control, ME/CFS + IBS** LCMS  

Propylene glycol A Control NMR  

Phthalic acid B ME/CFS - FM LCMS  

Phosphoric acid B ME/CFS + FM LCMS  

Dimethyl sulfone B ME/CFS + FM NMR  

Methanol B, C, D ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Trigonelline C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

4-Hydroxyhippuric acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

D-Glucuronic acid C ME/CFS + IBS LCMS  

Choline C, D ME/CFS + IBS, ME/CFS + IBS** NMR  

Isopropanol D ME/CFS - IBS** NMR  

O
r

ga n
ic

 
ac

i

d
s Pyruvate A, B, C, D Control, ME/CFS + FM, ME/CFS - IBS, ME/CFS - IBS** NMR  
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3-Hydroxybutyrate A, C Control, ME/CFS + IBS NMR  

Glyceric acid B ME/CFS - FM LCMS  

3-Methyl-2-oxovaleric acid (aka. 3-Methyl-2-oxovalerate) ‡ B ME/CFS - FM LCMS, NMR  

Lactate C, D ME/CFS - IBS, ME/CFS - IBS** NMR  

Acetoacetate D ME/CFS - IBS** NMR  

N
O

TE
 

Comparative Group (A-D)        

A) ME/CFS overall vs. Control [ME/CFS, Control]        

B) ME/CFS with FM vs. ME/CFS without FM [ME/CFS + FM, ME/CFS - FM]        

C) ME/CFS with IBS vs. ME/CFS without IBS [ME/CFS + IBS, ME/CFS - IBS]        

D) ME/CFS with IBS vs. ME/CFS without IBS (age-matched) [ME/CFS + IBS**, ME/CFS - IBS**]        

‡ "Duplicate" metabolite assayed by LCMS and NMR        

Refer to Appendix 11 for the electronic version of this table 
and raw data input       
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5.1 Plasma Metabolomics Results continued… 

 

The significantly differential plasma metabolite features were elevated in their relative 

concentrations depending on how the samples were grouped with their ME/CFS, FM, or IBS 

metadata that comprised Comparison A-D (Table 5.1.1). Not every single plasma metabolite 

appeared in all of the comparisons when observing the significant differences between the 

involved groups. A total of 11, 14, 5, and 9 metabolite features were found only to be 

significantly different in Comparison A (ME/CFS overall vs. Control), B (ME/CFS +/- FM), C 

(ME/CFS +/- IBS), and D (age-matched ME/CFS +/- IBS**), respectively; for example, Beta-

Alanine and aspartic acid were only differential and elevated in the Control group from 

Comparison A. The metabolites, for example, glutamine and glycocholic acid, that were 

highlighted in the ME/CFS +/- IBS and ME/CFS +/- IBS** groups (Comparison C and D), were 

always consistently lower or higher in their relative concentration providing some indication of 

IBS involvement where an attempt to mitigate the age variable has been made. Histidine and 

methanol were consistently elevated in ME/CFS + either FM, IBS, or IBS** (Comparison B-D). 

 

VPs of the LCMS plasma data matrix highlighted 6 metabolites (2 down and 4 up) in the Control 

vs. ME/CFS (Figure 5.1.1), 1 metabolite (down) in the ME/CFS +/- FM (Figure 5.1.9), 2 

metabolites (both up) in the ME/CFS +/- IBS (Figure 5.1.17), and 2 metabolites (both up) in the 

ME/CFS +/- IBS** (Figure 5.1.25) comparisons that were significantly different. VPs of the NMR 

plasma data matrix highlighted 9 metabolites (all up) in the Control vs. ME/CFS (Figure 5.1.2), 3 

metabolites (all up) in the ME/CFS +/- FM (Figure 5.1.10), 8 metabolites (2 down and 6 up) in 

the ME/CFS +/- IBS (Figure 5.1.18), and 4 metabolites (3 down and 1 up) in the ME/CFS +/- 

IBS** (Figure 5.1.26) comparisons that were significantly different. The metabolites from the 

VPs that were also found to be significantly different by PLS-DA VIP analyses reflected and 

supported the same pattern as either high or low in relative concentration (Appendix 11). The 

PCAs from the LCMS and NMR data matrices did not show a clear separation between the 

groups for all comparisons (Table 5.1.2). Although the PCAs did not discriminate the groups, the 

clusters extended in different directions and tighter clusters identified by the ellipsoid shape 

were observed from NMR ME/CFS + FM (Figure 5.1.12), and LCMS and NMR ME/CFS + IBS 

(Figure 5.1.19, Figure 5.1.20) and ME/CFS + IBS** (Figure 5.1.27, Figure 5.1.28). The PLS-DAs 

demonstrated improved clustering and separation for Comparison A-D (Table 5.1.2). The PLS-

DA for the LCMS data matrix found a distinguished separation between the ME/CFS +/- FM 

(Figure 5.1.13) and ME/CFS +/- IBS (Figure 5.1.21) comparisons. A complete to distinguished 
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separation for LCMS (Figure 5.1.29) and NMR (Figure 5.1.31), respectively, was also observed 

between the ME/CFS +/- IBS** groups.  

 

Table 5.1.2 Summary of the total variance from the first two components of the PCA and PLS-

DA analyses (LCMS and NMR Plasma Metabolome (Part Two)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1 PC2 Total† Comp. 1 Comp. 2 Total‡

A) ME/CFS vs. Control LCMS 11.3 10.1 21.4 Overlapping 8.2 6 14.2 Partial

NMR 29 11.5 40.5 Overlapping 26.7 7.5 34.2 Very partial

B) ME/CFS +/- FM LCMS 13.1 11.9 25 Overlapping 6.8 7.6 14.4 Distinguished

NMR 24.7 14.7 39.4 Overlapping 14 16.2 30.2 Very partial

C) ME/CFS +/- IBS LCMS 13.1 11.9 25 Overlapping 7.4 7.6 15 Distinguished

NMR 24.7 14.7 39.4 Overlapping 14.2 18 32.2 Very partial

D) ME/CFS +/- IBS** LCMS 15.2 12.8 28 Overlapping 7.3 10.7 18 Complete

NMR 22.8 17.4 40.2 Overlapping 9 6.2 15.2 Distinguished

† PC1 and PC2 added together

‡ Component 1 and Component 2 added together

Distinguished to complete separation between groupings

Separation
Plasma Part Two % of the variance % of the variance

PCA PLSDA

Separation
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5.1.1 Plasma Comparison A) ME/CFS Overall vs. Control Group  

 

5.1.1.1 Univariate Analysis 

 

 

Figure 5.1.1 Volcano plot of LCMS Plasma Part 2 ME/CFS overall vs Control groups. 

Metabolites with significantly higher (blue) or lower (red) concentrations in the ME/CFS cohort 

are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-significant 

metabolites represented in grey.  
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Figure 5.1.2 Volcano plot of NMR Plasma Part 2 ME/CFS overall vs Control groups. 

Metabolites with significantly higher (blue) or lower (red) concentrations in the ME/CFS cohort 

are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey.  
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5.1.1.2 Multivariate Analysis (PCA) 

 

 

Figure 5.1.3 PCA plots A) overview B) PC1 and PC2 only of LCMS Plasma Part 2 ME/CFS 

overall vs. Control groups 

 

 

Figure 5.1.4 PCA plots A) overview B) PC1 and PC2 only of NMR Plasma Part 2 ME/CFS 

overall vs. Control groups 
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5.1.1.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.1.5 PLSDA A) overview B) components 1 and 2 only of LCMS Plasma Part 2 ME/CFS 

overall vs. Control groups  

 

 

Figure 5.1.6 VIP scores of corresponding PLSDA for LCMS Plasma Part 2 ME/CFS overall vs. 

Control groups 
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Figure 5.1.7 PLSDA A) overview B) components 1 and 2 only of NMR Plasma Part 2 ME/CFS 

overall vs. Control groups  

 

 

Figure 5.1.8 VIP scores of corresponding PLSDA for NMR Plasma Part 2 ME/CFS overall vs. 

Control groups 
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5.1.2 Plasma Comparison B) ME/CFS with FM vs. ME/CFS without FM  

 

5.1.2.1 Univariate Analysis 

 

 

Figure 5.1.9 Volcano plot of LCMS Plasma Part 2 ME/CFS with FM versus ME/CFS without 

FM. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

FM cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-

significant metabolites represented in grey. 
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Figure 5.1.10 Volcano plot of NMR Plasma Part 2 ME/CFS with FM versus ME/CFS without 

FM. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

FM cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-

significant metabolites represented in grey. 
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5.1.2.2 Multivariate Analysis (PCA) 

 

 

Figure 5.1.11 PCA plots A) overview B) PC1 and PC2 only of LCMS Plasma Part 2 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 5.1.12 PCA plots A) overview B) PC1 and PC2 only of NMR Plasma Part 2 ME/CFS with 

FM versus ME/CFS without FM 
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5.1.2.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.1.13 PLSDA A) overview B) components 1 and 2 only of LCMS Plasma Part 2 

ME/CFS with FM versus ME/CFS without FM 

 

 

Figure 5.1.14 VIP scores of corresponding PLSDA for LCMS Plasma Part 2 ME/CFS with FM 

versus ME/CFS without FM 
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Figure 5.1.15 PLSDA A) overview B) components 1 and 2 only of NMR Plasma Part 2 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 5.1.16 VIP scores of corresponding PLSDA for NMR Plasma Part 2 ME/CFS with FM 

versus ME/CFS without FM 
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5.1.3 Plasma Comparison C) ME/CFS with IBS vs. ME/CFS without IBS  

 

5.1.3.1 Univariate Analysis 

 

 

Figure 5.1.17 Volcano plot of LCMS Plasma Part 2 ME/CFS with IBS versus ME/CFS without 

IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-

significant metabolites represented in grey. 
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Figure 5.1.18 Volcano plot of NMR Plasma Part 2 ME/CFS with IBS versus ME/CFS without 

IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-

significant metabolites represented in grey. 
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5.1.3.2 Multivariate Analysis (PCA) 

 

 

Figure 5.1.19 PCA plots A) overview B) PC1 and PC2 only of LCMS Plasma Part 2 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.20 PCA plots A) overview B) PC1 and PC2 only of NMR Plasma Part 2 ME/CFS with 

IBS versus ME/CFS without IBS 
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5.1.3.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.1.21 PLSDA A) overview B) components 1 and 2 only of LCMS Plasma Part 2 

ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.22 VIP scores of corresponding PLSDA for LCMS Plasma Part 2 ME/CFS with IBS 

versus ME/CFS without IBS 
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Figure 5.1.23 PLSDA A) overview B) components 1 and 2 only of NMR Plasma Part 2 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.24 VIP scores of corresponding PLSDA for NMR Plasma Part 2 ME/CFS with IBS 

versus ME/CFS without IBS 
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5.1.4 Plasma Comparison D) Age-matched ME/CFS with IBS vs. ME/CFS without IBS  

 

5.1.4.1 Univariate Analysis 

 

 

Figure 5.1.25 Volcano plot of LCMS Plasma Part 2 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. 
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Figure 5.1.26 Volcano plot of NMR Plasma Part 2 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. 
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5.1.4.2 Multivariate Analysis (PCA) 

 

 

Figure 5.1.27 PCA plots A) overview B) PC1 and PC2 only of LCMS Plasma Part 2 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.28 PCA plots A) overview B) PC1 and PC2 only of NMR Plasma Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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5.1.4.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.1.29 PLSDA A) overview B) components 1 and 2 only of LCMS Plasma Part 2 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.30 VIP scores of corresponding PLSDA for LCMS Plasma Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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Figure 5.1.31 PLSDA A) overview B) components 1 and 2 only of NMR Plasma Part 2 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.1.32 VIP scores of corresponding PLSDA for NMR Plasma Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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5.2 Urine Metabolomics Results 

 

Globally, LCMS detected 147 and NMR detected 26 urine metabolite features from all samples 

(Appendix 10). 83 significantly different metabolite features in total from LCMS and NMR were 

highlighted from the volcano plot (VPs) and PLS-DA VIP plots across all the comparisons, 

Comparison A-D (Table 5.2.1). These significantly different metabolites, categorised according 

to the HMDB database, included amino acids, peptides and analogues (31.33%), fatty acyls and 

acids (9.64%), carboxylic acids and derivatives (12.05%), sugar, carbohydrates and 

carbohydrate conjugates (10.84%), other metabolites (6.02%), purine and purine derivatives 

(1.20%), organic acids and derivatives (10.84%), benzenoids (12.05%), organic nitrogen 

compounds (3.61%), and alcohols and polyols (2.41%). There were two significant differential 

urine features (valine and lactic acid) that were measured by both analytical platforms, LCMS 

and NMR (Table 5.2.1). The relative concentrations found for these shared metabolites were 

consistent as either up/higher/red or down/lower/blue from the VP and PLS-DA analyses 

(Appendix 11). The individual plots from the VP, PCA, and PLS-DA analyses for the urine 

metabolomic outcomes in Comparisons A-D are shown in Sections 5.2.1 (ME/CFS overall vs. 

Control), 5.2.2 (ME/CFS +/- FM), 5.2.3 (ME/CFS +/- IBS), and 5.2.4 (age-matched ME/CFS +/- 

IBS**), respectively.  

 

 

 

 

 

 



 

CHAPTER FIVE: Plasma and Urine Host Metabolome (Part Two) | 295 

Table 5.2.1 LCMS and NMR Urine Metabolome (Part Two) Significant Features and Results 

  Urine Part Two Metabolite 
Comparative Group 

(A-D) 
Group with significant elevation in relative concentration 

LCMS or 
NMR  

 
 

Amino acids, 
peptides and 

analogues 

L-Cystathionine A Control LCMS  

Phenylacetylglycine A Control LCMS  

D-Glutamic acid/L-Glutamic acid A ME/CFS LCMS  

Alanine A Control NMR  

Creatine A, B, C, D Control, ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Histidine A, C, D ME/CFS, ME/CFS + IBS, ME/CFS + IBS** NMR  

Valine (aka. L-Valine) ‡ A, B, C, D Control, ME/CFS - FM, ME/CFS - IBS, ME/CFS - IBS** NMR, LCMS  

Creatinine A, C, D ME/CFS, ME/CFS - IBS, ME/CFS - IBS** NMR  

Glycine A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** NMR  

Alanylglycine B ME/CFS - FM LCMS  

Dimethylglycine B ME/CFS - FM LCMS  

L-Tyrosine B ME/CFS - FM LCMS  

Citrulline B ME/CFS - FM LCMS  

D-Lysine/L-Lysine B ME/CFS - FM LCMS  

Cysteine B, C, D ME/CFS - FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Isobutyrylglycine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Beta-Alanine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

3-Methylhistidine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Guanidoacetate C, D ME/CFS + IBS, ME/CFS + IBS** NMR  

Urea C, D ME/CFS - IBS, ME/CFS - IBS** NMR  

Taurine C, D ME/CFS - IBS, ME/CFS - IBS** NMR  

Beta-Leucine/L-Alloisoleucine/L-Isoleucine D ME/CFS - IBS** LCMS  

Beta-Leucine        

L-Alloisoleucine        

L-Isoleucine        

4-Hydroxyproline D ME/CFS - IBS** LCMS  

Fatty acyls and 
acids 

Adipic acid A ME/CFS LCMS  

Acetate A, B, C, D ME/CFS, ME/CFS + FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

Formate A, B, C Control, ME/CFS - FM, ME/CFS - IBS NMR  

Succinic acid semialdehyde (MH2) B ME/CFS + FM LCMS  

2-Isopropylmalic acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

Stearic acid C ME/CFS + IBS LCMS  

3-Methylglutaconic acid C ME/CFS + IBS LCMS  

Carboxylic acid 
and derivatives 

Dimethylmalonic acid/Ethylmalonic acid A ME/CFS LCMS  

Ethylmalonic acid        
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Dimethylmalonic acid        

2-Indolecarboxylic acid A Control LCMS  

3-Phenylbutyric acid A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** LCMS  

Isocitrate A, B ME/CFS, ME/CFS + FM NMR  

Succinate A, B, D ME/CFS, ME/CFS - FM, ME/CFS + IBS** NMR  

Citrate A Control NMR  

Maleate B ME/CFS + FM NMR  

Fumarate B, C ME/CFS + FM, ME/CFS + IBS NMR  

Malonate B ME/CFS - FM NMR  

Sugar, 
carbohydrates 

and 
carbohydrate 

conjugates 

Gluconic acid A Control LCMS  

Lactulose/Sucrose/Turanose A Control LCMS  

Lactulose        

Sucrose        

Turanose        

1.5-Anhydrosorbitol B ME/CFS + FM LCMS  

Dihydroxyacetone* B ME/CFS + FM LCMS  

Glyceraldehyde* B ME/CFS + FM LCMS  

Glucose D ME/CFS - IBS** NMR  

Other 
metabolites 

L-Gulonolactone B ME/CFS + FM LCMS  

Loperamide B ME/CFS + FM LCMS  

Kynurenic acid C ME/CFS - IBS LCMS  

Trigonelline* C ME/CFS + IBS LCMS  

Deoxycytidine D ME/CFS + IBS** LCMS  

# 7-Methylguanine C, D ME/CFS - IBS, ME/CFS - IBS** LCMS  

Organic acids 
and derivatives 

(S)-3-Hydroxyisobutyric acid/Alpha-Hydroxyisobutyric acid A ME/CFS LCMS  

(S)-3-Hydroxyisobutyric acid        

Alpha-Hydroxyisobutyric acid        

2-Ketobutyric acid A ME/CFS LCMS  

Pyruvic acid B ME/CFS - FM LCMS  

Hydroxypropionic acid B ME/CFS + FM LCMS  

D-Lactic acid (aka. Lactate) * ‡ B ME/CFS + FM LCMS, NMR  

Oxoglutaric acid/Oxoglutaric acid B, C ME/CFS + FM, ME/CFS - IBS LCMS  

Indoxyl sulfate C ME/CFS - IBS LCMS  

Benzenoids 

Pyrocatechol A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** LCMS  

2.6-Dihydroxybenzoic acid A, C, D Control, ME/CFS + IBS, ME/CFS + IBS** LCMS  

4-Hydroxyphenylpyruvic acid A Control LCMS  

p-Hydroxymandelic acid A Control LCMS  

Hippurate A, B, C, D Control, ME/CFS - FM, ME/CFS + IBS, ME/CFS + IBS** NMR  

2.3.4-Trihydroxybenzoic acid B ME/CFS + FM LCMS  

4-Hydroxyhippuric acid C, D ME/CFS + IBS, ME/CFS + IBS** LCMS  

p-Aminobenzoic acid* C ME/CFS + IBS LCMS  

Vanillylmandelic acid D ME/CFS - IBS** LCMS  
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Benzoic acid D ME/CFS + IBS** LCMS  

Organic 
nitrogen 

compounds 

Dimethylamine A, B, C, D Control, ME/CFS + FM, ME/CFS - IBS, ME/CFS - IBS** NMR  

Trimethylamine N-oxide A, B Control, ME/CFS - FM NMR  

Ethanolamine A, B, D ME/CFS, ME/CFS - FM, ME/CFS + IBS** NMR  

## 
myo-Inositol/myo-Inositol B ME/CFS - FM LCMS  

Methanol C ME/CFS + IBS NMR  

NOTE 

# Purine and purine derivatives        

## Alcohols and polyols        

* From LCMS consolidated metabolite feature        

Comparative Group (A-D)        

A) ME/CFS overall vs. Control [ME/CFS, Control]        

B) ME/CFS with FM vs. ME/CFS without FM [ME/CFS + FM, 
ME/CFS - FM] 

       

C) ME/CFS with IBS vs. ME/CFS without IBS [ME/CFS + IBS, ME/CFS 
- IBS] 

       

D) ME/CFS with IBS vs. ME/CFS without IBS (age-matched) 
[ME/CFS + IBS**, ME/CFS - IBS**] 

       

‡ "Duplicate" metabolite assayed by LCMS and NMR        

Refer to Appendix 11 for the electronic 
version of this table and raw data input  
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5.2 Urine Metabolomics Results continued… 

 

The significantly differential urine metabolite features were elevated in their relative 

concentrations depending on how the samples were grouped with their ME/CFS, FM, or IBS 

metadata that comprised Comparison A-D (Table 5.2.1). A total of 14, 18, 7, and 6 metabolite 

features were found only to be significantly different in Comparison A (ME/CFS overall vs. 

Control), B (ME/CFS +/- FM), C (ME/CFS +/- IBS), and D (age-matched ME/CFS +/- IBS**), 

respectively; for example, Alanine was only differential and elevated in the Control group from 

Comparison A. The metabolites, for example, Taurine and Dimethylamine, that were highlighted 

in the ME/CFS +/- IBS and ME/CFS +/- IBS** groups (Comparison C and D), were always 

consistently lower or higher in their relative concentration providing some indication of IBS 

involvement where an attempt to mitigate the age variable has been made. Acetate and 

fumarate were consistently elevated in ME/CFS + either FM, IBS, or IBS** (Comparison B-D). 

 

VPs of the LCMS urine data matrix highlighted 6 metabolites (1 down and 5 up) in the Control 

vs. ME/CFS (Figure 5.2.1), 2 metabolites (both up) in the ME/CFS +/- FM (Figure 5.2.9), 8 

metabolites (4 down and 4 up) in the ME/CFS +/- IBS (Figure 5.2.17), and 2 metabolites (1 

down and 1 up) in the ME/CFS +/- IBS** (Figure 5.2.25) comparisons that were significantly 

different. VPs of the NMR urine data matrix highlighted 4 metabolites (3 down and 1 up) in the 

Control vs. ME/CFS (Figure 5.2.2), 3 metabolites (2 down and 1 up) in the ME/CFS +/- FM 

(Figure 5.2.10), 5 metabolites (3 down and 2 up) in the ME/CFS +/- IBS (Figure 5.2.18), and 1 

metabolite (up) in the ME/CFS +/- IBS** (Figure 5.2.26) comparisons that were significantly 

different. The metabolites from the VPs that were also found to be significantly different by PLS-

DA VIP analyses reflected and supported the same pattern as either high or low in relative 

concentration (Appendix 11). The PCAs from the LCMS and NMR data matrices did not show a 

clear separation between the groups for all comparisons (Table 5.2.2). Although the PCAs did 

not discriminate the groups, the clusters extended in different directions and tighter clusters 

identified by the ellipsoid shape were observed from LCMS ME/CFS + FM (Figure 5.2.11) and 

LCMS ME/CFS + IBS** (Figure 5.2.27). The PLS-DAs demonstrated improved clustering and 

separation for Comparison A-D (Table 5.2.2). The PLS-DA for the LCMS data matrix found a 

distinguished separation between the ME/CFS +/- FM (Figure 5.2.13) and ME/CFS +/- IBS 

(Figure 5.2.21) comparisons. A complete to distinguished separation for LCMS (Figure 5.2.29) 

and NMR (Figure 5.2.31), respectively, was also observed between the ME/CFS +/- IBS** 

groups.  
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Table 5.2.2 Summary of the total variance from the first two components of the PCA and PLS-

DA analyses (LCMS and NMR Urine Metabolome (Part Two)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1 PC2 Total† Comp. 1 Comp. 2 Total‡

A) ME/CFS vs. Control LCMS 16.1 9.8 25.9 Overlapping 6.8 10 16.8 Partial

NMR 16 13.6 29.6 Overlapping 7.3 11.5 18.8 Very partial

B) ME/CFS +/- FM LCMS 15.5 11.4 26.9 Overlapping 8.7 9.6 18.3 Distinguished

NMR 18.8 15.5 34.3 Overlapping 14.2 10.9 25.1 Very partial

C) ME/CFS +/- IBS LCMS 15.5 11.4 26.9 Overlapping 6.9 9.8 16.7 Distinguished

NMR 18.8 15.5 34.3 Overlapping 13.9 9.8 23.7 Partial

D) ME/CFS +/- IBS** LCMS 16.8 14.8 31.6 Overlapping 5.3 10.9 16.2 Complete

NMR 18.3 15.5 33.8 Overlapping 11.1 9.9 21 Distinguished

† PC1 and PC2 added together

‡ Component 1 and Component 2 added together

Distinguished to complete separation between groupings

Urine Part Two

PCA PLSDA

% of the variance
Separation

% of the variance
Separation
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5.2.1 Urine Comparison A) ME/CFS Overall vs. Control Group  

 

5.2.1.1 Univariate Analysis 

 

 

Figure 5.2.1 Volcano plot of LCMS Urine Part 2 ME/CFS overall vs Control groups using test 

outcomes from the raw p-values. Metabolites with significantly higher (blue) or lower (red) 

concentrations in the ME/CFS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. The q-values of significant 

FDR-adjusted metabolites are shown (NS = q-value ≥ 0.05). 
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Figure 5.2.2 Volcano plot of NMR Urine Part 2 ME/CFS overall vs Control groups. Metabolites 

with significantly higher (blue) or lower (red) concentrations in the ME/CFS cohort are 

highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant metabolites 

represented in grey. 
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5.2.1.2 Multivariate Analysis (PCA) 

 

 

Figure 5.2.3 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 2 ME/CFS 

overall vs. Control groups 

 

 

Figure 5.2.4 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 2 ME/CFS overall 

vs. Control groups 



 

CHAPTER FIVE: Plasma and Urine Host Metabolome (Part Two) | 303 

5.2.1.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.2.5 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 2 ME/CFS 

overall vs. Control groups  

 

 

Figure 5.2.6 VIP scores of corresponding PLSDA for LCMS Urine Part 2 ME/CFS overall vs. 

Control groups 
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Figure 5.2.7 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 2 ME/CFS 

overall vs. Control groups  

 

 

Figure 5.2.8 VIP scores of corresponding PLSDA for NMR Urine Part 2 ME/CFS overall vs. 

Control groups 
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5.2.2 Urine Comparison B) ME/CFS with FM vs. ME/CFS without FM  

 

5.2.2.1 Univariate Analysis 

 

 

Figure 5.2.9 Volcano plot of LCMS Urine Part 2 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-significant 

metabolites represented in grey. 
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Figure 5.2.10 Volcano plot of NMR Urine Part 2 ME/CFS with FM versus ME/CFS without FM. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with FM 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey. 
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5.2.2.2 Multivariate Analysis (PCA) 

 

 

Figure 5.2.11 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 2 ME/CFS with 

FM versus ME/CFS without FM 

 

 

Figure 5.2.12 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 2 ME/CFS with 

FM versus ME/CFS without FM 
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5.2.2.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.2.13 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 2 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 5.2.14 VIP scores of corresponding PLSDA for LCMS Urine Part 2 ME/CFS with FM 

versus ME/CFS without FM 
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Figure 5.2.15 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 2 ME/CFS 

with FM versus ME/CFS without FM 

 

 

Figure 5.2.16 VIP scores of corresponding PLSDA for NMR Urine Part 2 ME/CFS with FM 

versus ME/CFS without FM 
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5.2.3 Urine Comparison C) ME/CFS with IBS vs. ME/CFS without IBS  

 

5.2.3.1 Univariate Analysis 

 

 

Figure 5.2.17 Volcano plot of LCMS Urine Part 2 ME/CFS with IBS versus ME/CFS without 

IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with 

IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-values ≤ 0.05) with non-

significant metabolites represented in grey. 
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Figure 5.2.18 Volcano plot of NMR Urine Part 2 ME/CFS with IBS versus ME/CFS without IBS. 

Metabolites with significantly higher (red) or lower (blue) concentrations in the ME/CFS with IBS 

cohort are highlighted (FC threshold 1.0 and uncorrected p-values ≤ 0.10) with non-significant 

metabolites represented in grey. 
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5.2.3.2 Multivariate Analysis (PCA) 

 

 

Figure 5.2.19 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 2 ME/CFS with 

IBS versus ME/CFS without IBS 

 

 

Figure 5.2.20 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 2 ME/CFS with 

IBS versus ME/CFS without IBS 
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5.2.3.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.2.21 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 2 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 5.2.22 VIP scores of corresponding PLSDA for LCMS Urine Part 2 ME/CFS with IBS 

versus ME/CFS without IBS 
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Figure 5.2.23 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 2 ME/CFS 

with IBS versus ME/CFS without IBS 

 

 

Figure 5.2.24 VIP scores of corresponding PLSDA for NMR Urine Part 2 ME/CFS with IBS 

versus ME/CFS without IBS 
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5.2.4 Urine Comparison D) Age-matched ME/CFS with IBS vs. ME/CFS without IBS   

 

5.2.4.1 Univariate Analysis 

 

 

Figure 5.2.25 Volcano plot of LCMS Urine Part 2 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.5 and uncorrected p-

values ≤ 0.05) with non-significant metabolites represented in grey. 
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Figure 5.2.26 Volcano plot of NMR Urine Part 2 age-matched ME/CFS with IBS versus 

ME/CFS without IBS. Metabolites with significantly higher (red) or lower (blue) concentrations in 

the age-matched ME/CFS with IBS cohort are highlighted (FC threshold 1.0 and uncorrected p-

values ≤ 0.10) with non-significant metabolites represented in grey. 
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5.2.4.2 Multivariate Analysis (PCA) 

 

 

Figure 5.2.27 PCA plots A) overview B) PC1 and PC2 only of LCMS Urine Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.2.28 PCA plots A) overview B) PC1 and PC2 only of NMR Urine Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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5.2.4.3 Multivariate Analysis (PLS-DA) 

 

 

Figure 5.2.29 PLSDA A) overview B) components 1 and 2 only of LCMS Urine Part 2 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.2.30 VIP scores of corresponding PLSDA for LCMS Urine Part 2 age-matched 

ME/CFS with IBS versus ME/CFS without IBS 
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Figure 5.2.31 PLSDA A) overview B) components 1 and 2 only of NMR Urine Part 2 age-

matched ME/CFS with IBS versus ME/CFS without IBS 

 

 

Figure 5.2.32 VIP scores of corresponding PLSDA for NMR Urine Part 2 age-matched ME/CFS 

with IBS versus ME/CFS without IBS 
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5.3 Plasma and Urine Metabolomics Discussion 

 

5.3.1 Variations in Plasma Metabolome 

 

There were plasma metabolite features that were highlighted across several comparisons which 

showed inconsistent trends in their relative concentration depending on the comorbidity 

grouping. There were 18 metabolites, for example, betaine and succinate, that were elevated in 

both the Control group from Comparison A and in groups from Comparison C-D which are 

ME/CFS participants overall that have been defined according to their FM and IBS metadata. 

Glutamate showed a contrasting trend in the presence or absence of FM and IBS comorbidities 

where it was elevated in ME/CFS + FM (Comparison B) and ME/CFS - IBS** (Comparison D). 

Alpha-N-Phenylacetyl-L-glutamine and Alpha-Tocopherol showed a notable variation in trend 

where it was elevated in the ME/CFS overall group (Comparison A) and ME/CFS - FM 

(Comparison B). All these incongruent or interesting trends and patterns indicated that plasma 

metabolite characteristics may be different depending on the FM or IBS comorbidity and how 

participants are grouped. 

 

5.3.2 Variations in Urine Metabolome 

 

There were metabolite features that were highlighted across several comparisons which 

showed some inconsistent trends in their relative concentration depending on the comorbidity 

grouping. There were 10 metabolites, for example, formate and glycine, that were elevated in 

both the Control group from Comparison A and in groups from Comparison C-D which are 

ME/CFS participants overall that have been assigned according to their FM and IBS metadata. 

Cysteine and oxoglutaric acid showed a contrasting trend in the presence or absence of FM and 

IBS comorbidities where it was elevated in its relative concentration, i.e. if the metabolite was 

elevated in ME/CFS - FM (Comparison B), it was elevated in ME/CFS + IBS and/or IBS** 

(Comparison C and D), and vice versa. Further, succinate, ethanolamine, creatinine, and 

isocitrate showed a notable variation in trend where these metabolites were elevated in the 

ME/CFS overall group (Comparison A) but when looking at Comparison C-D with the ME/CFS 

participants, it depended on whether it was +/- FM, IBS, or IBS**. All these incongruent or 

interesting trends and patterns indicated that urine metabolite characteristics may be different 

depending on the FM or IBS comorbidity and how participants are grouped.  
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5.3.3 Metabolites in Plasma and Urine  

 

Like Part One, the two metabolomic panels for Part Two with plasma and urine outcomes have 

been considered separately in this thesis. The following significantly differential metabolites 

appeared in both specimen types (Appendix 11): 1.5-Anhydrosorbitol, 3-Methylhistidine, 4-

Hydroxyhippuric acid, acetate, beta-alanine, creatine, alanine, formate, gluconic acid, 

glutamate, glycine, histidine, lactate, malonate, methanol. myo-inositol, succinate, sucrose, and 

trigonelline. Of these metabolites across the two sample types, only 1.5-Anhydrosorbitol, beta-

alanine, gluconic acid, and myo-inositol were highlighted as significant but in different 

comparative groups across the two sample types. Although these metabolites were highlighted 

in different comparative groups, the urine, and plasma sample types provide a different insight 

into the relative concentration trend of their respective grouping. It is thought that up to 46% of 

the variance in the host’s circulating plasma metabolites can be explained by the gut 

microbiome (Puig-Castellví et al., 2023).  

 

3-Methylhistidine, 4-Hydroxyhippuric acid, creatine, histidine, methanol, sucrose, and 

trigonelline appeared in the same comparative groups between the sample types with a 

consistent outcome in the trend of their relative concentration. However, acetate, formate, 

glycine, malonate, and succinate showed an opposite trend in their relative concentration 

although measured and significantly different in both sample types. These metabolites did not 

mirror each other in the relative concentration patterns of urine and plasma. For example, 

acetate assayed by NMR for Comparison A was elevated in the plasma of the Control group; 

however, it was elevated in the urine of the ME/CFS group. The discussion from Section 4.3.4 is 

also relevant here. A further look at these metabolites without the “noise” of the other 

metabolites is needed, and Comparison B-D requires some evaluation with a non-ME/CFS 

cohort involved. The different and varied trends found when considering the urine and plasma 

metabolome results alone, and metabolites across both biospecimen types indicated that 

altered metabolic patterns associated with ME/CFS are subtle yet complex and detailed.  

 

However, some initial commentary can be provided regarding acetate, as it appeared across 

Comparison A-D in the urine panel, and in Part One with faecal and the other urine sample. 

Acetate or acetic acid is the most abundant short chain fatty acid in the gut, produced and 

excreted in large amounts by certain bacteria (HMDB0000042). Acetate and the related 

metabolism of acetyl-CoA confers numerous metabolic functions, including energy production, 
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lipid synthesis, and protein acetylation (Bose et al., 2019). It is one of the metabolites that NMR 

did measure, but not by LCMS. Lower urine acetate levels in ME/CFS patients have been 

observed compared to non-ME/CFS patients (Armstrong et al., 2015; McGregor et al., 2016, 

2019); however, this study shows increased urine acetate in ME/CFS patients in Part One and 

Two. Intriguingly, in a study with lupus nephritis/systemic lupus erythematosus, urine acetate 

was higher in the urine of these patients compare to a control group, and it showed a trend 

towards decreasing after treatment with cyclophosphamide (Ganguly et al., 2020). These 

discrepancies could be attributed to the heterogeneity of study design, approaches, and 

participants in the respective studies and requires further investigation. However, faecal 

metabolomic outcomes on acetate between this study and Guo et al. (2023) showed similar 

outcomes whereby acetate was lower in ME/CFS. Blood acetate also showed similarities with 

previous ME/CFS studies where decreased levels were observed in the respective ME/CFS 

cohorts (Armstrong et al., 2015; McGregor et al., 2016, 2019). Differences by design aside, the 

variations across sample types are likely underpinned by different aspects of metabolic 

dysregulation associated with ME/CFS. However, like gut microbes, metabolites and their 

changes in concentration cannot be considered in isolation, but rather groups or “communities”. 

Further work would benefit from looking at the ratios of the common short chain fatty acids that 

present across all sample types with gut microbiome data. Granted that the Part Two samples 

were not collected at the same time point, looking at this data in this way may reveal a further 

understanding of these metabolites in ME/CFS heterogeneity.  

 

5.3.4 Metabolites in Part One and Two  

 

It is acknowledged that Pat Two of the study is not as extensive as Part One. This thesis did not 

address the shifts in urine metabolites from Part One and Part Two although samples for LCMS 

being assayed simultaneously in the same run and NMR results are comparable would allow for 

this work in the future. Granted that there are different participant cohorts included in Part One 

and Two, an immediate observation when looking between Table 4.2.1 and Table 5.2.1 shows 

differences in metabolite features and highlighted groups across Comparison A to D. Further 

investigation of sampling across time (longitudinal) could further understanding of the different 

biospecimen types, ME/CFS heterogeneity and subgroupings. With the data that is available, 

the selection of Part One and Two participants could be used to look at these two time points 

more closely.   
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6 CHAPTER SIX: General Discussion and Conclusion 

 

6.1 Contributions 

 

6.1.1 ME/CFS, Comorbidities and Heterogeneity 

 

This thesis sought to investigate the bearing of FM and IBS comorbidity in ME/CFS with the 

outcomes from the gut microbiome and host metabolome. Often comorbidities are deemed 

potential confounders of a study. While this may be true and relevant commentary in the context 

of that specific study or topic of discussion, heterogeneity is inherently a feature of ME/CFS. 

Without the many dimensions and facets of the disease, it would not be what we know as 

“ME/CFS”. In the attempt to understand and produce a “unifying” concept of an objective 

diagnostic panel for ME/CFS, the differences from the comorbidities must be considered. 

Comparison A, which looked at ME/CFS versus Control, only provided one lens to the possible 

differences in microbes and metabolites. However, Comparison B-D, which looked at ME/CFS 

+/- FM, ME/CFS +/- IBS, and an age-matched ME/CFS +/- IBS**, showed differences within the 

overall ME/CFS cohort. While there was the suggestion that IBS comorbidity could be an 

associated distinguishable subgroup, FM is not without variations in both gut microbiome and 

host metabolome measures. It does provide some indication that different comorbidities may 

have a different impact in the context of ME/CFS. Certainly, the variations in patterns from 

Comparison B-D underscores and sheds some light on the many challenges that ME/CFS faces 

from its definition, diagnosis, research, and clinical context. What is intriguing from this study is 

that the comparative groups, Comparison B-D, from the ME/CFS cohort were made up of the 

same participants that were assigned according to their FM or IBS status. It could be argued 

that this is an outcome of deliberate design; however, the various patterns in the ME/CFS cohort 

cannot deny the heterogeneity that warrants consideration and further investigation. Given this, 

the findings from this thesis supports the idea that future research investigations need to go 

beyond the traditional disease versus non-disease study designs, and one-medium, one-

platform route. While this study was limited to the snapshots of Part One and Two of the study, 

and could not establish causation, prognosis, or any definitive pathophysiological mechanisms, 

it does support the notion that a multi-disciplinary and objective framework measured 

longitudinally is required for the multifaced issues in ME/CFS.  
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6.1.2 Complementary Methodologies and Different Biospecimen Types 

 

The use of independent, but complementary methods to profile the gut microbiome from a 

variety of biospecimen types broadened data coverage and insights. No one method or 

approach can do everything. As standalone datasets both within and between the gut 

microbiome and metabolomics work, the outcomes are not all that versatile in explaining what 

might be going on in the disease. While the FM and IBS comorbidities in ME/CFS may be more 

clearly understood and “seen” with the functional predictions, and metabolomics work, the gut 

microbiome taxonomic data is still valuable in providing a context of dysbiosis. While the 

workload requirements were more onerous, the study shows the benefit and supports the 

approach and utility of considering a variety of platforms and approaches in statistics/data 

analysis and visualisation. Of course, numerous other metabolites and microorganisms exist 

that constitute the “entire” human metabolome and microbiome that were not measured in this 

study or are not currently known and remain inaccessible. The complete landscape of microbe-

metabolite interactions in the gut is still largely unmapped (Muller et al., 2022). These “known 

unknown” features that were not covered by this thesis could potentially be assayed or obtained 

by other workflows available. There is the possibility for further work with what is currently 

available from this project and known information. For example, this study has a MS-based 

plasma lipidomic panel that was not presented in this thesis, MiMeDB can be re-queried, 

integrated meta-analyses with databases could be explored, existing raw spectra/FASTQ 

sequencing files and their annotations could be re-visited especially for low abundant features 

and remaining sample material (suitability of the stored samples, and ethics application 

allowing) could be used for panels with other molecules/markers, absolute quantitation, non-

targeted profiling, and non-polar metabolites. However, there is the consideration for the 

“unknown unknown” features that are currently uncharacterised and not in the sphere of 

knowledge. Sometimes referred to as “dark matter”, addressing these features is another 

avenue in the world of omics science, albeit with its unique own challenges, for biological 

discovery and understanding. There are multiple levels to the unknowns and limitations of 

research; they must be duly acknowledged to avoid mis- and over-interpretation of the data and 

its context. This is crucial for finding biologically meaningful and relevant relationships in an 

environment where multiple sources and types of data are being generated, shared, and 

integrated in a multi-omics fashion.  
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6.2 Future Directions  

 

6.2.1 Study Challenges and Limitations  

 

This study is not without limitations. The foremost challenge was securing a recruitment site and 

having enough participants. Reviews and adjustments of recruitment processes were constantly 

made throughout to ensure project progress and viability. This involved ethical approval 

amendments and changes to the supervisory and research team. Other limitations of the study 

reflected the following issues encountered: 

• The inherent heterogenous and multifaceted nature of ME/CFS, and other debilitating, 

complex “syndrome” conditions.  

• The common difficulties and hurdles that many studies face with not only obtaining 

participant numbers but also ensuring full completion of all study requirements.  

• The logistics and practicalities of conducting a small-scale study with minimal personnel 

and resources with the sample collection and study requirements.  

• Building the foundational two-way streets and bridges between clinical and research 

needs and the management of all the different stakeholders involved in a study.   

 

The recruitment period did not meet the initial target sample size calculated where ME/CFS, 

FM, and Control (three) cohorts were sought from three different clinical practices and medical 

doctors that had a special interest in these complex conditions (see Section 2.1). These 

calculations were made during the very early stages of project planning and with a different 

research and supervisory team. Due to irreconcilable circumstances with two of the recruitment 

sites and clinicians who were initially interested in being involved with the project, the decision 

was made to focus on engaging participants from one site and clinician at the now-closed CFS 

Discovery Clinic in Melbourne. Instead of three cohorts, two cohorts, the ME/CFS overall and 

the Control group, were established. Further recruitment constraints were met when the 

announcement of Dr Don Lewis’s retirement was being brought forward much earlier than 

anticipated, and that CFS Discovery was permanently closing without any firm handover plans. 

Unfortunately, medical doctors and practices experienced, interested, and prepared to work in 

this area of medicine are few and far between. This event created a unique situation and 

selection bias whereby patients were both eager to support the research study but also 

understandably hesitant to join as the task of finding alternative medical care options became 

an overriding priority. To obtain adequate participation, non-ME/CFS relatives or household 
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members of ME/CFS patients were permitted to join the study as part of the control group. This 

concession was made recognising that there is a hypothesised inheritable (genetic) and 

contagious/transmissible (genetically unrelated but considered a close contact) causal link or 

component involved in ME/CFS (Underhill, 2015). This study was not geared to establish, 

prove, or disprove any causal or prognostic links in ME/CFS; however, investigations of the 

genetic risk and transmissibility of the disease among contacts may benefit future ME/CFS (and 

long COVID) studies.  

 

Organising this study not only brought to light differences in opinions regarding ME/CFS as a 

disease state among the research team, which included scientists and clinicians but also 

underscored troublesome gaps in bridging the divide between the needs of research and clinical 

practice. Future projects would benefit from being aware of and mitigating these issues (Beckett 

et al., 2011). Unsurprisingly, all three clinicians generally regarded ME/CFS similarly as a 

complex biological disease; however, their approach to diagnosis, usage of governing clinical 

criteria, management, and consideration of comorbidities differed slightly. Had the participants 

come from different recruitment sites and clinicians, it would have been interesting to compare 

the microbiome and metabolomic outcomes. It would have also been possible to address the 

usage of different diagnostic approaches and criteria in ME/CFS and FM as discussed 

previously in the literature (Abbi & Natelson, 2013; Lim & Son, 2020; Natelson, 2019). It also 

became obvious early on that different stakeholders held diverse opinions on how the study 

would be designed and conducted. While everyone had the common interest of generally 

wanting to do better for ME/CFS, there was a mismatch of priorities and expectations. For 

example, while the assays used in this study could help contribute to the research of ME/CFS, 

they could not be used immediately for a routine patient diagnostic and management scenario. 

Other barriers included the extra time and resource constraints for the clinicians and their 

practices to undertake project-related tasks such as blood sample collection and participant 

referrals. The practicalities of research conduct are often cited as barriers for clinicians from 

committing fully to research-based activities, and unfortunately, the logistics and budget did not 

allow for the provision of extra assistance (Beckett et al., 2011). Further, there was at times an 

assumed power differential between research team members which although unnecessary and 

counterproductive, impacted the collaborative aspects of the project. Moving forward it is 

important to acknowledge that conflicts are part and parcel of any project and a balance 

between research and clinical needs, translation, and aspirations should be maintained. 

Everyone in a multidisciplinary project, especially for one as complicated and urgent as 
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ME/CFS, has a valuable and essential role, and these dynamic relationships must remain 

professional, productive, and engaged with open discussions, supported, and resourced activity.   

Aside from the small cohort numbers and limited recruitment avenues, this study had other 

shortcomings that are more reflective of the multifaceted complexity of ME/CFS. This study 

does not sufficiently capture all facets of heterogeneity that underlie all the various subgroups 

that possibly exist within ME/CFS. Overall, this study and future research undertakings would 

benefit from more participants and a more diverse cohort of ME/CFS cases in a longitudinal 

study design. Irrespective of the number of recruitment sites and clinician approaches to 

ME/CFS, the issue/s would remain with characterising the participants included in the study and 

the applicability of study findings to the wider ME/CFS population. If not for one issue, there is 

certainly something else that makes it difficult to produce a directly comparable, unified, and 

consistently reproducible understanding of the disease pathophysiology and mechanisms at 

play. In the first instance, participants were diagnosed according to the CCC criteria, and male 

and female participants were combined and presented in analyses throughout this thesis. There 

is clear and growing evidence of sex-related disparities in ME/CFS concerning prevalence, 

clinical phenotypes, and aetiological triggers before symptom onset (Thomas et al., 2022). Most 

of this study was represented by female participants; therefore, it is conceivable that findings 

are biased by or reflective of female patterns and biology. This study did not recruit enough 

male participants to look at data outcomes with an even split between the sexes; however, 

comparisons of the female-only with the male and female cohort outcomes could reveal any 

plausible metabolic and microbiome sex-related differences in ME/CFS. Future studies would 

benefit from a more closely sex-matched participant cohort where gender and sex biology are 

conscientiously considered in study designs (Thomas et al., 2022).  

 

In another aspect, the findings from this study may not be generalisable to the wider population 

of ME/CFS. Using select diagnostic criteria may mean that findings do not apply as closely to 

individuals diagnosed with other case definitions. Although the age component of the 

comparative groups in this thesis was matched, analyses cannot determine whether microbiome 

and metabolomic outcomes are affected or influenced by age. That is, the relationship between 

age, ageing, life expectancy, and ME/CFS could not be evaluated in this study. Age-dependent 

changes in the microbiome and metabolome irrespective of ME/CFS, IBS or GI-related health 

issues, and disease state have been revealed extensively in the literature. It has been 

hypothesised that ME/CFS is associated with accelerated ageing and older age predicts a 

poorer prognosis (Kidd et al., 2016; Rajeevan et al., 2018). Likewise, an association between 
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the different ages, courses of disease onset, progression/deterioration, and duration of ME/CFS 

cases since diagnosis among participants was not considered in this thesis; however, 

questionnaire responses could potentially allow for these subsequent analyses to be conducted. 

Some studies have shown variations in data outcomes and cohorts depending on the age and 

timeframe that their participants had since been diagnosed with ME/CFS (Kidd et al., 2016; 

Xiong et al., 2023). Given that ME/CFS has a higher prevalence in females, it is plausible to 

consider the role of sex chromosomes and steroids at different stages of life and physical 

maturation in the development and moderation of the disease (Thomas et al., 2022). Future 

pathophysiological studies with sex, age, and disease duration considered would provide 

needed understanding of any prior, immediate, shorter- and longer-term considerations and 

implications of ME/CFS. Regardless of the sex and age limitations of this study, participants 

were primarily limited to those who could manage to complete the required tasks. Generally, this 

meant that the most severely affected individuals, those with cognitive or concentration issues, 

and/or those in the thick of a crash phase where any form of activity and communication was 

not possible were not represented. Geographically, participants were limited to those who 

resided in Australia. Part One of the study was a major positive drawcard for participants, 

including those who were primarily bedbound or housebound, to be able to complete tasks at 

home before returning their collection kit to the post office either by themselves or through their 

carer. For Part Two of the study, participants represented were limited to those who were well 

enough, accessibly close location-wise to attend the pathology collection centre and those 

comfortable with blood draws. Provided there is adequate funding and a suitably trained 

research team, there are several home-based, more convenient, and less invasive testing 

options becoming more readily available for both microbiome and metabolomic assay purposes 

which may better facilitate future participant involvement and research outcomes.  

 

This thesis only looked at the FM and IBS comorbidities in ME/CFS in a binary fashion, that is 

ME/CFS overall versus Control (Comparison A) ME/CFS +/- FM (Comparison B) or ME/CFS +/- 

IBS (Comparison C, and D with the age-matched samples). More involved multivariate 

comparisons of the FM and IBS comorbidities and groupings were not considered. Further 

analyses of more than two groups are feasible with the study data collected and would involve 

comparing the ME/CFS with or without FM and IBS cohorts in the same analyses. Therefore, 

“Comparison E” would look at the metabolomic and microbiome outcomes of the ME/CFS + FM, 

ME/CFS + IBS, ME/CFS - FM, and ME/CFS - IBS cohorts. Additionally, this study does not have 

matched cohorts (IBS only or FM only without ME/CFS) with these conditions. However, beyond 
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these two comorbidities which already provide challenging diagnostic and management 

quandaries in ME/CFS, there are several other comorbidities. Table 2.3.1 and Table 2.3.2 

summarise some of the other comorbidities that exist with ME/CFS and the non-ME/CFS 

(Control) cohort from Part One and Two participants. The workflow used in this thesis could also 

be applied to other comorbidities represented in these data tables. However, doing so is not 

only a time-consuming and onerous pursuit but perhaps one that does not truly represent the 

full disease situation (how long is the piece of string?) or the wider ME/CFS population. For 

example, someone in the ME/CFS with IBS group could also be ME/CFS with FM, ME/CFS 

without POTS, ME/CFS with TMJ, ME/CFS with Endometriosis (females only), and/or ME/CFS 

without Hypothyroidism. It was also noted that the Control group although ME/CFS-free at the 

time of participation was not completely without some comorbidities; however, it was out of the 

scope of this project to evaluate the risk and likelihood of developing ME/CFS. While stratifying 

the comorbidities provides a “layer by layer” insight, a concern is that the realm of comorbidities 

in ME/CFS is limitless. This leads to the conundrum of inter- and intra-heterogeneity where not 

only are there multiple comorbidities but not every person with ME/CFS has the same ones, 

experience, or history. Hypotheses from subgroups based on age and sex can be made 

relatively easily before evaluating data outcomes. Subgrouping based on the diagnostic 

absence or presence of comorbidities be it FM, IBS, or another condition, runs the risk of an 

artificial, paradoxical, and ‘subgroup within subgroup” effect and problematic invalid findings and 

observations because of HARKing which stands for Hypothesising After the Results are Known 

(Kerr et al., 1998). On top of the attempt to resolve exactly what is happening in ME/CFS 

amongst the comorbidities, symptomology adds another component to the “confounding 

factors”.  

 

Analyses presented in this thesis did not take into consideration the symptoms of participants 

although questionnaire responses make this data available for further study investigations. 

Regardless of the comorbidities and their involvement, subgroups, or subtypes of ME/CFS 

potentially exist based on symptoms (Jonsjö et al., 2017; Vaes et al., 2023). While symptoms 

may be similar in name and presentation “at/above the surface”, what is happening “beneath the 

surface” may suggest otherwise. Further clarification of symptoms with gut microbiome, 

metabolomic, and other objective measures in ME/CFS could provide better insight into the 

disease burden and tailored management strategies without the overreliance on case definitions 

and differentials. It may also help with reducing the confusion with other chronic conditions with 

similar clinical challenges and presentations. The study collected questionnaire data that 
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captured information on participants’ frequency and severity of symptoms. Microbiome and 

metabolome data could also be evaluated according to symptom score responses. However, 

the study did not capture any data on within-day and between-day variations in symptoms. 

Fluctuations, wax, and wanes are commonly described in ME/CFS both in severity and 

hierarchy; the variations presented among patients and within an individual patient cannot be 

captured by a single time point. Any future studies that would attempt to address these issues 

would require a well-powered longitudinal study design with real-time or continually monitored 

measurements. Given that there is an element of trust that participants have been diagnosed 

appropriately and accordingly for all their conditions, recall, and self-reported bias associated 

with questionnaire records, the integration of more objective measures from variables such as 

metabolites, microbes, and other clinical measurements, is important. With this being said, 

one’s personal view and experience with their health should never be discounted or overlooked. 

Longitudinal research allows an individual to be their own control or baseline entity and 

distinguish between age and cohort effects. It also offers the opportunity to reduce the impact of 

bias, validate findings, improve statistical power, and dynamically understand the disease over a 

period in detail (M. Wang et al., 2017). Certainly, this would be a substantial undertaking 

highlighting the ever-important need for funding, approaches to deal with selective attrition and 

participant retention in a study, collaboration, data harmonisation, and consistent usage of 

suitable tools, technology, and platforms.  
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6.2.2 Long COVID and Global Health 

 

Long COVID encompasses the ongoing or persistent health problems beyond the “resolution” of 

COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection. Long COVID is also referred to as long-haul COVID, post-COVID conditions, post-

COVID-19 syndrome, or post-acute sequelae of COVID-19 (PASC/PACS). More than 200 

symptoms have been identified with impacts on multiple organ systems and they can develop 

regardless of the initial COVID-19 disease severity (Castanares-Zapatero et al., 2022; Davis et 

al., 2023). The underlying pathophysiology of long COVID is poorly understood with no definitive 

biomarkers or proven effective therapies (Davis et al., 2023; Kenny et al., 2023). Since the start 

of the COVID-19 (COVID) pandemic, discussions of long COVID and its comparisons to 

ME/CFS and post-infectious syndromes have been made with an eerie sense of Deja vu. In a 

bittersweet way, COVID has brought much-needed attention to ME/CFS (The BMJ, 2021; Yong, 

2022). In terms of establishing disease aetiology and pathogenesis, perhaps one thing that long 

COVID does have in its favour, compared to ME/CFS, is the more obvious association and link 

to the acute infection (Komaroff & Lipkin, 2023). The extensive similarities between ME/CFS 

and long COVID suggest that there is some overlap in disease mechanisms and 

pathophysiology (Davis et al., 2023; Jason et al., 2023; Kenny et al., 2023; Komaroff & Lipkin, 

2023).  

 

The manifestations and adverse events that are observed in long COVID are not particularly 

new concepts; however, no other virus outbreak has affected so many people on the scale and 

in the time frame as SARS-CoV-2 (Davis et al., 2023; López-Hernández et al., 2023). At least 

65 million individuals around the world have long COVID, based on a conservative estimated 

incidence of 10% of infected people and more than 651 million documented COVID-19 cases 

worldwide; the number is likely much higher due to many undocumented cases and widespread 

lack of awareness and knowledge of viral-onset conditions (Davis et al., 2023). The health, 

economic, societal, and personal burden due to COVID-19 is already far-reaching and 

overwhelming (Cutler & Summers, 2020; Mirin et al., 2022). Like ME/CFS, the aftermath of 

SARS-CoV-2 infection has presented significant challenges to patients, families, governing 

bodies, workplaces, healthcare providers, and researchers alike. Recruitment and sample 

collection for this study were completed in 2019 before the start of the pandemic; however, long 

COVID, disease heterogeneity, the gut microbiome, and host metabolome are now of particular 

interest and relevance to ME/CFS moving forward. 
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It has been estimated that 13-45% of people with persistent, debilitating symptoms following 

acute COVID-19 meet the National Academy of Medicine case definition for ME/CFS (Komaroff 

& Lipkin, 2023). For many of its symptoms long COVID is not like ME/CFS; it is ME/CFS 

(Friedman et al., 2021). While many long COVID patients will satisfy one or more of the case 

definitions of ME/CFS, it must be recognised that long COVID for many, contains symptoms that 

are other than ME/CFS (Friedman et al., 2021). While there is an overlap and similarity between 

the two syndromes, they cannot be considered synonymous at this stage (Friedman et al., 

2021). The difficult question remains as to just how similar (or different) long COVID and 

ME/CFS are, and on what basis. Currently, these conditions could conceivably represent just 

two examples in a broader disease continuum, or be two comorbidities, albeit similar, that 

frequently appear together (Davis et al., 2023; Komaroff & Lipkin, 2023). Only time will tell if 

long COVID cases will recover or improve, to what extent, and if other comorbidities or health 

complications are at increased risk of developing in the longer-term (Ballouz et al., 2023; 

Komaroff & Lipkin, 2023; Legler et al., 2023). Given the variability of clinical presentation and 

severity of the disease, recovery from COVID-19 is likely to be heterogeneous, in terms of both 

time to recovery and completeness of recovery (E. Holmes et al., 2021).  

 

There is also uncertainty and speculation that those already with pre-existing ME/CFS could 

have even worse exacerbations and poorer outcomes with long COVID and recovery from an 

acute COVID (re)infection as they have been experiencing the adverse multi-system symptoms, 

effects, and deconditioning for a longer time (Legler et al., 2023; Mclaughlin et al., 2023). More 

than three years on from the declaration of the pandemic, COVID-19 is here to stay; different 

variants continue to emerge, leading to newer infections and reinfections (Boufidou et al., 2023; 

Guedes et al., 2023; Willyard, 2023). The now combined challenges of ME/CFS and long 

COVID “coexisting” face the unknown of potentially worsened disease vulnerabilities, burden, 

severity, and prognosis. Indeed, if not for long COVID per se and the direct biological, and 

disease aspects of COVID, the pandemic and other global issues such as AI, smart technology, 

climate change, geopolitics, economic volatility, workplace environments, and altered personal 

livelihoods, have irrevocably brought (fortunate and unfortunate) changes to health, wellbeing, 

society, culture, media, human interaction, and global citizenship. Vaccinations for COVID-19 

decrease the risk of severe illness; however, it is unclear whether vaccine administration may 

impact the prevalence of long COVID (Notarte et al., 2022). There is some debate over the 

details of vaccinations such as the number of doses, intervals between boosters, type of 
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vaccine, the variable host responses, and the relationship between vaccination and pre-existing 

long COVID symptoms which are described in detail elsewhere (Ayoubkhani et al., 2022; 

Brannock et al., 2023; Feikin et al., 2022; Notarte et al., 2022; Strain et al., 2022). Overall, 

although current evidence is inconclusive, available data suggest that COVID-19 vaccines are 

important factors for further immunological protection against potential reinfections from 

subsequent variants of COVID (Notarte et al., 2022; Strain et al., 2022). Again, all of this 

highlights the likely possibility of various heterogenous and subgroup trajectories which makes 

the exact definition and complete understanding of the long COVID and ME/CFS conditions 

convoluted and difficult undertakings in research and clinical practice. The biomedical research 

agenda moving forward needs to build on the existing knowledge from ME/CFS and other viral-

onset conditions, including, but by no means limited to, changes in the gut microbiome and host 

metabolic phenotypes (Davis et al., 2023; Jason et al., 2023; Kenny et al., 2023; Komaroff & 

Lipkin, 2023). Given the complexity, scale, and burden of long COVID and ME/CFS, future 

research efforts require, more than ever, coordinated, international, and interdisciplinary 

approaches that perform clinical trials in parallel with mechanistic studies (Davis et al., 2023).  

 

There are likely several intertwined mechanisms that may contribute to the development and 

persistence of long COVID. The general takeaway message from the numerous publications on 

long COVID irrespective of ME/CFS is that it is a prolonged, heterogenous, and multi-systemic 

issue affecting multiple organs with unclear disease mechanisms and pathophysiology 

(Alexander et al., 2023; Altmann et al., 2023; Bruzzone et al., 2023; Castanares-Zapatero et al., 

2022; Davis et al., 2023; Espín et al., 2023; Guo, Yi, et al., 2023; F. He et al., 2021; E. Holmes 

et al., 2021; C. B. Jackson et al., 2021; Jason et al., 2021, 2023; Kenny et al., 2023; Komaroff & 

Lipkin, 2023; Kovarik et al., 2023; Legler et al., 2023; Q. Liu et al., 2022; López-Hernández et 

al., 2023; Mendelson et al., 2020; Morello et al., 2023; Nagata et al., 2023; Nguyen et al., 2023; 

Österdahl et al., 2023; Páez-Franco et al., 2022; Patel et al., 2023; A. Subramanian et al., 2022; 

Sudre et al., 2021; W. Tate et al., 2022; J. Xu et al., 2021; Yeoh et al., 2021; Zhan et al., 2023; 

D. Zhang et al., 2023). The role and importance of comorbidities and subgroups in the 

development, presentation, and trajectory of long COVID have been considered in studies so far 

and it is recognised that future research needs to address them (Alexander et al., 2023; Davis et 

al., 2023; Legler et al., 2023; Morello et al., 2023; A. Subramanian et al., 2022). ME/CFS is not 

the only condition to have been brought into the long COVID biomedical discussion; irritable 

bowel syndrome, fibromyalgia, and postural orthostatic tachycardia (POTS), amongst other 

conditions, have also been raised which adds another layer of involvedness to the already big 
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problem at hand (Alexander et al., 2023; Chadda et al., 2022; Chan & Grover, 2022; Clauw & 

Calabrese, 2023; Davis et al., 2023; Mallick et al., 2023). Not surprisingly, several hypotheses 

for long COVID pathogenesis have been proposed including perturbed metabolism, immune 

dysregulation, persisting reservoirs of SARS-CoV-2 in tissues, latent virus reactivation, 

autoimmunity, microbiome and microbial translocation, dysautonomia, endotheliopathy and 

dysfunctional signalling in the brainstem and/or vagus nerve (Davis et al., 2023; Kenny et al., 

2023; Komaroff & Lipkin, 2023).  

 

A growing number of studies with long COVID so far have highlighted alterations and 

disturbances in the gut and its microbiome (gut dysbiosis) and metabolomic profiles (see above 

for the references to some of these studies). These findings are some preliminary indications 

that there are shared phenotypic, pathophysiological, and potentially, mechanistic 

characteristics with ME/CFS. Viral persistence within the gastrointestinal (GI) tract may impact 

the gut microbiota and contribute to dysbiosis (Meringer & Mehandru, 2022). Long COVID GI 

symptoms include loss of appetite, nausea, weight loss, abdominal pain, heartburn, dysphagia, 

constipation, altered bowel motility, and irritable bowel syndrome (IBS) (Davis et al., 2023; 

Meringer & Mehandru, 2022). The pathophysiology and frequency of GI symptoms and long 

COVID are still not clearly defined or understood (Meringer & Mehandru, 2022). However, a 

survey of COVID-19 survivors from the Columbia University Irving Medical Centre reported that 

220 of 749 (29%) patients had GI symptoms self-perceived to be related to COVID-19, and for 

83 (11%) of the patients, a GI symptom was the most bothersome current symptom (Blackett et 

al., 2022). This survey also reported that women were more likely than men to report post-

COVID-19 GI symptoms or to meet the criteria for IBS (Blackett et al., 2022). The review by 

Komaroff and Lipkin (2023) listed two long COVID gut microbiome studies that were 

comparable to ME/CFS and a very loose extent, this study (Q. Liu et al., 2022; Yeoh et al., 

2021). Yeoh et al. (2021) and Q. Liu et al. (2022) used faecal shotgun metagenomic sequencing 

and different data analytical approaches so a direct comparison to this study was not possible.  

 

Yeoh et al. (2021) found that gut microbiome composition during hospitalisation was 

significantly altered in patients with acute COVID-19 compared to uninfected matched controls 

irrespective of whether patients had received medication. Overall, they found several gut 

commensals with known immunomodulatory potential such as Faecalibacterium prausnitzii and 

Eubacterium rectale to be underrepresented in infected patients and low in faecal samples 

collected up to 30 days after resolution of infection. There was only one species feature that 
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was the same between Yeoh et al (2021) and this study. Collinsella aerofaciens using 

differential abundance analysis testing was shown to share the same trend; it was 

underrepresented in COVID-19 samples and ME/CFS study participants (Figure 3.4.13). In a 

different study and snapshot of time, Q. Liu et al. (2022) presented outcomes of patients at 6 

months who had persistent and lingering symptoms following a confirmed diagnosis of acute 

COVID-19 and a matched non-COVID-19 control group that were recruited before the 

pandemic. This study is more in line with the timeframes of ME/CFS diagnostic protocols and its 

observations provide evidence of gut microbiome compositional alterations and GI-related 

health issues in patients with long-term complications from COVID-19. At 6 months, Q. Liu et al. 

(2022) observed that patients with PASC showed a significantly lower level of Collinsella 

aerofaciens, Faecalibacterium prausnitzii, Blautia obeum, and a higher level of Ruminococcus 

gnavus and Bacteroides vulgatus than non-COVID-19 controls (p < 0.05 LefSe <2); Figure 

6.2.1. Some microbial features were identified in Figure 6.2.1 that also appeared in this study 

with a similar trend. Higher levels of R. gnavus (Figure 3.4.1), B. vulgatus (Figure 3.4.14), and 

Clostridium innocuum (Figure 3.4.13) were identified in the ME/CFS groups and lower levels of 

C. aerofaciens (Figure 3.4.13). Interestingly,  B. thetaiotaomicron (Figure 3.4.13, Figure 3.4.15, 

and Figure 3.4.16) was both high and low in ME/CFS groups. This brief comparison requires 

further investigation and consideration of the GI system, gut microbiome, long COVID, and 

ME/CFS where microbiome-based profiling has utility as part of a prevention, risk mitigation, 

and management tool. Further, these studies provide a strong impetus for future studies where 

the gut microbiome is part of an integrated multi-omics approach to researching both long 

COVID and ME/CFS as a joint effort.      
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Figure 6.2.1 Snippet from Figure 3 in Liu et al (2022)’s publication showing the linear 

discriminant analysis effect size in the gut microbiome of patients with PASC at 6 months. 

 

As with any infectious disease, COVID-19 immediately triggers the immunological response, 

which is highly variable among patients and depends on personal characteristics and different 

involved risk factors (Bruzzone et al., 2023; C. B. Jackson et al., 2021). The interplay between 

infection, host response/immunological system, and the host, largely regulates the disease 

progression and is ultimately responsible for the severity and end outcomes of the disease 

(Bruzzone et al., 2023; E. Holmes et al., 2021; Miyazato et al., 2022). It is evident from the 

highly variable phenotypic responses and the systemic characteristics of the disease that these 

investigations require techniques such as the ones used in precision medicine (Bruzzone et al., 

2023; Cen et al., 2023). Of the “omic” technologies aimed at genes, mRNA, proteins, and 

metabolites in a specific biological sample, metabolomics offers a particularly advantageous 

option for long COVID investigations (research, diagnostic, prognostic, monitoring, and 

treatments) because it is more sensitive to any phenotypic alteration (Bruzzone et al., 2023; 

Nicholson, 2021; Wishart, 2019). Metabolic information may complement and partially explain 

the phenotypic differences among long COVID-19 patients, and indeed assist with deciphering 
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the heterogeneity and overlapping conundrum owing to comorbidities and ME/CFS (Komaroff & 

Lipkin, 2023; López-Hernández et al., 2023; Wishart, 2019).  

 

So far, profound metabolic dysregulation has been produced by SARS-CoV-2 infection that can 

be adequately characterised by metabolomics and lipidomics (Bruzzone et al., 2023). Similar 

metabolomic evidence from ME/CFS is emerging in people with long COVID with findings 

including reduced or disturbances in energy metabolism from fatty acids, amino acids, glucose 

via the TCA cycle, glycolysis, oxygen, and nucleotides central to energy metabolism, redox 

imbalance, changed metabolic state, and kynurenine pathway abnormalities (Bruzzone et al., 

2023; F. He et al., 2021; Komaroff & Lipkin, 2023; Kovarik et al., 2023; López-Hernández et al., 

2023). Given that the gut microbiome is responsible for the regulation of metabolism, the 

development of gastrointestinal mucosa, and an integral part of host immunity and responses, 

its connection to host metabolism plays an important part in discussions revolving around the 

management of ME/CFS and long COVID. However, the different techniques and approaches 

used in research impede proper comparison between studies and translation to human clinical 

application, particularly when considering the quantification of the changes (microbes and 

metabolites) associated with disease (Bruzzone et al., 2023; Galazzo et al., 2020). The findings 

in the gut microbiome and host metabolomic research in ME/CFS and long COVID make it 

obvious that future efforts would benefit from collaboration, larger study numbers, multi-omic 

and disciplinary longitudinal study designs, the prior knowledge, and several decades worth of 

experience established by ME/CFS, and the increased interest that is now held in post-

infectious conditions because of COVID-19. For many reasons, it would be a poor use of skills, 

expertise, and resources, ignorant and short-sighted to consider one condition without the other. 

ME/CFS patients have suffered for far too long; long COVID patients should not experience a 

similar fate (Friedman et al., 2021).  
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6.2.3 Omics, Knowledge Application, and Translation  

 

The gut microbiome, host metabolome, and its relationship are increasingly being recognised 

with further attributes discovered for its influence, association, and role in many health-related 

conditions including ME/CFS and long-COVID. A variety of tools, techniques, and technologies 

are becoming more readily accessible, available, and user-friendly in the growing field of omics 

and precision medicine for research and clinical practice. Metabolomics and metataxonomic 

analyses are only two approaches that can be used to investigate the gut microbiome, host 

metabolism, and indeed the broader aspects of biology, disease mechanisms, and 

pathophysiology. As discoveries and each avenue become more advanced, detailed, and 

involved, there are more things to explore and consider. Each dimension of a research problem 

and study requires advanced skills and training be it for wet laboratory procedures, sample 

collection, clinical practice, research/science communication, or statistics and data analysis. No 

single application can capture the entire complexity of most human diseases calling for 

integrated or multi-omic frameworks and approaches to provide a deeper, more comprehensive 

view of biology and disease (Karczewski & Snyder, 2018). Further, it is unlikely that a single 

biomarker, and therefore its underlying mechanism and pathology, can accurately and precisely 

identify all individuals with, or a predisposition for, ME/CFS. Other applications for gut 

microbiome analytical approaches include metagenomics and metatranscriptomics (Ojala et al., 

2023). The wider reach of the omics field includes areas such as epigenomics, fluxomics, host 

genomics, genomics, glycomics, lipidomics, proteomics, and transcriptomics, which have also 

been utilised in numerous biomedical discoveries and developments to date. Every omics area 

has the potential to be integrated or combined with another to aid in data analysis, visualisation, 

and interpretation to determine the mechanism of a biological process (Krassowski et al., 2020). 

For ME/CFS, other than overcoming the challenges as discussed earlier with recruitment, 

further investigation of comorbidities and heterogeneity in the disease using these omic 

platforms is warranted.  

 

Current omic-based approaches in ME/CFS are largely implemented to seek evidence, potential 

biomarkers, and the understanding of hypothesis-driven biological mechanisms that may 

underpin the disease. Research findings are yet to be developed and validated for board-

approved, routine clinical use including the prevention, management, and treatment of ME/CFS. 

The potential of integrated omic models with longitudinal insight in translational medicine is 

rapidly being unveiled, adopted, and published; however, the shift of knowledge from the “bench 
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to bedside” is not without challenges. This comprises data analytical, accuracy and validation, 

interpretation, sampling, actionability, therapeutic, and monitoring considerations (Karczewski & 

Snyder, 2018; Krassowski et al., 2020). Of course, the questions and topics of life, reality, 

health, and disease at a philosophical level come into play. The “what is healthy?” can mean so 

much and take a variety of definitions. The computational needs and field also spark 

discussions over data management, security, ethics, privacy, insurance, society, and other 

issues regarding the usage of such data and information (Krassowski et al., 2020). The 

translation and route of research findings to human application is a detailed process and it 

needs to be done with responsibility. It is a new era for medicine, drug discovery, biomedical, 

and scientific research. The advent of machine learning, algorithms, and artificial intelligence in 

the omics field has facilitated rapid discoveries in health and disease and is becoming 

increasingly used in healthcare settings for diagnosis, prognostication, and outcome predictions 

(Pammi et al., 2022). With this comes the development and prospect of several models, tools, 

and platforms pitched toward improving the efficiency and tailoring of individual care. No doubt, 

these technologies with a precision-based and personalised focus have also formed the 

fundamental basis for numerous startup or new-age ventures in biological sample collection (for 

example, less sample required without the need for cold chain, better stability before reaching 

laboratory), high-throughput platforms, diagnostics, wearable monitoring devices, digital medical 

assistance, diet, nutrition, health promotion, wellness, therapeutics, drugs, supplements, and 

the like (M. Subramanian et al., 2020). There are several positive opportunities for mitigating 

and improving patient outcomes and experiences and identifying potentially at-risk individuals in 

ME/CFS. Certainly, much still needs to be done before any omic-based application can be 

applied specifically to a wider ME/CFS clinical or community/primary care setting. With the 

overwhelming abundance of consumer-based options, marketing hype, and accessible 

information in this space, it is critical that sound ME/CFS research continues with an acute 

awareness and caution of this burgeoning field and industry. ME/CFS individuals are already at 

their most vulnerable, they do not need to be led further astray or presented with a misleading 

narrative concerning their health.   
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6.3 Final Remarks 

 

The overarching finding of this thesis is that the gut microbiome and host metabolome outcomes 

from ME/CFS can be viewed and potentially interpreted differently depending on FM or IBS 

comorbidity. While I did not look at any other comorbidities, the findings from this thesis indicate 

that they need to be given due consideration in ME/CFS. Moreover, these variations and 

research findings can also be influenced by the specific analytical approach or methods that 

were applied, and indeed by the biospecimen, metadata, and data-input types that were used to 

make these measurements and observations. These elements are all important in the pursuit of 

understanding the various complexities that present in ME/CFS. Throughout the journey of 

completing this study and thesis, and comprehending the extent of ME/CFS, I have come to 

appreciate and embrace that the gut microbiome and host metabolome are perhaps only some 

of the few pieces needed to solve the puzzle of this very intricate and heterogeneous disease. 

Further, it has highlighted and reaffirmed the fundamental importance of the individual and their 

experiences with ME/CFS which future research needs to be open and attuned to. Engaging all 

stakeholders in a dialogue about ME/CFS stands as a cornerstone for enhancing the 

understanding, outlook, and prospects of this disease. My contribution in the grand scheme of 

all things ME/CFS, and possibly now long COVID, seems modest, but they are not insignificant 

or in vain. It sheds light on the necessity of an objective framework and a pragmatic approach 

with the use of different but complementary omic-based technologies and biological analytical 

techniques and approaches for a more comprehensive and holistic command of the disease. 

These applications and fields are continually progressing, and it is encouraging for ME/CFS and 

many chronic diseases. As most things go, worthwhile and meaningful research takes time, 

effort, skill, expertise, determination, collaboration, and resources; ME/CFS especially demands 

and requires the whole gamut. My ultimate dream for ME/CFS biomedical research speaks to 

the larger aspirations within the entire ME/CFS community which is for the availability of a gold-

standard, efficient, accessible, and reliable diagnostic and curative therapeutic protocol. In the 

meantime, I want to encourage others whether you are a health care provider, researcher, or lay 

person to be at least aware and respectful of the agonising biomedical reality of ME/CFS; 

ME/CFS is not “in the head” of a lazy, malingering person. I wish for continued productive 

research outcomes and discourse that allow for more individuals to receive appropriate and 

dignified care and support. It is crucial for individuals and everyone around them, from 

clinicians, allied health care workers, other service providers, friends, and family members, that 

we are all informed and empowered with the best available evidence and tools.  
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Appendices 

 

Materials listed here in the Appendices can be viewed electronically the file 

“AmberJaaKwee_Thesis_2023_Appendix_Files” which accompanies this thesis. 

 

Appendix 1 Questionnaire Form 

 

Questionnaire-1-Self-Report Questionnaire.pdf  

Questionnaire-2-Symptom Questionnaire.pdf 

 

Appendix 2 Participant Cohort Metadata  

ParticipantStudyMetadata_83_Part1.csv 

ParticipantStudyMetadata_56_Part2.csv 
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Appendix 3 Denaturing and Dilution Calculations for Illumina MiSeq Sample Loading 

Denature DNA Pooled Library 

Dilute pooled library from 3.5nM to 2nM (5 µL) with 10 mM Tris pH 8.5 

2 nM × 5 µL = 3.5 nM × V2 

V2 = 2.86 µL 

 

2.86 µL of 3.5 nM pooled library + 2.14 µL of 10 mM Tris pH 8.5 = 5 µL of 2 nM pooled library  

 

Following steps in the Illumina protocol for denaturing a 2 nM library (Illumina, 2013, 2019), 1 

mL of a 10 pM denatured pooled library was prepared.  

 

Denature PhiX Control Library 

Dilute PhiX 10 nM stock to 2nM (5 µL) with 10 mM Tris pH 8.5 

2 nM × 5 µL = 10 nM × V2 

V2 = 1 µL 

 

1 µL of PhiX 10 nM stock + 4 µL of 10 mM Tris pH 8.5 = 5 µL of 2 nM PhiX  

 

Following steps in the Illumina protocol for denaturing a PhiX library (Illumina, 2013, 2019), 1 

mL of a 10 pM denatured PhiX library was prepared.  

 

Combined Denatured Pooled Library and PhiX Control Library 

The pooled library with indexed amplicon samples was spiked with 10% PhiX control 

 

432 µL of 10 pM pooled library + 48 µL of 10 pM PhiX library + 120 hybridization buffer (HT1) = 

600 µL of 8 pM combined library for loading on to the MiSeq for sequencing  
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Appendix 4 Script for QIIME2 processing of 16S rRNA amplicon sequences   

 

Gut Microbiome/16SrRNA/QIIME2_AmberJaaKwee_Thesis_Appendix  

The file can be viewed either in Notepad, R Studio, Visual Studio Code or similar 

 

Appendix 5 R Scripts for Gut Microbiome Data Analyses and Visualisation 

 

Gut Microbiome/16SrRNA 

Gut Microbiome/CultureMaldiTof 

 

Appendix 6 16SrRNA Phyloseq Object  

 

Gut Microbiome/16SrRNA/OriginalPhyloseqObjectAJK 

 

Appendix 7 Culture MALDI-TOF Phyloseq Object 

 

Gut Microbiome/CultureMaldiTof/All-Species-Culture-Clean-AJK 

 

Appendix 8 LCMS and NMR Faecal and Urine Metabolome (Part One) Raw Data Matrices 

 

Metabolomics/PartOneMetabolomicsRawDataMatrices 

 

Appendix 9 LCMS and NMR Faecal and Urine Metabolome (Part One) Results  

 

Metabolomics/PartOneMetabolomicsResults 

 

Appendix 10 LCMS and NMR Blood Plasma and Urine Metabolome (Part Two) Raw Data 

Matrices 

 

Metabolomics/PartTwoMetabolomicsRawDataMatrices 

 

Appendix 11 LCMS and NMR Blood Plasma and Urine Metabolome (Part Two) Results  

 

Metabolomics/PartTwoMetabolomicsResults 


