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Abstract

Cyberattacks cause havoc in the digital world, but the most significant threat

might be from those who appear to be trustworthy: insiders. Insider threats

pose a significant and evolving challenge to organisations, jeopardizing data se-

curity, operational processes, and overall well-being. Unlike external threats,

these threats stem from individuals with authorized access and deep familiarity

with internal systems, making them particularly difficult to detect and potentially

causing more substantial damage. Insiders, including employees, contractors, or

business partners, possess legitimate access to a company’s systems and data.

When these insiders act maliciously or negligently, they can cause significant

damage through theft, sabotage, or espionage. While robust for detecting and

preventing insider threats, machine learning and deep learning techniques face

several challenges. This thesis aims to highlight three significant challenges in

insider threat detection and prediction.

A significant challenge in evaluating insider threat detection and prediction al-

gorithms is the lack of standardized datasets and problem settings. This variabil-

ity makes it difficult to compare the effectiveness of different approaches and pro-

vide clear recommendations for decision-makers. To address this challenge, this

study aims to objectively evaluate the performance of supervised machine learn-

ing algorithms within a consistent experimental setting. This will be achieved

by implementing supervised algorithms using the balanced CERT r4.2 dataset,

employing a uniform feature extraction methodology. The performance of various

supervised machine learning algorithms on a balanced dataset using the same fea-

ture extraction method is thoroughly evaluated. Additionally, an exploration of

the impact of hyperparameter tuning on performance within the balanced dataset
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is conducted.

The second challenge is, traditionally, detecting insider threats, which involves

analyzing user behaviours recorded in logs and developing a binary classifier to

differentiate between malicious and non-malicious individuals. However, existing

approaches only consider either standalone activities or sequential activities. A

novel approach is proposed to enhance the detection of malicious insiders: a bilat-

eral insider threat detection method that harnesses the power of recurrent neural

networks and incorporates both standalone and sequential activities. Initially,

behavioural characteristics are extracted from log files, representing the stan-

dalone activities. Then, RNN models are utilized to capture the features that

represent sequential activities. Subsequently, the features obtained from stan-

dalone and sequential activities are merged, and a binary classification model is

employed to detect insider threats effectively. The experiment findings using the

publicly available CERT r4.2 dataset demonstrate that the proposed bilateral in-

sider threat detection approach significantly improves the performance of insider

threat detection.

The third challenge is that previous research has addressed the challenge by

pinpointing malicious actions that have already occurred but they have provided

limited assistance in preventing these risks. This research introduces a novel ap-

proach based on bidirectional long-term memory networks, aiming to effectively

capture and analyse the patterns of individual actions and their sequential de-

pendencies. The focus lies in predicting whether an individual will become a

malicious insider in the future based on their daily behavioural records over the

preceding several days. The performance of the four supervised learning algo-

rithms on manual features, sequential features, and the ground truth of the day

with various combinations is analysed. Additionally, the performance of different

RNN models, such as RNN, LSTM, and BiLSTM, in incorporating these features

is investigated. Moreover, the performance of different predictive lengths on the

ground truth of the day and different embedded lengths for the sequential fea-

tures is explored. All experiments are conducted on the CERT r4.2 dataset, with

experiment results indicating that BiLSTM achieves the highest performance in

combining these features.
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In summary, this research can effectively address three significant challenges

in insider threat detection and prediction.
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Chapter 1

Introduction

1.1 Background

In today’s hyper-connected world, the pervasive spectre of cyber threats casts a

formidable shadow across the entire digital landscape. These threats encompass

various malicious activities and vulnerabilities, posing an omnipresent and mul-

tifaceted risk to individuals, organisations, and nations. Insider threats emerge

as a nuanced and distinctive category, casting a shadow within the organisation’s

walls. As we delve into the broader sphere of cyber threats, we inevitably arrive

at insider threats, where the lines between friend and foe blur, and the risks are

often concealed in plain sight.

Recent data breaches and system sabotage activities that have seriously af-

fected users worldwide have brought cyber security into greater prominence [1,

2, 3, 4]. For example, Australians lost a staggering A$13,885,099 to threats and

extortion scams in 2023, according to Scamwatch [5]. These incidents serve as

compelling reminders of the urgent need to prioritize and strengthen cyber se-

curity measures to safeguard sensitive information and protect against malicious

threats [6, 7, 8, 9].

Insider threats pose a significant challenge to cyber security in contemporary

times. Such a threat can manifest in various forms of malicious activity, including

exploiting security privileges to pilfer intellectual property, divulging or trading
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customer data, or deploying malware and backdoors on corporate computers.

This constitutes insider misconduct. Insider threats are more vulnerable than

outsider threat attacks, and while rare, they can cause significant damage [10,

11, 12, 13].

A recent report by Ponemon Institute (2022) paints a concerning picture of

insider threats [14]. The frequency of these incidents is on the rise, with 67% of

organisations experiencing between 21 and more than 40 insider attacks annually.

This represents a significant jump from 60% in 2020 and 53% in 2018. Further-

more, the cost associated with each incident has risen dramatically. According to

the same report, the average cost per incident now stands at a staggering $15.38
million [14]. This highlights the severe financial impact insider threats can have

on organisations. The report also reveals that the time to detect and contain

insider attacks remains a challenging task. On average, it takes organisations 77

days to address them, with data loss occurring in 42% of cases before containment

[14].

A separate survey found that privileged users pose the most significant insider

threat risk, with 55% of organisations identifying them as a concern1. This under-

scores the importance of implementing robust monitoring of privileged accounts

closely. Moreover, it confirms insider threats’ rise, reporting a 47% increase over

the past two years.

The 2023 Insider Threat Report by Gurucul reveals a significant increase

in insider threats, with a staggering 74% of organisations reporting a rise in

the frequency of such attacks. This pervasive risk is further emphasized by the

finding that over half (more than 50%) of organisations have experienced insider

threats in the past year, with a concerning 8% facing more than 20 incidents.

As organisations transition to hybrid work models, a significant portion (68%)

express concern about insider risk. This growing concern and the report’s finding

that most organisations (approximately 74%) are considered moderately or highly

vulnerable to insider threats, underscores the critical need for robust security

measures to safeguard sensitive data and IT infrastructure [15, 16].

1Source: https://techjury.net/blog/insider-threat-statistics/#gref
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Fig. 1.1. Average cost of insider threat incidents

The COVID-19 pandemic has further amplified the problem. The shift to

remote work and increased reliance on digital platforms have created new oppor-

tunities for malicious insiders to exploit vulnerabilities [17]. organisations must

remain vigilant in the face of this evolving threat landscape. Implementing ro-

bust security measures, including user monitoring, access controls, and data loss

prevention techniques, is crucial to detect and prevent insider attacks [18, 19, 20].

Insider threats can inflict a financial triple whammy on organisations. Direct

costs encompass the immediate spending required to identify, contain, investigate,

and recover from the incident. These are followed by indirect costs, representing

the value of lost employee productivity and resources dedicated to managing the

fallout. Finally, there are lost opportunity costs, reflecting potential profits for-

feited due to the disruption caused by the attack. The Ponemon Institute’s 2023

report reveals a troubling trend – the total cost of insider threats has surged nearly

95% since 2018, highlighting the critical need for robust preventative measures

[21].

From Figure 1.1, the average cost of insider threat incidents in the United
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States has steadily increased since 2018. The cost in 2018 was $8.3 million,

and it rose to a staggering $18.33 million in 2023 [21]. This significant increase

highlights insider threats’ growing financial risk to organisations.

1.1.1 Insider Threats Across Industries

The threat of insider attacks isn’t limited to a single industry. Malicious actors

with authorized access can pose significant risks in various sectors. Here are some

examples:

• Financial Industry: Employees with access to sensitive customer data, like

account numbers or credit card information, could steal and sell it on the

black market for fraud.

• Technology Industry: Disgruntled employees with knowledge of a com-

pany’s intellectual property, such as trade secrets or software code, could

leak or misuse that information to harm the organisation or give themselves

or another company a competitive edge.

• Healthcare Industry: Employees with access to patient records might inten-

tionally disclose or sell confidential medical information for personal gain.

This could involve selling patient data to pharmaceutical companies or iden-

tity thieves.

• Government Sector: Insiders with access to classified information could leak

sensitive data, such as national security secrets, to unauthorized individuals

or foreign entities. This could be done for personal gain, ideological reasons,

or even blackmail.

• Retail Industry: Employees with access to inventory management systems

could manipulate data to steal valuable merchandise or sell product infor-

mation to competitors.

• Energy and Utilities: Insiders with access to control systems could disrupt

critical infrastructure in this industry. For example, a disgruntled employee

at a power plant could manipulate controls to cause a blackout.
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• Media and Entertainment: Employees with access to sensitive or unreleased

content could leak it to the public before its intended release date. Addi-

tionally, insider access to celebrity or customer data could be sold to third

parties for malicious purposes.

1.1.2 Recent Insider Threats in world-wide

We will examine a few recent cases of insider threats involving data breaches.

In the 2019 Capital One breach, a former Amazon employee who partici-

pated in the attack was convicted in 2022 1. At the beginning of the COVID-19

pandemic, a disgruntled ex-employee from a medical packing company misused

a previously established admin account. They created a fraudulent new user

account and manipulated thousands of files to disrupt or halt the delivery of

personal protective equipment to hospitals and healthcare providers 2.

Following the breach, Tesla promptly mitigated the damage and bolstered

their security systems. Collaborating closely with law enforcement, they pin-

pointed the two former employees responsible. Affected staff were promptly no-

tified and provided with resources to safeguard personal information. Tesla com-

prehensively reviewed their IT security and data protection policies, identifying

and addressing potential vulnerabilities. They instituted additional security mea-

sures, including stricter access controls, heightened user activity monitoring, and

enhanced encryption protocols. Moreover, Tesla underscored the significance of

employee training in cybersecurity best practices. These proactive steps demon-

strate Tesla’s commitment to fortifying its defences and safeguarding sensitive

information [22].

In 2022, Yahoo sued a former research scientist who stole proprietary source

code about their AdLearn product 3. Minutes after receiving a job offer from a

competitor, the employee downloaded approximately 570,000 pages of Yahoo’s

1https://firewalltimes.com/recent-data-breaches/
2https://www.justice.gov/usao-ndga/pr/former-employee-medical-packaging-company-

allegedly-sabotages-electronic-shipping
3https://www.thedrum.com/news/2022/05/19/yahoo-lawsuit-alleges-employee-stole-

trade-secrets-upon-receiving-trade-desk-job
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intellectual property (IP) to his personal devices, knowing that the information

could benefit him in his new job. In the lawsuit, Yahoo claimed the stolen data

would give competitors an immense advantage. Furthermore, in 2022, Microsoft

employees accidentally exposed login credentials on GitHub, potentially granting

access to Azure servers and other internal systems [23]. Fortunately, this leak,

which could have included source code, was discovered by a security firm before

exploitation. The incident highlights the risk of unintentional insider threats and

the potential for hefty fines under regulations like GDPR.

In November 2021, a security breach at South Georgia Medical Center exposed

sensitive patient information 1. A disgruntled former employee, with legitimate

access even after quitting, downloaded private data, including test results, names,

and birth dates, onto a USB drive. This incident highlights the risk of insider

threats motivated by personal motives. While the medical centre’s security soft-

ware eventually detected the unauthorized download, the breach emphasizes the

need for proactive measures.

1.1.3 Motivation for Insider Threat Research

Several factors have prompted us to direct our research towards insider threat de-

tection and prediction. The increasing number of insider threats, both malicious

and accidental, has become a critical issue for organisations of all kinds. This

surge in threats has significantly exposed sensitive data and intellectual property.

Proactive solutions are essential to address this escalating threat landscape.

Insider threat detection and prediction research is at the forefront of this fight.

The primary goal is to harness advanced technologies to create effective strate-

gies that identify potential insider threats and implement preventative measures

to safeguard critical information. By achieving this, organisations can mitigate

internal risks, protect their valuable data assets, and reduce insider threats’ fi-

nancial and reputational risks.

Furthermore, data breaches, often a consequence of insider threats, can have

devastating financial implications. organisations face significant costs associated

1https://www.hipaajournal.com/former-south-georgia-medical-center-employee-arrested-

over-41k-record-data-breach/
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Fig. 1.2. Insider threat increases

with remediation, legal repercussions, and lost business opportunities. Research

is driven by the need to develop proactive methods to detect and prevent insider

threats. This proactive approach aims to lessen the financial impact of data

breaches and ensure an organisation’s financial stability.

Figure 1.2 illustrates the rise in insider threats from 2016 to 2022 across various

categories. The figure shows an upward trend in all categories, including creden-

tial theft, malicious insider threats, and negligent employee behaviour. Notably,

the data indicates a significant increase in all these categories in 2022 compared

to previous years.

1.2 Research Problems

In past decades, many techniques have been used to control insider threats. Ac-

cess control techniques are essential for safeguarding data privacy and ensuring

security [24, 25, 26, 27]. They are used in diverse domains, including healthcare

systems and data dissemination. Despite authorized access, traditional security
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measures often fail to thwart insider threats. Conventionally, access control sys-

tems are used. In [28] introduced an adaptive risk management and access control

framework to mitigate insider threats in organisations. It extends the traditional

role-based access control model by incorporating risk assessment and trust in

users’ behaviour. Even though users can access data, these access controls can’t

stop them from misusing it. Following these access control systems, much re-

search has focused on understanding insiders and developing methods to detect

insider threats [29, 30, 31, 32]. Insider threats can include data exfiltration, es-

pionage and fraud, exposure of classified information, IT sabotage, and theft of

intellectual property [33, 34, 35, 36].

The growing prevalence of insider threats has spurred a surge in research

aimed at understanding and mitigating these risks. However, despite this research

effort, our ability to effectively address insider threats remains limited. We can

formulate and explore two primary research questions through subquestions to

address this gap.

Research Question 1: Can machine learning and deep learning

algorithms leverage standalone and sequential features to achieve su-

perior detection performance for insider threats?

Traditional security methods often struggle to identify insider threats be-

cause these individuals have authorized access to data and systems [37, 38, 39,

40]. Therefore, machine learning and deep learning algorithms have emerged as

promising tools for insider threat detection. These algorithms can analyse vast

amounts of user activity data to identify patterns and anomalies that might in-

dicate malicious intent. However, the effectiveness of these algorithms depends

on the features used to train them.

Previous research has explored two main types of features for insider threat

detection: standalone features and sequential features. While both offer valuable

insights, some studies have focused solely on one type or the other [2, 41, 42, 43,

44]. This leaves a gap in our understanding of the potential benefits gained by

combining these features to create a more comprehensive picture of user activity.

Subquestion 1 compares the performance of various supervised machine learning

algorithms on the CERT r4.2 balanced dataset and in real-world scenarios with
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imbalanced datasets. Additionally, subquestion 2 addresses the combination of

standalone and sequential features in insider threat detection.

Subquestion 1: How do various supervised machine learning algo-

rithms perform on the CERT r4.2 balanced dataset compared to real-

world scenarios with imbalanced datasets, particularly under varying

levels of class imbalance, ranging from 40% to as low as 0.5% of

insider cases in the dataset?

Machine learning has emerged as a promising tool for various cybersecurity

applications, including insider threat detection and cyber-attack prediction [45,

46, 47, 48, 49]. However, a major challenge lies in effectively comparing the

performance of existing approaches across different datasets and settings.

Previous research has utilized diverse datasets and settings, making direct

comparisons between these approaches difficult due to the influence of these vary-

ing parameters [50, 51, 52]. To address this challenge, we propose a controlled

evaluation methodology. We compare the performance of various supervised ma-

chine learning algorithms on a standardized balanced dataset and under consis-

tent settings. Furthermore, we investigate the impact of hyperparameter tuning

on the algorithms’ performance. Additionally, we explore the effectiveness of

these same algorithms in handling datasets with different levels of class imbal-

ance, reflecting real-world scenarios where insider representation may be much

lower than the number of normal user cases.

Subquestion 2: How does combining standalone and sequential fea-

tures extracted from user activity data impact the performance of

insider threat detection algorithms compared to using standalone or

sequential features alone?

Existing research on insider threat detection has explored various machine

learning and deep learning techniques [6, 53, 54]. These approaches typically

focus on two main types of features: behavioural features and standalone fea-

tures. Behavioural features capture user activity patterns to identify suspicious

behaviour, while standalone features focus on static characteristics of user activ-

ity. However, a key limitation of many existing approaches is their reliance on

only one type of feature, either standalone or sequential. This can lead to a less

comprehensive picture of user activity and potentially hinder detection accuracy.
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To address this limitation, we propose a bilateral insider threat detection

framework. This framework incorporates standalone and sequential features to

create a more holistic view of user activity. By combining these features, we aim

to improve the effectiveness of insider threat detection compared to approaches

that rely solely on one feature type.

Research Question 2: Can incorporating daily ground truth data

about insider threat incidents improve the prediction of future insider

threats compared to methods that rely solely on historical user activity

data?

In recent years, numerous studies have explored machine learning-based ap-

proaches for insider threat detection [55, 56, 57]. Similarly, research has focused

on user behaviour analysis for threat detection [58, 59, 60]. However, these tech-

niques primarily concentrate on identifying threats that have already occurred

based on historical user activity data. Traditional access control methods focus

on post-occurrence detection and can lead to response delays, especially for large

organisations as highlighted in [61, 62, 63]. This research addresses this limitation

by exploring methods for the prediction of insider threats.

Subquestion 3: Can recurrent neural networks (RNN, LSTM, Bi-

LSTM) leverage daily ground truth data Xg to learn more effec-

tive patterns from user activity features Xm,Xs for improved insider

threat prediction?

Traditional methods often struggle with insider threat detection, highlighting

the need for a more predictive approach. This research proposes a framework

incorporating user activity features, including confirmation of whether an attack

occurred each day (ground truth), to train RNN models. The model can learn

user behavioural patterns by analysing standalone and sequential user activities.

Including ground truth data as a feature allows the RNN to identify deviations

from normal user behaviour and potentially refine its predictions. This system-

atic evaluation will compare the performance of RNNs utilizing this combined

feature set with potentially less informative models, aiming to demonstrate the

effectiveness of RNNs in learning from ground truth data for improved insider

threat prediction.
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Fig. 1.3. Overall framework
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1.3 Thesis Contribution

Outlined below are the primary contributions made by this thesis:

• This research compares the various supervised machine learning algorithms,

including RF, XG Boost, KNN, GNB, DT, MLP, AdB, and QDA, using the

CERT r4.2 balanced dataset to evaluate their performance in insider threat

detection. It also investigates the influence of hyperparameter modifications

on the performance of specific machine learning models, namely KNN, DT,

and AdB, within the balanced dataset.

• This research examines the performance of various supervised machine

learning methods in addressing imbalanced datasets, which are common

in real-world scenarios. Specifically, we assessed their effectiveness in the

presence of different levels of class imbalance, ranging from 40% to as low

as 0.5% of insider cases.

• This research also introduces a novel Bilateral insider threat detection

framework that utilizes both standalone and sequential activities from users’

daily behaviours. Furthermore, it develops a feature extraction method

based on RNNs and LSTM to capture and utilize sequential features in the

data.

• The experiments compare the performance of our bilateral features with

various classifiers on the CERT r4.2 dataset. Additionally, we assessed the

effectiveness of RNN and LSTM feature extractors in combination with the

same classifiers, namely KNN, MLP, LR, and SVM.

• This research introduces a comprehensive framework for insider threat pre-

diction that leverages user activity features, including the ground truth of

each day. This framework addresses the challenge of accurately identifying

potential insider threats by considering both standalone and sequential user

activity data from previous days.

• The experiments conduct a systematic evaluation to assess the impact of

integrating standalone featuresXm, sequential featuresXs, and the ground
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truth for a specific day Xg on insider threat prediction accuracy. This com-

prehensive assessment involves a comparative analysis of the performance

of three distinct models: RNN, LSTM, and Bi-LSTM on Xm∥Xs∥Xg.

• This research investigates the impact of varying predictive lengths on Bi-

LSTM’s ability to predict threats. Our goal is to identify the optimal length

that maximises Bi-LSTM’s efficiency in threat prediction. It is achieved

by comparing its performance with other models (KNN, LR, AdB, GNB)

across different predictive lengths. Additionally, it explores the impact of

various embedding sizes (16, 32, 64, and 128) on a BiLSTM architecture

with a fixed sequence predictive length (e.g., 5). All models are evaluated

using the combined feature set Xm∥Xs∥Xg).

1.4 Thesis Structure

This thesis comprises seven chapters, the current one included. The remaining

chapters are structured as follows:

Chapter 2 meticulously examines existing knowledge to establish a strong

foundation for the research. To understand insider threat detection and predic-

tion, the chapter first defines ”insiders” and explores the various insider threats

organisations face. It then delves into the motivations behind insider attacks,

examining reasons ranging from financial gain and revenge to emotional ones.

Following this foundational understanding, the chapter dives deeper into insider

threat detection and prediction research. Critically, the chapter also explores

various methods for analysing user activity data, a crucial component for both

detection and prediction.

Chapter 3 takes a technical turn, delving into the core of the proposed frame-

work: the learning algorithms and datasets. It details the various machine and

deep learning algorithms employed in the research, including K-Nearest Neigh-

bors (KNN), Logistic Regression (LR), AdaBoost, Gaussian Naive Bayes (GNB),

LSTM, and BiLSTM etc. The chapter explains the functionality of each al-

gorithm, highlighting its strengths and potential applications in insider threat

prediction. Furthermore, the chapter explores a specific dataset commonly used
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in insider threat detection - CERT r4.2. It delves into the details of this dataset,

explaining the types of files and information it contains.

Chapter 4 introduces insider threat detection using supervised machine learn-

ing algorithms. This chapter compares a wide range of algorithms, including

Random Forest, XGBoost, KNN, GNB, Decision Tree, MLP, AdaBoost, and

QDA, on a balanced version of the CERT r4.2 dataset. Furthermore, the chap-

ter presents the impact of hyperparameter tuning on the performance of specific

algorithms (KNN, DT, and AdaBoost) within the balanced dataset. Finally in-

vestigates how various supervised machine learning methods handle imbalanced

datasets, which are common in real-world scenarios.

Chapter 5 introduces a novel approach to insider threat detection: the bilat-

eral framework. This framework leverages standalone user activities (individual

actions) and sequential activities (sequences of actions) to enhance detection accu-

racy. By incorporating this bilateral approach, the research aims to improve tra-

ditional methods. Additionally, the chapter proposes a feature extraction method

that utilizes Recurrent Neural Networks (RNNs) and Long Short-Term Memory

(LSTM) networks to capture the sequential nature of user activity data. To

evaluate the effectiveness of this approach, the chapter conducts experiments on

the CERT r4.2 dataset. These experiments compare the performance of bilateral

features with various classifiers and the effectiveness of RNN and LSTM feature

extractors using the same set of classifiers.

Chapter 6 builds upon the previous chapters and proposes a comprehensive

framework for insider threat prediction. This framework incorporates user activ-

ity data, including a crucial element – the daily ground truth (whether an insider

threat occurred that day). This approach addresses the challenge of accurately

identifying potential threats by considering individual user actions and sequences

from past days. The research employs four supervised learning algorithms to

achieve robust and effective threat prediction: KNN, LR, AdaBoost, and GNB.

Furthermore, the chapter delves into the effectiveness of Bi-LSTM networks.

Chapter 7 concludes the research findings, highlights the thesis’s contribu-

tions, and outlines potential future research directions. In Figure 1.4, the overall

thesis structure is presented.
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Chapter 2

Background and Literature View

Insider threats are one of the most challenging tasks in today’s cyber world. Over

the past decade, these threats and broader cyber-security issues have become fo-

cal points of attention for researchers and organisations alike. Detecting insider

threats has emerged as a crucial undertaking within organisational cybersecurity

protocols, emphasising the need for robust measures to identify and mitigate risks

originating from within the organisation. This chapter offers background infor-

mation on the nature of insider threats and examines relevant research findings

from the literature. By delving into the intricacies of this cybersecurity issue, the

chapter aims to contribute to the collective knowledge base and enhance the ca-

pabilities of organisations in addressing and safeguarding against insider threats.

Technological advancements and data analytics have played a pivotal role

in enhancing insider threat detection and prevention capabilities in this rapidly

changing environment. Machine learning and behavioural analytics have become

central to identifying and mitigating these risks.

2.1 Insider & Insider Threats

Many of the following definitions draw a clear distinction between insiders and

the notion of insider threats.
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2.1.1 Who is Insider?

The term ”Insider” is defined by the CERT Coordination Center (CERT/CC)

[64] as: ”A current or former employee, contractor, or business partner who has

or had authorised access to an organisation’s network, system, or data, and has

intentionally exceeded or intentionally used that access in a manner that nega-

tively affected the confidentiality, integrity, or availability of the organisation’s

information or information systems.”

The Rand Corp [65] defined the insider as ”anyone with access, privilege, or

knowledge of information systems and services.”. They also described a malicious

insider as ”motivated to intentionally adversely impact an organisation’s mission”

(e.g., deny, damage, degrade, destroy). The term ”Insider” is described by Kim

et al. [66] as ”Someone who has the authority to enter a company as an employee,

contractor or guest, regardless of the authority of the information system”.

A definition of insider threat described by the US’s Cyber and Infrastruc-

ture Security Agency (CISA) [67] as: ”The potential for an insider to use their

authorised access or special understanding of an organisation to harm that organ-

isation. This harm can include malicious, complacent, or unintentional acts that

negatively affect the integrity, confidentiality, and availability of the organisation,

its data, personnel, facilities, and related resources”.

2.1.2 Insider Threats

The term insider threat is defined by Predd et al. [68] as ”an insider’s action that

puts an organisation or its resources at risk”. According to Schultz and Shumway

[69], an insider attack is ”the intentional misuse of computer systems by users

authorised to access those systems and networks”. As per Pfleeger et al., [70],

an insider threat is ”an insider’s action that jeopardises an organisation’s data,

processes, or resources in a disruptive or unwelcome manner”.

Greitzer and Frinke elaborate that insider threats involve ”harmful acts that

trusted insiders might carry out, causing harm to an organisation or engaging

in an unauthorised act for personal benefit [71]”. Hunker and Probst [72]frame

insider threat as ”an individual with privileges who misuse them or whose access

results in misuse.”
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Bishop [73] conceptualises insider threat as when ”a trusted entity abuses

given power to violate one or more rules in a given security policy”. Theoharidou

et al. [74] defines insider threat as ”threats originating from people with access

rights to an IS (Information Systems) who misuse their privileges, violating the

IS security policy of the organisation.”

2.1.3 Insider Types

As we’ve established, insider threats pose a significant risk to organisations across

various sectors [75, 76]. However, not all insider threats are created equal. To

effectively mitigate these risks, we need to explore in more detail the different

motivations and behaviours that can lead to insider breaches.

This section will explore the various types of insiders, categorised by their

intent and potential impact. By recognising these distinctions, organisations can

develop targeted security measures to address every threat. Figure 2.1 indicates

various types of insiders.

In theory, insiders can be categorised into various groups based on their lev-

els of access and authority within the organisation. There are several types of

insiders:

1. Malicious insiders

2. Contractors

3. Inadvertent insiders

4. Negligent employees

2.1.3.1 Malicious Insiders

A malicious insider threat occurs when an individual in an organisation possesses

the proper authorisation and permissions but engages in harmful activities and

thereby poses a security risk. Malicious insiders are typically disgruntled current

or former employees who intentionally misuse their access for revenge, financial

gain, or both, often after failing to have their credentials revoked [77].
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Fig. 2.1. Insider types

2.1.3.2 Contractors

Contractors pose a unique security challenge. Because their temporary pres-

ence makes managing access controls challenging, onboarding processes might be

rushed, granting contractors more access than necessary. Revoking access af-

ter the project is complete can also be lax, potentially leaving contractors with

lingering privileges. Furthermore, their lack of familiarity with internal security

procedures makes them more vulnerable to social engineering attacks. Essentially,

contractors can become unintentional security weaknesses due to the imperma-

nent nature of their work and potential gaps in security awareness.

2.1.3.3 Inadvertent Insiders

Inadvertent insiders are a hidden threat within organisations, the trusted employ-

ees who usually follow security protocols. However, their lack of complete security

awareness can create vulnerabilities. A single click on a well-crafted phishing link,

leaving a work laptop unlocked with sensitive data exposed, or unintentionally

leaking confidential information through personal email or lost USB drives - these

seemingly harmless mistakes can have serious consequences. Despite having good

intentions, inadvertent insiders remain a significant risk, potentially exposing the

organisation’s data or network to potential breaches without even realising their
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mistake.

2.1.3.4 Negligent Employees

A negligent employee unintentionally fails to meet the expected standard of care

in their work, causing issues such as errors, accidents, or data breaches. This can

stem from carelessness, a lack of knowledge, or poor decision-making, leading to

reduced productivity, financial losses, and legal troubles for the employer. Ad-

ditionally, negligent employees can be susceptible to social engineering attacks,

further compromising sensitive information, and may create a negative work en-

vironment for colleagues due to unreliable work habits.

2.1.4 Insider Threat Activities

Insider threat attacks vary depending on the organisations, how they are iden-

tified, and how they are analysed. Based on these details, insider threats are

categorised into the following types.

2.1.4.1 Information Technology (IT) Sabotage

The intentional disruption, manipulation, or destruction of an organisation’s IT

infrastructure or data characterises IT sabotage. Perpetrators achieve this using

various methods, including:

• Denial-of-service (DoS) attacks: Overwhelming a system with traffic to

render it unusable for legitimate users.

• Data deletion or manipulation: Deleting critical data files, corrupting databases,

or modifying data to cause operational problems.

• Installing malware: Introducing malicious software that can steal data, dis-

rupt operations, or provide unauthorised access to attackers.

• Turning off security controls: Intentionally bypassing or turning off security

measures to facilitate other malicious activities.
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2.1.4.2 Intellectual Property (IP) Theft

IP theft involves the unauthorised acquisition of sensitive organisational data,

such as trade secrets, product designs, customer lists, or proprietary algorithms.

Both technical and non-technical personnel can commit this theft.

• Technical personnel might exploit security vulnerabilities to access and steal

data, while non-technical personnel might pilfer physical documents or mis-

use their access privileges to copy electronic data.

2.1.4.3 Fraud

Fraud is the unauthorised manipulation of data for personal benefit. This could

involve:

• financial fraud: embezzlement, manipulating financial records, or using

stolen credentials to make unauthorised purchases.

• data manipulation: changing data to hide mistakes, create false advantages,

or sabotage projects.

2.1.4.4 Espionage

Espionage involves covert or illicit acts of spying on a company, person, or en-

tity to obtain sensitive information. This information could be used for various

purposes, such as:

• competitive advantage: spying on competitors to gain insights into their

products, strategies, or future plans.

• compromising national security: spying on governments or organisations to

obtain classified information.
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2.1.4.5 Unintentional Insider Threats

Unintentional insider threats include current or former employees, contractors,

or business partners who pose inadvertent risks due to authorised access. These

threats can arise from:

• negligence: weak cybersecurity awareness, failure to follow security proto-

cols (e.g., clicking on phishing links), or the accidental sharing of sensitive

information.

• human error: downloading malware from untrusted sources, losing laptops

or mobile devices containing sensitive data, or making configuration mis-

takes.

• disgruntled employees: individuals unhappy with the organisation might

accidentally leak sensitive information or disrupt operations out of spite.

2.1.5 Levels of Insider Threats

Insider threats can be categorised into three levels based on the severity of their

potential consequences and the harm they can inflict on an organisation.

• Low-level threats are unintentional or careless actions by authorised users.

These individuals have no malicious intent but can unknowingly compro-

mise security due to mistakes, lack of awareness, or falling victim to social

engineering attacks [78].

• Medium-level threats involve insiders with some level of malicious intent but

with limited goals. They might be disgruntled employees seeking revenge,

opportunistic individuals looking for personal gain, or those pressured by

external forces [78].

• High-level threats represent the most serious insider threat, involving indi-

viduals with significant malicious intent and the potential to cause substan-

tial damage. These could be highly skilled insiders with privileged access,

disgruntled employees with detailed knowledge of the organisation’s vulner-

abilities, or even foreign spies posing as insiders [78].
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Fig. 2.2. Insider Motivation
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Understanding these levels of insider threats can help organisations prioritise

their security measures and focus on mitigating risks based on their potential

impact.

2.1.6 Motivation for Insider Attacks

Understanding the motivations behind insider attacks is crucial for organisations

to develop effective security strategies. Figure 2.2 shows the various motivations

for the insider attacks.

1. Financial gain: This is the most common motivator. Insiders may steal

or sell sensitive data, embezzle funds, or commit fraudulent activities by

exploiting their access.

2. Revenge or retaliation: Disgruntled employees feeling wronged by the organ-

isation, often due to termination, lack of recognition, or unfair treatment,

might seek revenge by damaging systems or leaking confidential informa-

tion.

3. Espionage: Insiders can be recruited by competitors or foreign governments

to steal intellectual property, trade secrets, or classified information

4. Negligence: Perhaps the most widespread yet unintended threat, negligent

insiders simply lack awareness of security protocols or make careless mis-

takes that compromise data or systems

5. Politically-based: A desire to expose the organisation’s wrongdoings or ad-

vance a political agenda can lead to classified information leaks or damage

to the organisation’s reputation.

6. Emotion-based: Anger, frustration, or a desire for revenge against the em-

ployer can drive these insiders to leak information, sabotage systems, or

commit fraud.

7. Lack of knowledge/understanding: Security awareness is crucial. Employees

who don’t understand cyber threats might click on phishing links, share

sensitive information inadvertently, or fail to secure their devices properly.
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2.2 Literature View

Over the last decade, humans have stored and transferred several bytes of data

over the internet. According to a report by Rayaprolu, as of 2025, 463 exabytes

of data will be generated per day[79]. These data require protection from both

outsider and insider threats. These threats can seriously affect a company’s rep-

utation, financial assets, and intellectual resources. Firewalls, intrusion detection

systems, access control, authentication, physical security and data encryption

techniques control the external threats. However, threats caused by insiders are

mostly undetected. A survey report states that 68% of organisations believe they

are moderately to highly vulnerable to insider threats [80].

Insiders are often highly trained computer technicians with good internal net-

works and security control knowledge. They can circumvent conventional security

mechanisms and perform a broader range of actions than outside attackers. In-

sider threat detection is one of the biggest challenges in the cyber world. Various

techniques for dealing with insider threats are already in place, such as security

information and event management(SIEM), Data Loss Prevention (DLP), User

Activity Monitoring (UAM), and Privileged Access Management (PAM).

Insider threat detection has been researched for many years. However, the

research community could not significantly contribute to this attack because of

the scarce real-time datasets. Eventually, the increasing number of insider attacks

attracted a wide range of researchers. Recently, many techniques have been

proposed for insider threat detection. DARPA’s project ADAMS, which seeks to

find trends and anomalies in comprehensive datasets to address insider threats,

is the basis of many insider threat detection systems [81].

The complex nature of insider threats necessitates a multifaceted approach to

detection within the cybersecurity landscape. This section describes the related

work and the literature on different insider threat detection techniques.

Cybersecurity professionals categorise these detection approaches and tech-

niques into several vital strategies. When combined, these strategies enhance an

organisation’s ability to identify and respond to the diverse and evolving nature

of insider threats. On the other hand, malicious insider methods can be clas-
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sified into different categories based on the underlying methods and techniques

employed.

The malicious threat detection literature commonly employs the following

methodologies:

• behaviour-based detection methods

• graph-based detection methods

• anomaly detection methods

• learning-based insider threat detection techniques

• survey and review

• other approaches

2.2.1 Behaviour-based Detection Methods

Behavior-based detection methods analyse individual user activities to identify

deviations from established patterns, such as unusual access times, data transfers,

or system modifications. These deviations may signal malicious intent and can

be used to detect potential insider threats. This subsection discusses some of the

existing works on behaviour-based detection methods.

Yuan et al. [58] introduced a sequential method for detecting insider threats

based on user behaviour, utilising a Deep Neural Network (DNN) approach. It

leveraged the sequential nature of user actions over time by representing them

as action sequences. These sequences were then processed in the past using an

LSTM network to capture temporal dependencies and extract abstracted tempo-

ral features. Subsequently, the extracted features were fed into a Convolutional

Neural Network (CNN) classifier to categorise the behaviour as normal or ab-

normal. The sequential analysis of user actions allowed the model to capture

patterns effectively and detect anomalous behaviour within the sequences. In

the best case, the proposed approach achieved an AUC of 0.9449 on a CERT

r4.2 dataset of insider threats, indicating high accuracy in detecting anomalous

behaviour.
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In [82], the authors proposed an insider threat detection method based on

User Behaviour Analysis (UBA) to address the challenges of insider threats in

information security. The model addressed these challenges by aggregating user

behaviour data over time, characterising user attributes, and leveraging the XG-

Boost algorithm for training. It offered several key advantages: overcoming infor-

mation loss during feature extraction, addressing data imbalance, and minimis-

ing false alarms. The experiment results showcased high detection rates, with an

outstanding F-measure of 99.96%, exceeding the performance of Support Vector

Machines (SVM) and random forest algorithms.

Jiang et al. [83] proposed a novel approach for insider threat prediction, util-

ising sentiment analysis of network browsing and email content. To achieve this,

they implemented a strategy to build user sentiment profiles by monitoring in-

dicators such as web browsing habits, the presence of malicious URLs, and the

language used in emails. The system could create daily and weekly sentiment

profiles for each user by quantifying users’ negative emotions and extreme psy-

chological tendencies. Anomaly detection techniques were then used to identify

deviations from a user’s established behavioural patterns. This behaviour-based

approach focuses on proactively detecting malicious insiders based on their po-

tential attack motivations, such as feelings of revenge or dissatisfaction.

Liu et al. [84] proposed a method for detecting malicious user behaviour

using Improved Hidden Markov Models (IHMM) for log data mining. This ap-

proach involved recording user actions, analysing data, and analysing them with

IHMMs. The system could identify abnormal activities that might indicate po-

tential threats by comparing user activity sequences to established normal be-

haviour patterns. This focus on behaviour analysis underscored the importance

of dynamic monitoring for effective insider threat detection and enhanced infor-

mation security. The study also suggested exploring the integration of IHMMs

with deep learning and artificial intelligence to improve operational efficiency

further. Overall, the approach aimed to achieve the comprehensive and accurate

detection of malicious behaviour by continuously refining and leveraging user

behavioural patterns within network security.

Wang et al. [85] investigated insider threats through a data-centric approach

focused on user behaviour analysis, explicitly examining the actions of privileged
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users during data interaction (shell commands, keystrokes, mouse events). Their

system built models of normal behaviour and identified deviations that might

indicate malicious intent. Statistical learning algorithms played a key role in

anomaly detection [86]. By profiling user behaviour and intent, the approach

aimed to effectively detect insider threats and offer organisations tools to prevent

data breaches.

Nasir et al. investigated a novel approach for insider utilised detection that

utilised analyse-Autoencoder to analyse user activity data represented as multi-

variate time-series data [87]. The approach involved collecting data from various

sources, such as logon/logoff events, user roles, functional units, and departments.

The model then extracted rich features and was trained to detect anomalies that

might indicate insider threats. This deep learning technique leveraged the power

of LSTM networks, known for their effectiveness in capturing long-term dependen-

cies within sequences, particularly in natural language processing. They applied

LSTMs in an autoencoder architecture to automatically learn complex patterns

and relationships within the heterogeneous user data.

In the approach proposed by Song et al. [88], the Behavior Rhythm Insider

Threat Detection (BRITD) scheme introduced a novel method for prioritising

detection by emphasising time awareness and user adaptation. The system cap-

tured users utilising behaviour rhythm, using time information to enhance in-

sider threat detection. Employing a feature extraction method that implicitly

encoded absolute time information and adapted to behaviour rhythm, BRITD

extracted user-day behaviour rhythms tailored to each individual. Additionally,

the model outperformed standard insider threat detection models, demonstrating

heightened accuracy and precision. The experiment validation and comparisons

underscored BRITD’s advantages as a comprehensive and innovative solution for

insider threat detection in real-world cybersecurity scenarios.

2.2.2 Graph-based Approaches

Over the years, researchers have drawn on graph theory to develop methods for

detecting insider threats. These methods analyze user relationships and informa-
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tion flow to identify suspicious patterns. This subsection explores several existing

studies on methods for graph-based approaches.

Gamachchi et al. [55] proposed a graph-based framework to address malicious

insider threats. This framework represented users, systems, and their interactions

as a graph, enabling relationships and behaviour patterns analysis. Anomaly

detection techniques were employed to identify deviations from normal user be-

haviour within the graph, potentially uncovering hidden connections indicative of

malicious intent. This approach offered advantages in distinguishing legitimate

user activity from suspicious patterns.

Liu et al. proposed Log2vec, a system for detecting cyber threats within an en-

terprise network using heterogeneous graph embedding [89]. Log2vec constructs a

heterogeneous graph representing relationships between log entries, including user

actions, devices involved, and referenced files. Each log entry is then converted

into a low-dimensional vector for efficient analysis. By identifying significant de-

viations in these vector representations from normal user behaviour, Log2vec is

able to detect potential malicious activities. This approach offers advantages in

its comprehensive analysis of user interactions and the ability to function without

prior examples of cyberattacks while still allowing for the integration of expert

knowledge through predefined relationship rules.

Mishra et al. proposed LAC LSTM Autoencoder with Community (LAC) for

insider threat detection [90]. LAC utilises an autoencoder to analyse daily user

action sequences. This model is trained to reconstruct user behaviour, allowing

it to identify deviations that might indicate suspicious activity. The approach

went beyond individual analysis by incorporating user communities. By training

on interleaved activity sequences within communities, LAC considers the con-

text of user roles and expected group behaviour, potentially improving anomaly

detection.

The work in [10] addresses authorise threats, where authorised users exhibit

malicious behaviour. The framework, built on daily activities and graph analy-

sis, identifies suspicious behaviour. The proposed daily activity graph approach

tracks user actions and connects them based on interactions and potential rela-

tionships. To understand user patterns, the framework combines manually se-

lected features with those automatically extracted by an LSTM autoencoder, a

29



neural network adept at uncovering hidden patterns. Anomaly detection relies

on ResHybNet, a deep learning model that merges GNNs to analyse user-activity

connections and CNNs to extract patterns from user analysing sequences. By

analysing features and network structure, ResHybNet identifies user behaviours

deviating from established patterns, potentially indicating insider threats.

The work in [91] introduced the user action graph (UAG), a novel method

for identifying insider threats. UAG transforms user actions extracted from sys-

tem logs into a graph structure. This graph representation captures both the

order and relationships between actions, effectively encapsulating the complexity

of user behaviour across various system logs. UAG extracts two features: char-

acteristics that characterise overall user activity and local features that capture

specific patterns within the graph. Finally, a lightweight model compares a user’s

behaviour with their historical actions and those of their peers to detect anoma-

lies indicative of malicious intent. The effectiveness of UAG in insider threat

detection is confirmed through extensive experiments.

Xiao et al. [92] investigated a novel approach for insider threat detection

utilizing GNNs. This method analyzes user interactions within a network by

leveraging GNNs. Unlike traditional methods which focus on isolated user ac-

tions, GNNs captures user relationships, providing a more comprehensive picture

of user behaviour. The model is designed to resist manipulation attempts by

malicious insiders. The approach involves modelling user interactions as a graph,

with users as nodes and interactions as edges. A GNN then extracts informative

features from the graph, considering individual user activities and their connec-

tions within the network. Finally, these features are used to identify deviations

from normal user behavior patterns, potentially indicating insider threats.

2.2.3 Anomaly Detection Methods

Anomaly detection methods play a vital role in uncovering potential insider

threats by identifying unusual patterns in user activities. Subtle anomalies may

indicate attempts to bypass security controls or engage in malicious activity.

This subsection analyzes several existing studies on methods for detecting these

anomalies in the context of insider threat detection.
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Gayathri et al. [93] investigated a novel approach to insider threat detection

using adversarial training. In this approach, the researchers leveraged adversar-

ial training, a technique commonly used to improve the robustness of machine

learning models. The researchers investigated using these adversarial examples

to train the model, potentially improving its ability to identify malicious insider

activity, even when attackers attempt to disguise their actions. By incorporating

adversarial training, the research develops more robust and reliable methods for

organizations to identify insider threats.

The approach proposed in [56] focuses on detecting insider threats by mod-

elling a user’s normal behaviour. It identifies anomalies using hidden Markov

models (HMMs). The approach assumes that a user’s anomalous behaviour indi-

cates a potential insider threat. By analysing sequences of actions over time, the

model can distinguish between normal and abnormal behaviour patterns. Using

HMMs allows for learning parameters from observed sequences and predicting

the probability of observing a given sequence. This approach improves insider

threat detection by capturing deviations from the user’s normal behaviour and

detecting behaviour that might indicate a security risk.

Sharma et al. [7] proposed a novel approach for insider threat detection using

anomaly detection in user behaviour analytics. An LSTM autoencoder models

normal user behaviour by analyzing session-based user activities and extracting

feature vectors. The method prioritises deviations (reconstruction errors) from

this established pattern to improve security protocols. The model is trained

unsupervised on the CERT r4.2 dataset, achieving high accuracy and a low false

positive rate.

In [94], the authors investigated the effectiveness of combining supervised and

unsupervised learning for insider threat detection. They proposed a workflow that

analyzes various data streams, such as emails and logins, to uncover suspicious

patterns. The researchers evaluated the impact of different training approaches

on detection, finding that using 20% labelled data yielded the best results. This

study highlights the importance of optimizing training regimes for superior insider

threat detection and suggests supervised and unsupervised learning as a promising

approach to improving security measures.
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Al-Shehari et al. [95] proposed a novel, unsupervised approach for insider

threat detection using an isolation forest algorithm. This method addresses the

challenge of imbalanced datasets commonly faced in insider threat detection. The

IF algorithm iteratively isolates anomalies by splitting data based on random fea-

tures. Points that are easier to isolate are flagged as potential threats. Trained

on user behaviour data, the system learns normal patterns and identifies devi-

ations that might suggest insider activity. This approach avoids the need for

scarce labelled data and focuses on detecting unusual behaviour. The model’s

effectiveness is demonstrated on a benchmark dataset, highlighting its potential

for improved insider threat detection.

Jiang et al. proposed a method for insider threat and fraud detection us-

ing graph convolutional networks (GCNs) [96]. They constructed a graph where

nodes represent entities (users, systems) and edges represent their interactions.

GCNs are then applied to analyse the graph and learn representations for each

entity, considering its own attributes and the attributes of its connected nodes.

This approach is able to identify nodes with significantly different representations

from the norm, potentially indicating anomalous activity. The method’s advan-

tage lies in capturing network effects through relationship analysis and learning

the effective representations of entities in the network context.

2.2.4 ML & DL Approaches

Machine learning (ML) and deep learning (DL) approaches have emerged as pow-

erful tools for insider threat detection. These techniques leverage large datasets

to learn user behaviour patterns and identify anomalies indicative of potential

threats. This subsection reviews existing studies that employ ML and DL ap-

proaches for insider threat detection.

Le et al. [6] investigated the impact of user data granularity on the abil-

ity of machine learning to detect insiders. Their system analysed user activity

data at two levels, user-day and user-week. Evaluating its effectiveness against

different insider threat scenarios at each level, the system provides insights into

how granularity affects detection accuracy and speed. Importantly, it not only

detects suspicious activity but also pinpoints the specific insiders involved. This
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multi-granularity analysis achieves a balance between catching malicious acts and

minimising false positives, ultimately offering guidance for optimising machine

learning for better insider detection in organisations.

The paper by Gavai et al. identifies insider threats by analysing employee

activity data, including social media interactions, browsing history, and file ac-

cess patterns [97]. The system flags abnormal behaviours that might indicate

insider threats by extracting features from this data and applying anomaly de-

tection. Notably, the approach achieves a well-performing ROC score of 0.77.

To aid visualization, a dashboard was developed to help managers and HR per-

sonnel identify employees with high-threat risk scores, enabling timely preventive

measures to be taken. This method focuses on detecting statistically unusual be-

haviour, eliminating the need for complex baseline models of normal behaviour.

Le and Zincir-Heywood [98] tackled insider threats with a machine-learning

approach. They gathered user activity data across various sources (system logs,

network traffic, emails) and extracted features such as access times and locations

that reflect user behaviour. By training machine learning models on historical

data labeled as normal or suspicious, the system learns typical user patterns in

the network. Once trained, the model continuously monitors user activity in real

time. Any deviations from established patterns or behaviours flagged as suspi-

cious triggers alerts for investigation. This approach boasts several advantages.

Machine learning models are able to continuously learn and adapt to evolving

threats, making the system more resilient. Additionally, it scales well to han-

dle large datasets from a growing user base within an organization. Finally, the

ability of machine learning to identify subtle behavioural changes surpasses tra-

ditional rule-based systems, potentially leading to the earlier detection of insider

threats.

Bose et al. [99] tackled insider threats with RADISH, a system designed for

real-time anomaly detection. In a departure from traditional methods, RADISH

analyzes many data streams (emails, logins) concurrently. This simultaneous

analysis allows it to identify suspicious patterns in real time, potentially stop-

ping insider attacks as they unfold. To efficiently handle large data volumes,

RADISH employs distributed computing frameworks. The authors argued that

RADISH represents a significant advancement in streaming analytics and insider
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threat detection. RADISH provides a more comprehensive and timely approach

to mitigating insider threats by analysing diverse data streams simultaneously

and offering real-time analysis.

In [100], the authors investigated using semi-supervised learning to improve

insider threat detection in scenarios with limited labeled data. They proposed

a novel system that combined various semi-supervised learning algorithms and

considers different data availability situations to enhance detection capabilities.

The study explores the impact of different training approaches on the effectiveness

of this method. Key aspects examined include data pre-processing techniques,

label propagation algorithms for graph-based models, and experiment settings

that simulate real-world limitations on data availability. The analysis reveals

that using 20% labeled data yields the best detection performance, with the RF

algorithm outperforming the others.

In their paper, Bin Sarhan and Altwaijry [101] explored machine learning to

identify insider threats and individuals with authorised access who intend to steal

or damage data. The authors investigated two approaches: anomaly-based de-

tection, which analyzes deviations from typical user behaviour, and classification-

based detection, which trains a model to distinguish between normal and anoma-

lous activity. They discussed algorithms like deep learning and addressed the

challenges associated with imbalanced datasets (datasets where one class is sig-

nificantly larger than others). Building on prior research on the effectiveness of

machine learning in user and entity behaviour analytics (UEBA), the paper em-

ploys a public insider threat dataset. It achieves promising accuracy results for

both detection methods.

In [102], the authors investigated using machine learning to detect insider

threats through email analysis. They analysed emails from the TWOS dataset

containing regular user activity and simulated malicious insider actions to train

supervised machine learning models like AdaBoost and naive Bayes. The authors

preprocessed the data by removing noise and converting it into a format suitable

for the models. Their findings achieved high accuracy in identifying malicious

emails, highlighting the importance of insider threat detection and the challenge

insiders pose due to their authorised access.
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The approach proposed in [103] addresses the challenge of detecting insider

threats by introducing an online unsupervised deep learning system for struc-

tured cybersecurity data streams. The approach utilises deep neural networks

and LSTM models to learn and adapt to real-time data continuously. It identifies

anomalous user behaviour patterns that might indicate potential insider threats.

The system also prioritizes interpretability, providing analysts with clear explana-

tions for flagged anomalies. Performance evaluations against standard anomaly

detection techniques demonstrate the superiority of the DNN and LSTM mod-

els in detecting insider threats. Ultimately, the approach aims to streamline the

identification of insider threats by leveraging advanced deep-learning techniques

for efficient and effective cybersecurity monitoring.

In [104], the authors proposed a novel approach for insider threat detection

using a hierarchical neural temporal point process model. Unlike traditional

methods which focus solely on activity types or timestamps, this model considers

both aspects by combining temporal point processes and RNNs. The model’s key

feature is its hierarchical structure: a two-level architecture allows for capturing

fine-grained details (intra-session activity) and broader patterns (inter-session

behaviour) through separate LSTMs. This comprehensive information modelling

considers activity times, types, session durations, and intervals, providing a richer

picture of user behaviour. Trained on standard user activity sequences, the model

can effectively identify deviations that might indicate malicious insider actions.

Le et al. [105] proposed a user-centric approach based on four supervised ma-

chine learning algorithms. The paper explores the effect of different data granu-

larity levels on the accuracy of insider threat detection using machine learning.

The authors investigated the use of different feature sets at different levels of gran-

ularity, such as user, session, and activity levels, and evaluated their performance

using different classifiers.

A recent study proposed a novel method for insider threat detection that

combines deep learning with the Dempster-Shafer theory [106]. This approach

utilises attention-LSTM classifiers and multi-head attention mechanisms to iden-

tify anomalous network behaviour patterns in real time effectively. The experi-

ment results show that the proposed method surpasses traditional perimeter secu-

rity mechanisms in effectiveness. Future research aims to improve the method’s
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efficiency and scalability by incorporating user and content metadata, leading

to more robust defence strategies. Backed by research grants and building on

existing work in data leakage prevention and machine learning cybersecurity ap-

plications, the study presents a cutting-edge solution for insider threat detection,

paving the way for further advancements in the field.

Anju et al.[107] investigated unsupervised machine learning techniques, specif-

ically anomaly detection with deep learning, to identify insider threats within

organizations. The study detects unusual user behaviour that could indicate ma-

licious activity. They introduced novel data representations for these algorithms

and explored the effectiveness of combining different strategies to improve perfor-

mance. The paper also discusses key points such as the importance of accuracy

and precision metrics for evaluating models in insider threat detection, the use

of specific techniques like one-class classification (OCC) and SVMs for anomaly

detection, and the challenges of interpretability faced by complex deep learn-

ing models despite their power. Finally, the paper highlights the importance of

feature extraction, model description, and deep learning-based insider threat de-

tection training. Overall, the research underscores the potential of deep learning

and anomaly detection for improved insider threat detection and the need for

continuous development in this critical cybersecurity area.

Lu et al. [54] proposed a framework called Insider Catcher based on the deep

learning technique, the LSTM model, to represent the system logs structured

sequence. In [108], a deep learning model consisting of CNN and LSTM models

was proposed based on the users’ behaviours and character embeddings.

In [109], the proposed insider threat detection framework integrates statistical

and sequential analysis using three steps and four core modules. These modules

encompass log file merging, parallel processing for the statistical and sequential

analysis of user behaviours, and a decision-making module for identifying a threat

framework, which utilises CNNs and a transformer model, proving to be effective

and robust in detecting insider threats and malicious scenarios using the CERT

dataset.

A significant approach to predicting insider threats utilizes LSTM models on

system logs. Ma et al. [110]investigated the methodology, treating log data as

sequential sequences of user activities. They modelled system logs as natural
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language sequences to capture long-term dependencies and patterns. Organized

sequences are then organized into action workflows, with deviations from estab-

lished patterns, indicating potential threats. The LSTM models are trained to

detect anomalous behaviour and classify threats using the CERT insider threat

dataset. The method, which involves the sequential analysis of system logs,

is highly successful, achieving a remarkable 93% accuracy in predicting insider

threats. This success can be attributed to its ability to examine temporal re-

lationships and dependencies within the log data thoroughly. This related work

underscores the importance of leveraging LSTMmodels for effective insider threat

prediction within the cybersecurity domain.

2.2.5 Survey and Review

This section presents a comprehensive review of the existing literature on insider

threat detection methods to establish a strong foundation for the research pre-

sented later. It summarizes the key findings, limitations, and research trends in

insider threats.

The survey conducted in [57] investigated the dangers of authorized users

within organizations turning malicious. These insider threats pose a significant

risk to sensitive data and systems. To mitigate these threats, the survey proposed

a layered approach. The first layer focuses on detection through techniques like

user behaviour monitoring, anomaly detection, and network traffic analysis to

identify suspicious activity. Deviations from regular user patterns, such as un-

usual access attempts or data transfers, might indicate malicious intent. Early

identification allows organizations to prevent further damage. The second layer

emphasizes prevention through access controls. Organizations follow the princi-

ple of least privilege, only granting users the access level necessary for them to

perform their job. Additionally, data encryption safeguards sensitive information

even if unauthorized individuals access it. Finally, security awareness training

programs educate employees about cybersecurity best practices and the potential

consequences of insider threats. This layered approach offers a comprehensive

strategy for organizations to combat insider threats.
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Sabir et al. [111] investigated ML to combat data exfiltration, where attack-

ers steal sensitive information. Analyzing 92 research papers, they identified two

main ML approaches: data-driven (focusing on the content being transferred)

and behaviour-driven (analysing how data is accessed/transferred). Feature en-

gineering trains the ML models by selecting relevant data points, such as user

behaviour or transfer patterns. The study explores how researchers assess these

models’ effectiveness using simulated data, real-world datasets, and various met-

rics. Finally, the researchers recommended future research directions, such as

combining these approaches, developing better evaluation methods, and making

ML models more resistant to attacker manipulation. This research highlights the

potential of ML as a powerful weapon in the fight against data exfiltration.

Audit data encompasses the documented computer-related activities performed

within an organization. Organization administrators closely monitor these records

to formulate strategies for mitigating potential insider threats. Traditional ap-

proaches to user profiling-based detection rely on three primary categories of

audit data sources: host, network, and contextual [112].

Alsowail and Al-Shehari’s study [113] tackled insider threats, where autho-

rized users act maliciously. They proposed a layered prevention approach. The

base is formed by robust access controls with minimum privileges (enforced by

RBAC). DLP tools monitor and restrict data transfer, hindering exfiltration.

UAM systems track user actions to detect suspicious behaviour. Beyond tech-

nical measures, security awareness training educates employees to identify and

report suspicious activity. Finally, a well-defined incident response plan ensures

a swift and effective response to contain damage and investigate the incident.

This combination of preventative measures helps organizations significantly re-

duce the risk of insider threats.

Homoliak et al. [114] conducted a critical survey of insider threats in IT

systems, a pressing security concern where authorized users pose a significant

risk. Their work is a comprehensive resource, examining the issue from various

angles. The survey explores different taxonomies for classifying insider threats

that consider motivations and methods. Additionally, the paper examines the

analysis techniques used to identify and assess these threats, exploring techniques

like user behavior analytics and anomaly detection in detail. Furthermore, the
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survey delves into methods for modelling insider behaviour. These models predict

potential threats by analyzing user activity patterns. Finally, the paper explores

various countermeasures organizations can implement to mitigate insider threats.

These countermeasures include stricter access controls, employee monitoring, and

security awareness training.

2.2.6 Other Approaches

Yuan et al. [115] proposed an attention-based LSTM model for more effective

insider threat detection. Traditional methods miss subtle anomalies in user be-

haviour. This approach addresses this by leveraging LSTMs which are adept at

capturing long-term patterns in sequential user actions. The model further in-

corporates an attention mechanism to prioritize the most relevant parts of these

actions, focusing on those indicative of potential threats. This ability to capture

long-term patterns and focus on crucial actions could better improve accuracy

compared to traditional methods.

Rashid et al. [56] employed HMMs to model users’ weekly activity sequences

and identify potential insider assaults from small variations in weekly user activi-

ties, as indicated by HMM probabilities (of user sequences) below a predetermined

threshold.

Yilmaz and Can [116] explored the potential of artificial intelligence (AI)

for improved insider threat detection. Traditional methods often struggle with

complex or evolving threats. The paper highlights AI’s ability to analyze vast

amounts of user data (network activity, logs, emails) to identify subtle anomalies

and patterns in user behaviour that might indicate malicious intent. AI mod-

els can even be trained for predictive analytics. This approach offers potential

benefits such as improved accuracy, proactive threat identification, and reduced

reliance on manual analysis by security professionals. The paper delves into dif-

ferent AI techniques suitable for insider threat detection tasks, along with the

challenges and limitations.

Brdiczka et al. [117] investigated a proactive approach for insider threat detec-

tion that combines social network analysis and psychology. To identify potential
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threats before they cause harm, the approach utilizes structural anomaly detec-

tion (SA) to find unusual patterns in user interactions and information networks.

Psychological profiling (PP) is also used to build dynamic user profiles based

on the five-factor personality model to identify deviations from established be-

havioural patterns. This combination of social network analysis and individual

behavioural assessment offers a more comprehensive approach to insider threat

detection with the potential for proactive risk identification.

The NIST Model for Role-Based Access Control (RBAC) addresses the his-

torical lack of a unified standard in access control [118]. It incorporates con-

cepts from existing models, commercial products, and research prototypes. This

approach establishes a foundational standard and categorizes RBAC into four

levels with progressively more advanced features (offering greater granularity of

control). The model acknowledges traditional group-based access control by em-

phasizing flexible user assignment. While emphasizing a foundation built on areas

of consensus within the RBAC community, it also recognizes aspects that require

further standardization. Various applications have since been implemented using

RBAC methods [45, 46, 47].

The work in [119] addresses the challenge of balancing privacy requirements

with the utility of threat detection systems. The authors proposed a risk-based

approach to access control, where each access request is evaluated based on its

potential privacy risk and the user’s trustworthiness. When the privacy risk

exceeds a threshold, adaptive adjustments such as data obfuscation or enforceable

obligations are applied. This framework effectively balances privacy needs with

utility requirements and is implemented in an industrial threat detection solution.

Overall, it provides a dynamic and context-aware approach to access control,

making it well-suited for threat detection systems.

2.3 Summary

Chapter 2 sets the stage for the primary research. It defines insider threats,

explores their types and detection challenges, and examines the motivations and

activities of malicious insiders 2.1. The chapter then reviews existing methods
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for insider threat detection 2.2, highlighting their key findings and limitations.

Existing methods often struggle with two main issues: imbalanced datasets, where

malicious activities are rare compared to normal behaviour, and limitations in

capturing the sequential nature of user actions. This can lead to missing subtle

anomalies indicative of threats. By establishing this context and highlighting the

limitations of current methods, the background and related work chapter paves

the way for the main research and its potential contribution.
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Chapter 3

Classic Learning Algorithms and

Datasets

This chapter describes the classical learning algorithms and datasets employed

in the thesis. The chapter encompasses machine learning and deep learning al-

gorithms, which play pivotal roles in subsequent chapters which focus on in-

sider threat detection and prediction. These algorithms form the foundation for

comprehensive analyses, enabling the identification and anticipation of insider

threats. Furthermore, we delve into the nuances of their application and effec-

tiveness within cybersecurity, providing a thorough understanding for the reader.

Firstly, we summarize the machine learning algorithms followed by deep learning

algorithms and the datasets.

3.1 Learning Algorithms

In relation to machine learning, this section unveils a comprehensive exploration

of algorithms essential to our insider threat detection and prediction thesis. These

machine learning algorithms serve as the cornerstone for rigorous analyses, offer-

ing a nuanced understanding of their application to cybersecurity. In subsequent

sections, we delve into the intricacies of these algorithms, unravelling their func-

tionalities and impact on enhancing cybersecurity measures.
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3.1.1 RF

Random forest (RF), categorized as an ensemble learning method, combines mul-

tiple models, primarily decision trees, to enhance overall performance [120]. De-

cision trees, fundamental in supervised learning, serve dual purposes for classifi-

cation and regression tasks. Operating through recursive data splitting based on

input feature values, decision trees refine subsets until each contains a singular

class (for classification) or a solitary value (for regression) [121].

Random forest is a popular machine-learning algorithm that uses an ensemble

of decision trees to make predictions. The algorithm constructs multiple decision

trees by randomly selecting a subset of features and a subset of observations to

train each tree. Such a methodology aids in mitigating overfitting and enhancing

generalization performance. The final prediction is made by aggregating the

predictions of all the individual trees. For regression tasks, the final prediction

is typically the average of the predictions from all the individual trees in the

forest. For classification tasks, the final prediction is based on the majority class

predicted by the individual trees [122, 123].

The random forest algorithm is a powerful machine learning method that can

handle high-dimensional data and nonlinear relationships between variables. It is

known for its accuracy, robustness, and ability to handle missing data. The algo-

rithm also provides variable importance measures, which can be used to identify

the most important features for making predictions. The random forest algo-

rithm is a versatile and effective machine-learning method that can be applied to

various prediction problems.

The equation for a random forest is an aggregation of the predictions from

individual trees. For regression tasks, the final prediction is the average of the

predictions from all the individual trees in the forest. Mathematically, this can

be represented as:

Ŷ =
1

N

N∑
i=1

fi(X) (3.1)

where Ŷ is the predicted value, N is the number of trees in the forest, fi(X)

is the prediction of the ith tree for input X.
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For classification tasks, the final prediction is based on the majority class

predicted by the individual trees.

3.1.2 XGB

Extreme Gradient Boosting (XGBoost) has emerged as a leading machine learn-

ing framework due to its scalability, efficiency, and effectiveness in handling large-

scale datasets. It consistently achieves state-of-the-art results in diverse machine

learning challenges [124]. Its remarkable scalability is a standout feature, run-

ning more than ten times faster than existing solutions on a single machine and

effortlessly scaling to handle vast datasets in distributed or memory-limited set-

tings. Innovative systems and algorithmic enhancements underpin the scalabil-

ity. These include a specialized tree learning algorithm for sparse data, a the-

oretically justified weighted quantile sketch procedure accommodating instance

weights in approximate tree learning, and efficient parallel and distributed com-

puting, streamlining the learning process for quicker model exploration.

In supervised learning, XGBoost excels in regression and classification tasks,

offering a versatile solution for predicting target variables based on input fea-

tures. Trained on labeled datasets where the target variable is known for each

example, the algorithm optimizes a loss function to learn the intricate mapping

from input features to the target variable. Once trained, the model proves adept

at predicting target variables for new, unseen examples. Its widespread adoption

in supervised learning scenarios is driven by its exceptional scalability, speed, and

accuracy. XGBoost’s success extends across various applications, ranging from

store sales prediction to ad click-through rate prediction, as validated by its con-

sistent dominance in machine learning competitions, where it often outperforms

competitors and holds its ground against ensemble methods[125].

3.1.3 DT

Decision Trees (DT) are fundamental in machine learning and data mining, pro-

viding a hierarchical representation of decision-making processes. They are used

for classification and predictive modeling, where the data is recursively split into
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subsets based on attribute values to make decisions about class labels. This hier-

archical structure consists of nodes representing decision points and connections

representing possible outcomes, allowing for an intuitive and interpretable model.

Decision trees are versatile, capable of handling both categorical and numerical

data, and are known for their ease of use and ability to handle noisy or missing

data [126, 127].

However, decision trees are susceptible to overfitting, where the model fits

the training data too closely and performs poorly on new data. Techniques such

as pruning and ensemble methods have been developed to improve their gener-

alization performance. Despite this limitation, decision trees remain a powerful

and widely used tool in various fields, providing valuable insights and practical

solutions for classification and predictive modeling tasks. The goal is to create a

model that predicts the class of a new instance by traversing the tree from the

root to a leaf node [128].

3.1.4 GNB

The Gaussian naive bayes (GNB) algorithm is a supervised learning method de-

signed explicitly for classification tasks. It is a popular classification algorithm

grounded in Bayes’ theorem, operating under the assumption that features are

conditionally independent given the class. The algorithm calculates the proba-

bility of a data point belonging to a particular class based on the distribution

of features in that class. It assigns the class label with the highest probability.

Additionally, it calculates the probabilities of each attribute belonging to each

class and uses these probabilities to make predictions. It assumes that the proba-

bility of each attribute belonging to a given class value is independent of all other

attributes. It is particularly well-suited for situations where the attributes follow

a Gaussian (normal) distribution [129, 130, 131].

One of the key advantages of the GNB algorithm is its simplicity and efficiency,

especially for high-dimensional data. It requires a small amount of training data

to estimate the parameters necessary for classification, making it particularly

useful when available training data is limited. The GNB algorithm’s ability to
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handle continuous data and its efficiency in training and classification makes it a

valuable tool in various real-world applications.

P (M |N) =
P (N |M) · P (M)

P (N)
(3.2)

Equation 3.2 represents the conditional probability of event M given event N .

In the context of GNB, this equation is used to calculate the probability of a class

value (M) given the observed attribute values (N). Here, P (N |M) represents

the conditional probability of the observed attribute values given the class value,

P (M) is the prior probability of the class value, and P (N) is the probability of

the observed attribute values. By calculating this conditional probability for each

class, GNB selects the class with the highest probability as the predicted class

for the given attribute values[132].

3.1.5 KNN

K-Nearest Neighbors (KNN) is a versatile machine-learning algorithm for clas-

sification and regression tasks. It operates on the principle of proximity, where

the prediction for a new data point is based on the majority label or value of

its K-nearest neighbors in the feature space. KNN is non-parametric, meaning

it does not assume any specific form for the underlying data distribution, mak-

ing it suitable for various applications. It is particularly effective for small to

medium-sized datasets and can handle numerical and categorical data.

One of the strengths of KNN is its simplicity and ease of implementation. It

does not require training or model fitting, making it a straightforward choice for

the quick prototyping and exploration of datasets. However, KNN’s performance

can be impacted by the curse of dimensionality, especially in high-dimensional fea-

ture spaces, and it may be computationally expensive for large datasets. Various

KNN variants, such as distance-weighted KNN and semi-supervised KNN, have

been developed to address these challenges, aiming to enhance the algorithm’s

efficiency and accuracy in different scenarios [133, 134].
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3.1.6 QDA

Quadratic discriminant analysis (QDA) is a classification algorithm used in ma-

chine learning and statistics to classify data into multiple classes based on their

features. QDA is a supervised learning method requiring labeled training data to

learn the relationships between features and classes. QDA aims to find a decision

boundary that best separates the classes in the feature space [135].

In QDA, it is assumed that the data for each class follows a multivariate

normal (Gaussian) distribution. It also implies that the features of each class

are assumed to be normally distributed and that the covariance matrix can dif-

fer between classes. The decision boundary is determined by fitting a quadratic

surface to the data, allowing for more complex decision boundaries compared to

linear classifiers such as linear discriminant analysis (LDA). The essential com-

ponents of QDA include the mean vector and the covariance matrix for each

class. The mean vector represents the average value of each feature for a given

class, while the covariance matrix describes the spread and relationships between

the features within each class. These parameters are estimated using maximum

likelihood estimation or Bayesian estimation from the training data.

To classify a new data point, QDA calculates the probability of the data point

belonging to each class based on the class-specific multivariate normal distribu-

tions. The decision rule assigns the data point to the class with the highest

probability.

The equation gives the probability density function (PDF) of the multivariate

normal distribution:

f(x|µ,Σ) = 1

(2π)p/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (3.3)

where - x represents the feature vector, - µ is the mean vector, - Σ is the

covariance matrix, - p is the number of dimensions.

The decision boundary in QDA is determined by fitting a quadratic surface

to the data. It can be expressed as the following quadratic equation:

xTAx+BTx+ C = 0 (3.4)
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where - A is a symmetric matrix of coefficients, - B is a vector of coefficients, -

C is a constant.

To classify a new data point, QDA calculates the probability of the data point

belonging to each class based on the class-specific multivariate normal distribu-

tions. The decision rule assigns the data point to the class with the highest

probability, which can be expressed using Bayes’ theorem and the PDF of the

multivariate normal distribution.

The classification rule for QDA can be expressed as:

ŷ = arg max
k∈{1,2,...,K}

{
log πk −

1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk)

}
(3.5)

where

− ŷ is the predicted class label,

− πk is the prior probability of class k,

− µk is the mean vector for class k,

− Σk is the covariance matrix for class k,

− x is the feature vector of the new data point.

QDA has several advantages over linear classifiers such as LDA, including its

ability to handle non-linear decision boundaries and its flexibility in modeling

the relationships between features and classes. However, QDA requires more

parameters to estimate compared to LDA, which can lead to overfitting when the

number of features is large relative to the number of training samples[136].

3.1.7 AdB

AdaBoost (AdB), introduced in 1995 by Freund and Schapire, is a popular ensem-

ble learning algorithm that combines the predictions of multiple weak classifiers

to create a robust classifier. The algorithm is designed to iteratively train a se-

quence of weak classifiers on weighted versions of the training data, where the
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weights are adjusted at each iteration to focus on the examples misclassified in

the previous iterations. By giving more emphasis to the problematic examples,

AdaBoost aims to improve the overall performance of the ensemble [137, 138].

The fundamental idea behind AdaBoost is to minimize the exponential loss

function, which is defined as follows:

L(y, F (x)) = exp(−y · F (x)) (3.6)

where y is the true label of the example x and F (x) is the weighted sum of

the weak classifiers’ predictions on x.

The AdaBoost algorithm determines the weights of the weak classifiers during

training.

The algorithm starts by assigning equal weights to all training examples and

then trains a weak classifier on this weighted data, such as a decision stump.

After each iteration, it increases the weights of the misclassified examples while

decreasing the weights of the correctly classified examples. Subsequent weak clas-

sifiers then train on the updated weighted data, with each classifier focusing on

the examples that were previously misclassified. The final robust classifier is con-

structed by combining the individual weak classifiers based on their performance,

with more accurate classifiers being given higher influence in the ensemble. The

equation for the final classifier is:

H(x) = sign(F (x)) (3.7)

where sign is the sign function and F (x) is the weighted sum of the weak

classifiers’ predictions on x.

One of the strengths of AdaBoost is its ability to adapt to complex decision

boundaries and handle noisy data. AdaBoost can effectively learn from difficult

instances and improve its generalization performance by focusing on the chal-

lenging examples to classify. AdaBoost is less prone to overfitting than other

machine learning algorithms, making it suitable for various applications. How-

ever, AdaBoost is sensitive to outliers and noisy data, as it may excessively focus

on misclassified examples, leading to decreased performance. Furthermore, the

algorithm’s performance can be affected by the choice of weak classifiers and the

quality of the training data.
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3.1.8 MLP

The multilayer perceptron (MLP) is a fundamental type of artificial neural net-

work (ANN) that has gained widespread popularity due to its ability to learn

and model complex relationships in data [139]. It is a feedforward neural net-

work (FNN), meaning that the flow of information moves in one direction, from

the input layer through one or more hidden layers to the output layer. Intercon-

nected nodes, or neurons, comprise each layer, and the training process adjusts the

weights associated with the connections between neurons. The MLP’s versatility

allows it to apply to various tasks, including pattern recognition, classification,

regression, and function approximation [129, 140].

The structure of an MLP typically includes an input layer, one or more hidden

layers, and an output layer. The input layer receives the initial data, which is

then processed through the hidden layers, and the output layer produces the final

result. Neurons in the MLP use activation functions to introduce non-linearity

into the network, allowing it to learn and model complex relationships in the data.

Common activation functions include the sigmoid function for hidden layers and

the softmax function for the output layer in classification problems.

In training an MLP, one adjusts the weights and biases of the network to

minimize the difference between the predicted and actual output. Typically,

achieving this involves employing the backpropagation algorithm, a supervised

learning method. The network iteratively adjusts its weights and biases during

training based on the error between the predicted and actual output. The back-

propagation algorithm calculates the error gradient to the network’s weights and

biases. It uses this information to update the network parameters in a direction

that minimizes the error [141, 142].

In an MLP, the learning process entails iteratively optimizing the network’s

parameters to minimize a predefined loss function, such as the mean squared error

for regression tasks or the cross-entropy loss for classification tasks. Typically,

gradient-based optimization algorithms like stochastic gradient descent (SGD) or

its variants are employed for this optimization, adjusting the weights and biases

in the direction that reduces the error.
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The equations used in training MLP are fundamental to its learning process.

During training, the backpropagation algorithm is employed to adjust the weights

and biases of the network based on the error between the predicted and actual

outputs.

The weight update equation for a connection between neuron k in layer l-1

and neuron j in layer l is given by:

∆wl
jk = −η · δlj · y

(l−1)
k + α ·∆wl

jk (3.8)

• ∆wl
jk represents the change in weight for the connection between neuron k

in layer l − 1 and neuron j in layer l,

• η is the learning rate, which controls the step size of the weight updates,

• δlj is the error term for neuron j in layer l representing the contribution of

neuron j to the overall error,

• y
(l−1)
k is the output of neuron k in layer l − 1,

• α is the momentum term, which influences the impact of the previous weight

update on the current update.

These equations are fundamental in the iterative process of adjusting the

network’s weights and biases during training, enabling the MLP to learn and

model complex patterns and relationships in the data.

3.1.9 LR

Logistic regression (LR) is a statistical method that models the relationship be-

tween a binary outcome variable and one or more independent variables. Widely

employed in various fields, including medical research, economics, and social sci-

ences, LR is particularly valuable when the outcome of interest is dichotomous,

such as the presence/absence of a disease, success/failure of a treatment, or yes/no

responses [143, 144, 145].
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The fundamental concept of LR involves estimating the probability of the bi-

nary outcome based on a linear combination of the independent variables, trans-

formed using the logistic function. The logistic function ensures that the predicted

probabilities fall within the range of 0 to 1, making it suitable for modeling binary

outcomes. LR allows for assessing the impact of each independent variable on

the likelihood of the outcome while controlling for the effects of other variables.

One of the key advantages of LR is its ability to handle continuous and categor-

ical independent variables. LR provides insights into the direction and strength

of the relationships between the independent variables and the probability of the

outcome. Additionally, LR can be extended to include interactions and higher-

order terms, allowing complex relationships to be explored. However, LR does

have limitations. It assumes a linear relationship between the independent vari-

ables and the log-odds of the outcome, which may not always hold. Furthermore,

LR assumes that the observations are independent, which may not be the case in

clustered or correlated data.

We now delve into the logistic regression equation. The logistic regression

equation is expressed as:

P (Y = 1|X) =
1

1 + e−(b0+b1X1+b2X2+...+biXi)
(3.9)

Explanation:

• P (Y = 1|X) represents the probability of the outcome variable (Y) taking

the value 1 given the values of the independent variables (X).

• e is the base of the natural logarithm.

• b0 is the intercept, indicating the log-odds when all independent variables

are zero.

• b1, b2,. . . , bi are the coefficients associated with the independent variables

X1, X2,. . . , Xi, representing the change in the log-odds of the outcome

variable for a one-unit increase in the corresponding independent variable,

holding all other variables constant.
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This equation forms the core of logistic regression modelling. It enables the es-

timation of the binary outcome’s probability based on the independent variables’

values and their associated coefficients.

3.1.10 RNN

A recurrent neural network (RNN) is an artificial neural network for processing

sequential data. Unlike traditional FNNs that handle input data in a single pass,

RNNs excel at managing sequential information by maintaining an internal state

that captures dependencies and patterns across time. In contrast to FNNs, which

process each input independently through hidden layers without considering the

order or context of other inputs, RNNs are more effective in handling sequential

data. They are well-suited for sequential data tasks, such as time series analysis,

natural language processing, and speech recognition [146].

At the core of RNNs is the concept of recurrence, where the network’s internal

state undergoes updates at each time step based on current and past inputs. This

unique feature empowers the network to retain a memory of preceding inputs,

influencing its present output and enabling the capture of temporal dependencies

in the data. The ability to capture temporal dependencies is a key strength

of RNNs, allowing them to effectively model and analyse sequential patterns.

Centered around the processing of sequential data, RNNs distinguish themselves

from traditional FNNS. With their internal memory, RNNs maintain a state that

encapsulates information about previous inputs, facilitating dynamic temporal

behaviour. The recurrent nature of RNNs makes them particularly well-suited

for a range of tasks involving sequences, such as predicting the next word in a

sentence, generating music, or analyzing stock market trends [147].

The RNN architecture is generally built upon recurrent connections that form

a loop, allowing information to persist over time. At each time step, the network

receives an input, produces an output, and updates its internal state based on

the current and previous input. This recurrent nature enables RNNs to capture

dependencies and patterns in sequential data, making them powerful tools for

modeling and understanding time-varying phenomena.
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One of the crucial components of an RNN is the hidden state, functioning as

the network’s internal memory. At each time step, the hidden state undergoes

updates based on the current input and the previous hidden state. This process

dynamically incorporates information from past inputs, effectively encoding the

network’s memory. The recurrent updating mechanism empowers RNNs to cap-

ture long-range dependencies in sequential data, a capability distinguishing them

from traditional FNNs lacking this memory aspect. Fig 3.1 shows the architecture

of the RNN.

An RNN’s architecture typically consists of three main components: an input

layer, a hidden layer, and an output layer. However, unlike FNNs, the hidden

layer in RNNs has a feedback connection to itself, allowing the network to main-

tain a memory of previous inputs.

The architecture of an RNN can be represented as follows:

- Input layer: The input layer receives the input sequence, a sequence of words,

images, or any other type of sequential data. Each element in the sequence is fed

into the network one at a time.

- Hidden layer: The recurrent connections are located in the hidden layer.

The hidden state at each time step is computed based on the current input and

the previous hidden state. This allows the network to maintain a memory of

previous inputs and capture temporal dependencies in the sequence.

- Output layer: The output layer produces the output sequence, a sequence of

predicted words, images, or any other sequential data type. The output at each

time step is computed based on the current hidden state.

RNNs can be represented using the following equations:

The hidden state at time step t:

ht = f(Whhht−1 +Wxhxt + bh) (3.10)

The output at time step t:

yt = g(Whyht + by) (3.11)

where

-ht is the hidden state at time step t
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Fig. 3.1. RNN Architecture

-f is the activation function for the hidden state

-Whh is the weight matrix for the hidden state

-ht−1 is the hidden state at the previous time step

-Wxh is the weight matrix for the input

-xt is the input at time step t

-bh is the bias for the hidden state

-yt is the output at time step t

-g is the activation function for the output

-Why is the weight matrix for the output

-by is the bias for the output

These equations describe RNNs’ recurrent nature, where the hidden state at

each time step depends on the current input and the previous hidden state. This

allows RNNs to capture temporal dependencies in sequential data.

3.1.11 SVM

Support vector machines (SVMs) are powerful supervised machine learning algo-

rithms that excel in classification and regression tasks. They work by finding an
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optimal hyperplane in the feature space, essentially a multidimensional dividing

line separating different classes [148]. The core principle maximises the mar-

gin—the distance between the hyperplane and the closest data points (support

vectors) from each class. A wider margin translates to a more robust separation,

leading to better performance on unseen data.

One key strength of SVMs is their ability to handle high-dimensional data

efficiently. Even when the number of features (characteristics) exceeds the number

of samples (data points), SVMs can still deliver accurate and generalizable results.

This makes them well-suited for tasks involving complex and multifaceted data,

such as bioinformatics, image recognition, and text classification.

SVMs can handle both linear and nonlinear classification problems. Linear

SVMs use a straight line as the decision boundary. In contrast, nonlinear SVMs

employ a kernel function to map the data into a higher-dimensional space where

a linear boundary can be found. This flexibility allows SVMs to tackle complex

decision boundaries and capture intricate patterns in the data.

Training an SVM model involves finding the optimal parameters (weights and

bias) that define the hyperplane. This optimization process balances minimiz-

ing classification errors with maintaining model complexity to avoid overfitting

(failing to generalize to new data). Regularization techniques are often used to

prevent this.

Feature selection is crucial in SVMs, and the importance of each feature is

reflected in its weight. By focusing on informative features, SVMs can improve

classification accuracy and efficiency. Additionally, SVMs are robust to outliers,

as the decision boundary is primarily determined by the support vectors closest to

the hyperplane. By excelling in high dimensions and offering linear and non-linear

solutions, SVMs solidify their place as powerful tools for diverse machine-learning

challenges.

3.1.12 LSTM

RNNs are powerful tools for handling sequential data, where information like sen-

tences or stock prices unfolds over time. However, their ability to remember past

information diminishes as they process longer sequences. This fading memory,

56



known as the vanishing gradient problem, hinders their ability to learn long-term

dependencies. For example, when trying to predict the next word in a sentence,

it may be necessary to recall a word mentioned much earlier to make an accurate

guess [149].

LSTM networks (LSTMs) address this limitation head-on. Unlike RNNs,

LSTMs boast a sophisticated memory mechanism that excels at handling se-

quences of varying lengths. This makes them particularly well-suited for tasks

like network traffic analysis, where data packets arrive at different times and can

be of different sizes.

The key to LSTMs’ success lies in special ”gates” that act like memory filters.

These gates control the flow of information, allowing LSTMs to remember or for-

get crucial details from past data points selectively. In network traffic analysis,

for example, the gates would focus on relevant information within each packet.

This selective memory empowers LSTMs to identify complex patterns and rela-

tionships within sequential data, even when the order and timing of elements are

critical.

By overcoming the vanishing gradient problem, LSTMs have become power-

ful tools for various tasks that require remembering information over extended

periods. This improvement marks a significant advancement in RNN technology.

But LSTMs offer more than just superior memory. They are adept at handling

noise and inconsistencies often present in real-world data. Additionally, LSTMs

can effectively process complex data representations where information is spread

across multiple elements, a crucial capability for tasks like natural language pro-

cessing. Unlike RNNs, which are limited to discrete categories, LSTMs can also

excel at handling continuous values. Finally, LSTMs don’t require a pre-defined

number of states like Hidden Markov Models (HMMs), allowing them to learn

from past data more flexibly. LSTMs also offer a wider range of parameters for

fine-tuning, providing greater control over model behaviour.

An LSTM unit, the core building block of LSTMs, can be considered a smart

memory cell. Four interconnected layers work together to manage information

flow and memory. Unlike regular neural network layers, these layers have full

connections, meaning every neuron is linked to all others in the layer. Figure 3.2

represents the single LSTM cell [150].
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Fig. 3.2. Structure of LSTM Cell

Cell State (Ct): This acts like the LSTM’s central memory, a long-term storage

unit that can retain information for extended periods across sequences. At each

time step, the cell state can be updated with new data, cleared of old information,

or accessed for use.

Hidden State (ht): This layer intermediates between the cell state (storage)

and the external world. It retrieves information from the cell state, remembering

or forgetting details as needed based on the forget and input gate outputs. The

hidden state ultimately produces the final output at each time step.

Input Gate (it): This gate controls the flow of new information entering the cell

state. Imagine it as a security checkpoint deciding whether to allow incoming data

based on relevance. The input gate can selectively accept or reject information

based on the current input (Xt) and the previous hidden state ht−1.

Forget Gate (f t): This gate acts like a clean-up crew, sifting through the

information stored in the cell state ct−1 from the previous time step. It decides

what information to keep and what to discard. This allows the LSTM to forget

irrelevant details and free up space for important information.

Output Gate (ot): This gate functions like a product selection gate at the

LSTM’s exit. It controls what information from the cell state ct is ultimately
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released as the output ht. Based on the current input (Xt) and the previous

hidden state ht−1, it decides which parts of the stored information are most

valuable for the external world.

The following equations represent the core calculations within an LSTM unit

at each time step (t). They control the flow of information through gates and

update the cell state, ultimately influencing the hidden state output.

ft = σ(Wf · [xt, ht−1, ct−1] + bf ) (3.12)

Equation 3.12 calculates the forget gate’s activation value ft at time t. It uses

a sigmoid function (σ) to determine how much information to forget from the

previous cell state (ct−1) based on the current input (xt) and the previous hidden

state (ht−1).

it = σ(Wi · [xt, ht−1, ct−1] + bi) (3.13)

Equation 3.13 calculates the input gate’s activation value it at time t. Similar

to the forget gate, it uses a sigmoid function (σ) to decide how much of the new

information from the current input (xt) is allowed to enter the cell state (ct),

considering the context provided by the previous hidden state (ht−1).

C ′
t = tanh(Wc · [xt, ht−1] + bc) (3.14)

Equation 3.14 calculates the candidate memory (C ′
t) at time t. It represents

the potential new information that could be added to the cell state. The hyper-

bolic tangent function (tanh) captures the range of this information between -1

and 1. The weight matrix (Wc) and bias vector (bc) determine how the current

input (xt) and previous hidden state (ht−1) contribute to this candidate memory.

ct = ft ⊙ ct−1 + it ⊙ C ′
t (3.15)

Equation 3.15 updates the cell state (ct) at time t by combining information

from the forget gate (ft), the input gate (it), the previous cell state (ct−1), and

the candidate memory (C ′
t). Element-wise multiplication (⊙) allows the forget

and input gate values to selectively influence the information retained from the

past and the new information added.
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ot = σ(Wo · [xt, ht−1, ct] + bo) (3.16)

Equation 3.16 calculates the activation value (ot) of the output gate at time

t. It uses a sigmoid function (σ) to determine how much information from the

current cell state (ct) is used to create the final hidden state output (ht). The

weight matrix (Wo) and bias vector (bo) influence the importance of different

elements in the current input (xt), previous hidden state (ht−1), and current cell

state (ct) for this decision.

ht = ot ⊙ tanh(ct) (3.17)

Equation 3.17 calculates the hidden state (ht) at time t. It uses the output

gate activation (ot) to control how much information from the current cell state

(ct) is passed on as the final output. The hyperbolic tangent function (tanh)

ensures the hidden state values are between -1 and 1.

LSTMs overcome the limitations of traditional RNNs by incorporating forget

gates, input gates, and output gates that control information flow within the

network. These gates allow LSTMs to learn long-term dependencies in sequences

and effectively capture temporal information. As a result, LSTMs are well-suited

for various tasks involving sequential data, such as speech recognition, machine

translation, time series forecasting, and video analysis.

3.1.13 Bi-directional LSTM

LSTM networks have revolutionized deep learning by enabling effective processing

of sequential data. However, traditional LSTMs process information only in a

forward direction, potentially missing valuable context from previous elements

in the sequence. Bidirectional LSTMs (Bi-LSTMs) have emerged as a powerful

technique that leverages information from past and future elements within a

sequence to address this limitation. This section delves into Bi-LSTMs, exploring

their architecture, advantages, and applications [151].

In LSTM, gates work together to selectively update the cell and hidden states

at each time step, enabling LSTMs to learn long-term dependencies within se-

quences. Bi-LSTMs utilise two separate LSTMs working in tandem:
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• Forward Pass: The first LSTM processes the sequence in the forward

direction (left to right), capturing context from past elements. This forward

LSTM’s hidden states are H t
f for each time step t.

• Backward Pass: The second LSTM processes the reversed sequence in the

backward direction (right to left), capturing context from future elements.

The hidden states this backward LSTM generates are H t
b for each time step

t.

A core aspect of Bi-LSTMs lies in how they combine the hidden states from

both LSTMs. A common approach is a concatenation, where the forward hidden

states H t
f and backward hidden states H t

b are joined at each time step to create

a richer representation a richer representation (Ht) of the sequence:

Ht = [H t
f , H

t
b] (3.18)

This concatenated hidden state, (Ht), incorporates information from past and

future elements, providing a more comprehensive understanding of the sequence’s

context.

By processing information bidirectionally, Bi-LSTMs offer several advantages

over standard LSTMs:

• Improved Context Capture: They can effectively capture long-term

dependencies within sequences, even when the relevant information is scat-

tered throughout the sequence (e.g., understanding pronouns based on their

antecedents).

• Enhanced Performance: In tasks where understanding the full context

is crucial, Bi-LSTMs often perform better than standard LSTMs. This is

particularly true in natural language processing (NLP) tasks like sentiment

analysis, machine translation, and speech recognition.

Bi-LSTMs can incorporate peephole connections. These connections allow the

hidden state of the previous time step to influence the current time step directly’s

forget gate, input gate, and output gate. This can improve the model’s ability
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to learn long-term dependencies by providing additional context to the gating

mechanisms.

Applications of Bi-LSTMs:

Bi-LSTMs find applications in various domains that involve processing se-

quential data:

• Sentiment Analysis: Classifying the sentiment (positive, negative, or

neutral) of text data such as reviews or social media posts.

• Machine Translation: Translating text from one language to another

while preserving meaning and context.

• Text Summarization: Generating concise summaries of lengthy docu-

ments by capturing the most important points.

• Speech Recognition: Converting spoken language into text by capturing

the sequence of sounds and their context.

• Financial Time Series Forecasting: Predicting future stock prices or

other financial metrics based on historical data by analyzing the temporal

relationships within the data.

• Video Analysis: Recognizing objects and activities within videos by pro-

cessing the sequence of frames and their visual features.

Limitations of Bi-LSTMs:

While Bi-LSTMs offer significant advantages, they also have limitations:

• Training complexity: Bi-LSTMs typically require more data compared to

standard LSTMs due to the increased number of parameters. Techniques

like dropout and careful weight initialization are crucial to prevent overfit-

ting.

• Computational cost: Training and running Bi-LSTMs can be computation-

ally expensive, especially with deeper architectures.
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Table 3.1: Datasets for insider threat detection

Dataset Threat types Description

RUU [152] (2009) Masquerader 14 masqueraders and 34 normal

users

Enron [153] (2015) Traitor 500,000 emails from 150 employ-

ees

Schonlau [154] (2001)
Substituted

Masquerader
50 users’ Unix shell commands

Greenberg [155] (1988) Authentication 50 users’ Unix C shell commands

TWOS [156] (2017) Malicious 12 masqueraders users, 5 traitor

sessions, and 24 users

CERT (2013) Malicious 5 insiders and 3995 normal users

3.2 Datasets

This section details the datasets categorized into five groups based on the type

of insider activity: masquerader-based, traitor-based, malicious, substituted mas-

queraders, and authentication-based. Table 3.1 describes the insider threat datasets.

3.2.1 Masquerader-based Datasets

RUU dataset [152] consists of host-based events from 34 regular users, with the

help of 14 volunteers who act as masqueraders to look for information with a fi-

nancial value. RUU is a masquerader-based dataset. Salem and Stolfo introduced

the RUU dataset in 2009 and 2011.

Enron dataset [153] comprises 500,000 emails from 150 Enron Corporation

employees over the course of five years. It is a traitor-based dataset.

Schonlau dataset [154] comprises 50 users in a substituted masquerader

dataset. Each user produces 15,000 Unix shell commands. In a masquerade

session, random commands from unknown users are injected.
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Greenberg dataset [155] provides complete Unix C shell commands from

168 users in an authentication-based dataset. In contrast to the Schonlau dataset,

Greenberg’s dataset contains arguments and time stamps in command instances.

TWOS dataset [156] includes a variety of data, both traitors and masquer-

aders. The dataset comprises behaviours from 24 users over five days that were

gathered using a multiplayer game that simulates 12 masquerader sessions and

five traitor sessions.

CERT dataset1 is a synthetic dataset that contains system logs labeled as

involving an insider threat. The dataset contains logon, email, http, device, and

file access details.

3.2.2 TWOS Dataset

TWOS is a malicious insider threat behaviour dataset based on a gamified com-

petition. A team of researchers from the ST Electronics-SUTD Cyber Security

Laboratory at the Singapore University of Technology and Design created the

dataset. The competition’s goal was to obtain a dataset containing realistic in-

stances of insider threats, a major concern for organisations of all sizes. The

TWOS dataset is unique in that it contains data labeled as malicious that was

logged as a result of spontaneous user interactions with the workstation.

The TWOS dataset was collected over two years from 24 employees using

Microsoft Word on a Macintosh operating system. It contains 74,783 commands

corresponding to 11,334 sessions. The data was collected from several host-based

heterogeneous data sources, such as mouse, keyboard, processes, and file system.

The dataset contains a mixture of normal and malicious activities designed to

simulate real-world scenarios.

The gamified competition format was used to improve the quality of the

TWOS dataset. The competition was designed to be engaging and fun, encour-

aging participants to behave more naturally and realistically. It was divided into

several rounds, each with a different scenario. Participants were given a set of

tasks to complete, and their behaviour was monitored and logged. The scenarios

1https://kilthub.cmu.edu/articles/dataset/Insider Threat Test Dataset/12841247/1
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were designed to simulate real-world insider threats, such as stealing sensitive

data or sabotaging systems.

The TWOS dataset has several potential applications in the field of cyber-

security. It can be used to develop and test new insider threat detection and

prevention tools and techniques. The dataset can also be used to train machine

learning algorithms to detect and prevent insider threats. The TWOS dataset is

unique in that it contains data labeled as malicious and logged due to sponta-

neous user interactions with the workstation. This makes it a valuable resource

for researchers and practitioners interested in insider threats.

3.2.3 ENRON Email

The Enron email dataset is widely used in machine learning and data analysis.

It contains approximately 500,000 emails from the Enron Corporation, which

went bankrupt in 2001 due to fraudulent business practices. The Federal Energy

Regulatory Commission (FERC) initially released the dataset while investigating

the company’s practices. The Enron email dataset is considered a hallmark for

insider threats, counter-terrorism, and fraud detection research.

The Enron email dataset is a valuable resource for researchers because it

contains real-world data that can be used to test and validate machine learning

models. The dataset includes emails from various sources, including executives,

employees, and outside parties. The emails cover a time window of four years,

from 2000 to 2002, and provide a rich source of information for analysing email

contents to detect insider threat involving collaborating traitors. The Enron email

dataset has been used in numerous studies to develop and test machine learning

models for identifying insider threats.

Despite its usefulness, the Enron email dataset has some limitations. One of

the main challenges is the lack of ground truth labels for the emails. Researchers

must rely on unsupervised or semi-supervised machine learning techniques to

classify the emails. Another challenge is the sensitive nature of the data, which

contains personal and confidential information. To address these challenges, re-

searchers must take appropriate measures to ensure the privacy and security of
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the data, such as anonymising the data and obtaining appropriate permissions

for its use.

3.2.4 Other Datasets

The Computer Usage Activities Log dataset serves as a cornerstone for research

in insider threat detection. Encompassing diverse computer activities like logins,

file access, and messaging, it captures user actions in a business environment

(often collected via tools like SureView). Researchers leverage this data to iden-

tify malicious behaviours (destruction, misuse, etc.) by analyzing known insider

attack patterns. The dataset’s rich features enable user behaviour profiling and

anomaly detection, crucial for identifying potential insider threats. By studying

this data, researchers can develop and evaluate algorithms that bolster organiza-

tional security against insider attacks [97, 157]. Notably, research by Senator et

al. and Gavai et al. exemplifies that these types of datasets are used to develop

effective insider threat detection methods.

Another dataset considers attacks on relational database management systems

(RDBMS) as a major security concern due to their stealth [158]. Mathew et

al. propose a method to identify abnormal access patterns by analyzing query

semantics, a more reliable indicator than syntax. Their approach hinges on a

historical dataset of queries and their corresponding results. This data allows

them to define ”normal” access patterns based on the statistical properties of

past queries and their outcomes.

3.2.5 CERT Dataset

Data collection is an essential step in cybersecurity. Many publicly available data

sources are available to assess insider threat detection models. Although many

datasets are available, we use the CERT publicly available dataset. The CERT

dataset is “free of privacy and restriction limitations”. The insider dataset was

proposed by CERT Division, in partnership with ExactData, LLC, and under

sponsorship from DARPA I20 1. The institute provided ten unique test datasets

1https://kilthub.cmu.edu/articles/dataset/InsiderThreatTestDataset/12841247
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(r1, r2, r3.1, r3.2, r4.1, r4.2, r5.1, r5.2, r6.1, r 6.2) that include synthetic data for

regular and malicious activity. The databases, including user logs on computers,

organisational structure, and user data in a directory, simulate corporate environ-

ments. The user activity logs include logons, device activity, emails, https, files,

and psychometric scores for users. Similarly, the organizational structure and

user data directory as in the shape of the lightweight directory access protocol

(LDAP). The CERT dataset is generated to closely resemble real-world situa-

tions, reflecting the characteristics of user logs. The dataset includes a total of

five insider threat scenarios.

1. A user who has not previously used removable drives or work after hours

begins logging in after hours, using a removable drive and uploading data

to wikileaks.org. Leaves the organization shortly thereafter.

2. A user begins surfing job websites and soliciting employment from a com-

petitor. Before leaving the company, they use a thumb drive (at markedly

higher rates than their previous activity) to steal data.

3. A system administrator becomes disgruntled. Downloads a keylogger and

uses a thumb drive to transfer it to his supervisor’s machine. The next

day, he uses the collected keylogs to log in as his supervisor and sends out

an alarming mass email, causing panic in the organization. He leaves the

organization immediately.

4. A user logs into another user’s machine and searches for interesting files,

emailing these to their home email account. This behaviour occurs more

and more frequently over a 3-month period.

5. A member of a group decimated by layoffs uploads documents to Dropbox,

planning to use them for personal gain.

Multiple insider threat datasets exist, with versions denoted by release time.

The most common ones are r4.2 and r6.2. Table 3.2 summarizes their key char-

acteristics. In simpler terms, r4.2 is a ”dense” dataset containing a significant

number of insider profiles and malicious activities. In contrast, r6.2 is a ”sparse”
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Table 3.2: Comparison for CERT r4.2 and r6.2

No of

Employees
No of Insiders

No of

Activities

No of Malicious

Activities

r4.2 1000 70 32,770,227 7323

r6.2 4,000 5 135,117,169 470

dataset focusing on 5 identified insiders and activity data for 3,995 regular users

between January 2010 and June 2011. Each user record in r6.2 includes roughly

40,000 activity entries.

In this research, we have chosen the CERT r4.2 dataset due to the scarcity

of scenario instances in most datasets, where each occurred only once. Dataset

4.2, in contrast, was characterized as a ”dense needle” dataset with many cases

for each scenario, making it a valuable choice for analysis or modeling tasks

that benefit from increased scenario density. The CERT r4.2 dataset has over

20 GB of system log files of 1,000 users, 70 malicious users over 500 days, and

both normal and malicious behaviour. The dataset only has 0.03% anomalous

incidents and 99.7% normal ones. The r4.2 dataset comprises 930 normal users

and 70 malicious insiders. The dataset used in our study consists of several CSV

files, each containing specific information related to user activities and attributes.

The following are the key CSV files included in the dataset:

1. Device- This file records connecting and disconnecting external devices,

specifically USB drives. It contains the date, user, PC, activity (connec-

t/disconnect)

2. Logon- The logon file contains user login and logout times information.

The features included in the logon are the date, user, PC, and activity

(logon/logoff).

3. File- This file contains logs of user activity on files, such as opening, writing,

copying, and deleting files. The file contains features such as the date, user,

PC, filename, and content.
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4. Email- This file logs employee communication, specifically email exchanges.

The email.csv file includes features such as the date, user, PC, To, Cc, Bcc,

from, size, attachments, and content.

5. HTTP- The HTTP file captures the user’s browsing activity, including the

URLs visited. The http.csv contains date, user, PC, URL, and content

features.

6. Lightweight Directory Access Protocol (LDAP): The LDAP file contains

user information and their job roles. The LDAP file includes features such

as Employee Name, User Id, Email, Role, Business Unit, Functional Unit,

Department, Team, and Supervisor.

7. Psychometric - The psychometric file includes information on user person-

ality attributes, specifically the OCEAN model, which stands for openness,

conscientiousness, extraversion, agreeableness, and neuroticism. The file

includes features such as Employee Name, User Id, and personality traits

O (Openness), C(Conscientiousness), E (Extraversion), A (Agreeableness),

and N (Neuroticism).

3.3 Performance Metrics

Evaluating the performance of ML and DL models in insider threat detection

requires a set of comprehensive performance metrics. These metrics evaluate the

model’s capacity to discern malicious activities from typical user behaviour. This

section examines several commonly employed performance metrics for ML and

DL methodologies within this research.

3.3.1 Confusion Matrix

The confusion matrix is fundamental for understanding a classification model’s

performance [159]. It clearly shows the model’s ability to identify positive and

negative cases correctly.
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Table 3.3: Summary of CERT r4.2 dataset

Item Count

Duration 500 days

Users 1000

Scenarios 3

Logon 854,860

Device 405,381

Email 2,629,980

HTTP 28,434,424

File 445,582

Total Events 32,770,227

Total Threat Events 7,323

TP (True Positive): This refers to the number of malicious samples the

model correctly classified as malicious. In insider threat detection, these would

be the actual insider threat activities that the model successfully identified.

FN (False Negative): This represents the number of malicious samples the

model incorrectly classified as normal. These are the missed detections, where

the model failed to identify actual insider threats.

TN (True Negative): This indicates the number of normal data samples

the model correctly classified as normal. These are the true negatives, where the

model didn’t mistakenly flag normal activity as a threat.

FP (False Positive): This represents the number of normal data samples

the model incorrectly classified as malicious. These are the false alarms, where

the model identified normal activity as a potential threat.

3.3.2 Accuracy

Accuracy is a common way to measure a machine learning model’s performance,

especially in classification tasks. It essentially indicates how often the model
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Table 3.4: Confusion Matrix

Confusion Matrix
Predicted

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

makes the correct prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.19)

A higher accuracy value (closer to 100%) indicates that the model is mak-

ing many correct predictions, both in identifying insider threats and classifying

normal behaviour. However, accuracy alone can be misleading, especially in sit-

uations with imbalanced data. Therefore, accuracy should be used along with

other performance metrics that provide more nuanced insights into the model’s

strengths and weaknesses.

3.3.3 Precision

Precision is a valuable metric used in ML & DL, particularly for classification

tasks, to assess the quality of positive predictions.

Precision =
TP

TP + FP
(3.20)

A high precision score (closer to 1) indicates that the model identifies real

threats and minimises false alarms. Precision focuses on the positives (flagged

threats) and their accuracy, not the overall number of correct predictions (like

accuracy). It is a valuable metric, especially when the cost of false positives is

high. However, precision is often used in conjunction with other metrics.
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3.3.4 Recall

Recall focuses on a model’s ability to comprehensively detect positive samples,

ensuring it catches most of the actual threats present in the data.

Recall =
TP

TP + FN
(3.21)

A high recall score (closer to 1) indicates the model excels at capturing most

actual threats, minimizing missed threats.

3.3.5 F1-score

In evaluating a model’s performance for insider threat detection, it is crucial

to consider its ability to identify real threats and minimize false alarms. The

F1-score is a metric that balances these two objectives well.

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall
(3.22)

A high F1-score (near 1) indicates the model effectively balances identifying

actual threats and avoiding unnecessary alerts. When dealing with imbalanced

data, where real threats are rare compared to normal activities, the F1-score

provides a more informative performance measure than accuracy alone.

3.4 Summary

This chapter explores the critical security concern of insider threats. It defines

various types of insider threats and their activities and motivations. Additionally,

it reviews the existing literature on insider threat detection. In the detection field,

extensive research has already been conducted on behaviour-based, graph-based,

and anomaly detection techniques and more. Even though much research has

been done in this field over the past few decades, the research methods and

results are still not satisfactory. Moreover, this field can benefit significantly

from incorporating recent advancements in machine learning and deep learning,

particularly techniques like graph representation and sequential modelling.
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Chapter 4

Insider Threat Detection using

Supervised Machine Learning

Insider threats pose a constant and critical challenge to organisational security.

Unlike external attackers who attempt to breach systems, insider threats lurk

within, wielding the privileges granted for their jobs. This inherent trust and

access make them particularly dangerous. Recent years have seen a surge in

research on machine and deep learning techniques for insider threat detection.

This focus is due, in part, to the unique capabilities of insiders.

Many insider threats originate from individuals with substantial technical ex-

pertise. This allows them to exploit vulnerabilities and bypass traditional security

measures unseen [130, 131, 160]. Insiders know intimately about the organisa-

tion’s internal networks and security protocols. This knowledge gives them a

strategic advantage, allowing them to target specific assets and evade detection

[161, 162, 163, 164].

The limitations of traditional security methods in addressing insider threats

highlight the need for more sophisticated solutions. Machine learning and deep

learning methodologies have emerged as powerful tools in the cybersecurity do-

main. These techniques are not only effective in identifying insider threats but

also in predicting cyberattacks more broadly [45, 46, 47, 48, 49].
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Comparing the effectiveness of different algorithms for insider threat detec-

tion is a complex task. Existing research utilizes diverse datasets and problem

settings, making clear comparisons difficult. Furthermore, the nature of insider

threat data itself presents unique challenges. These datasets are inherently imbal-

anced, with a vast majority representing normal user activity and a tiny fraction

reflecting malicious insider actions. This imbalance significantly impacts model

performance. Traditional classification algorithms favor the majority class (nor-

mal data), decreasing the ability to detect the minority class (insider threats).

Despite these challenges, organisations increasingly use supervised machine

learning techniques for insider threat detection. These techniques offer several

advantages. Supervised learning can analyse complex patterns in employee be-

haviour, identifying potential insider threats before they escalate. Additionally,

they enable real-time monitoring, allowing organisations to adapt security mea-

sures in dynamic IT environments. To address these challenges, this chapter aims

to: (i) Evaluate and compare the performance of various supervised learning algo-

rithms within a controlled setting. (ii) analyse the impact of different imbalanced

dataset ratios on supervised learning algorithms.

The chapter is organised as follows: Section 4.1 presents the related work.

Section 4.2 employs the Methodology for detecting insider threats, and Section 4.3

outlines the details of the Experimental settings and results. Following in section

4.4 explains the discussion of the findings, and finally, Section 4.5 concludes the

chapter.

4.1 Related Work

Recognizing the inherent difficulty posed by authorized users’ access and the chal-

lenge of discerning malicious actions from legitimate ones, insider threat detection

has progressively turned to machine learning to confront the complexities arising

from malicious insiders who misuse their authorized access.

In [165], this paper contributed by proposing a user-centered approach with

supervised learning algorithms to identify new malicious insiders. The system
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analysed user activity logs and organisational structure to extract relevant fea-

tures and train classifiers. Evaluation using a public dataset demonstrated the

effectiveness of this user-centred approach with high accuracy in detecting novel

insider threats. This research aligned with existing work on insider threat detec-

tion using machine learning, but it emphasized user-centricity and limited data

scenarios.

Haq et al. [166] proposed a hybrid model combining deep learning (GLoVeL-

STM, Word2vecLSTM) and machine learning (XGBoost, AdaBoost, Random

Forest, KNN, and Logistic Regression). Their study emphasized the importance

of insider threat detection due to the high cost associated with insider attacks

compared to external threats. The research leveraged a dataset from Enron con-

taining emails and financial information for analysis. They employed pre-trained

NLP models (Word2Vec and GLoVe) for word embedding and achieved an accu-

racy of 92% using XGBoost for insider threat detection. The paper also discussed

ethical considerations, data volume, and lack of evaluation frameworks.

Le et al. [167] proposed a user-centered system that leveraged both unsuper-

vised and supervised learning approaches to assist analysts. By learning from

limited data on user behaviour, the system aimed to identify previously unseen

malicious insiders. Supervised learning helped refine detections with higher pre-

cision and lower false alarms. User feedback on alerts further improved perfor-

mance. The system prioritized user-based reporting to manage analyst workload,

considering long-term user behaviour for a comprehensive view.

Yi et al. [168] proposed an approach that leveraged unsupervised outlier scor-

ing functions to identify anomalies and hidden patterns in user data. These outlier

scores were then used to create new features, aiding in distinguishing malicious

behaviour. This method expanded on previous work by incorporating various

unsupervised outlier detection functions and utilizing XGBoost to handle imbal-

anced datasets, a common challenge in insider threat detection. Additionally,

the approach analysed outlier scores at different data granularities and employed

Principal component analysis (PCA) to prevent model overfitting.
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Fig. 4.1. Insider threat detection framework

4.2 Methodology

The evaluation in this approach encompasses eight supervised ML algorithms

using the balanced CERT r4.2 dataset. Additionally, various hyperparameters

for the KNN, RF, and AdB algorithms within this balanced dataset are explored.

Furthermore, the effectiveness of different supervised ML techniques in handling

imbalanced datasets is assessed. Specifically, these methods are evaluated under

varying degrees of class imbalance, ranging from 40% to 0.5% of insiders. Figure

4.1 outlines the approach.

The CERT r4.2 dataset comprises several CSV files, including device logs,

logon details, email activity, HTTP logs, file activity, and LDAP data. Each file

contains raw data for every user, which were combined into a master file. From

this aggregated master file, a feature set was extracted that includes both text

strings and integers. These values need to be properly encoded to be used as input

for our proposed approach. The psychometric.csv file is not selected for features,

and its ID is not included. Firstly, all the CSV files are merged to create a master

CSV file. As the dataset comprises malicious internal attacks, each malicious

event was labeled ”1”, while normal events were assigned a tag of ”0”. Each

row describes a particular event, including the user’s name, role, event ID, date,
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Table 4.1: List of features and their possible values

Features Values

Day 0-6

Time 1-24

User Id 1-1000

Role 1-42

Functional unit 1-6

Department 1-7

PC Unique number

Activity 1-7

PC ID, type of activity, specific operation details, and attribute details (such as

sender, recipient, and email content). Data cleaning removes inconsistencies like

null values and duplicates in the pre-processing stage, creating a more reliable

master file. This includes imputing missing numerical values using the estimated

mean of the relevant feature.

The selected features from various CSV files contain both string and numerical

values. However, our algorithm can only process numerical values. Therefore, the

input values, such as Day, Time, User Id, PC, User Role, User Functional Unit,

User Department, and activity features, need to be encoded properly for accurate

predictions. A feature’s presence is indicated by “1”, while its absence is indicated

by “0”. In terms of data labeling, a user-day is classified as an insider threat if

the user has carried out at least one malicious activity on that day. Each day of

the week is assigned a number from “0” for Monday to “6” for Sunday.

Logon activity is labeled as “1”, and logoff activity is denoted as “2”. Sim-

ilarly, the device connection and disconnection are labeled as “3” and “4”, re-

spectively. Email and file activities are represented by “5” and “6”, respectively.

Finally, HTTP (URL) activity is labeled as “7”. Each user has a specific position

within the organisation. Table 4.1 mentions the feature values of the dataset.
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4.2.1 Handling Imbalanced Datasets

The encoded data is imbalanced, and since it is a large dataset, the downsampling

technique is used to address the imbalanced dataset problem. In downsampling,

the number of samples is reduced by deleting some of them to achieve a balanced

dataset for training the model. The downsampling technique is employed for

various levels of class imbalance, such as 40%, 30%, 20%, 10%, 1%, and 0.5%

of insiders, to assess the effectiveness of different supervised machine learning

techniques in handling imbalanced data using standard evaluation metrics.

4.3 Experiments and Evaluation

This section presents the experimental settings and results. Initially, the balanced

CERT r4.2 dataset was employed to assess the performance of machine learning

algorithms including RF, XGBoost, KNN, GNB, DT, MLP, AdB, and QDA.

Subsequently, the hyperparameters of KNN, DT, and XGBoost were compared to

enhance performance. Finally, the performance of various imbalanced CERT r4.2

datasets with status levels of 0.5%, 1%, 10%, 20%, 30%, and 40% was evaluated.

The experiments were conducted using Python programming language and Sci-kit

learn library. All the experiments were executed on Google Colaboratory.

4.3.1 Experiments on the Balanced Dataset

This experiment compares the performance of several supervised machine learning

algorithms, including RF, XG Boost, KNN, GNB, DT, MLP, AdB, and QDA, on

the balanced CERT r 4.2 dataset. The dataset contains 32,770,227 events, includ-

ing 7,323 malicious instances. The performance of these classification algorithms

on pre-processed data is evaluated.

For the experiments, the dataset was split into a training dataset comprising

70% of the data and a test dataset containing the remaining 30%. The training

dataset was used to train the machine learning models, while the test dataset was

employed to evaluate their performance. The balanced dataset was split into a
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Table 4.2: Classifiers and their parameters

Classifier Parameters

RF n jobs = -1, n estimators=100, criterion=‘gini’,

max depth=None, random state=None

XGB n neighbors=5, metric=‘minkowski’,p=2,

max depth=3, loss=‘log loss’, learning rate=0.1

KNN n jobs=None, n neighbors=5,

p=2, metric=‘minkowski’, algorithm=‘auto’

GNB priors=None, var smoothing=1e-09

DT max depth=50, max features=None, random state

=None,max leaf nodes=None, criterion=‘gini’

MLP random state=1, max iter=300, activation=‘relu’,

solver=‘adam’, batch size=‘auto’

AdB base estimator=DT, n estimators=9,

learning rate=1.0, random state=None

QDA priors=None, reg param=0.0

70:30 ratio, resulting in a training dataset of 10,252 samples and a test dataset

of 4,394 samples.

Precisions and recalls are equally important in a balanced dataset since both

classes are equally represented. Therefore, in such cases, the F1 score becomes

a valuable metric for evaluating the overall performance of a classifier. A high

F1 score indicates that the model balances precision and recall, meaning it can

accurately identify positive and negative instances. The F1 score provides a way

to compare the performance of different models when both precision and recall

are essential.

This experiment utilised the following supervised learning classifiers and their

parameters in the balanced CERT r4.2 dataset, as illustrated in Table 4.2. The

overall performance of the test data was used in this experiment.
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Fig. 4.2. Performance of supervised learning algorithms on a balanced dataset
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Table 4.3: Classification performance comparison on a balanced dataset

Classifier Accuracy F1-score Precision Recall

RF 0.959 0.959 0.9598 0.959

XGB 0.9106 0.9103 0.916 0.9106

KNN 0.8393 0.8383 0.848 0.8393

GNB 0.5956 0.5956 0.5956 0.5956

DT 0.9506 0.9506 0.9506 0.9506

MLP 0.8209 0.8204 0.8245 0.8209

AdB 0.9554 0.9554 0.9556 0.9554

QDA 0.6475 0.6453 0.6512 0.6475

Table 4.3 presents the results of eight supervised machine learning classifiers

evaluated for insider threat detection on a balanced dataset. The RF classi-

fier achieved the highest accuracy score of 0.959, indicating that it accurately

predicted 95.9% of the data points. The F1-score, which measures the balance

between precision and recall, is also 0.959 for RF, suggesting high accuracy in

both precision and recall. The precision score of RF is 0.9598, indicating that

when it makes a positive prediction, it is correct 95.98% of the time. The recall

score of RF is 0.959, indicating that it correctly identifies 95.9% of all positive

instances. AdB also performs well, with an accuracy of 0.9554, a similar F1-score,

and recall. Meanwhile, DT achieved both accuracy and F1-score at 0.9506.

On the other hand, the GNB classifier appears to have performed the worst,

with an accuracy, F1-score, precision, and recall score of 0.5956. The QDA clas-

sifier also performed relatively poorly, with an accuracy of 0.6475 and a lower

F1-score value of 0.6453, precision, and recall scores compared to other classifiers

in Table 4.3. Overall, Figure. 4.2 shows that RF and AdB are the top-performing,

while KNN, GNB, and QDA had lower performance than the other classifiers on

the CERT r4.2 balanced dataset.
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4.3.2 Hyperparameter Impact Analysis for AdB, KNN,

and DT

This section demonstrates the results of the different hyperparameters for AdB,

KNN, and DT on the balanced CERT r4.2 dataset. This experiment utilised

the balanced dataset containing 10,252 samples for the training dataset and 4394

samples for the test dataset.

4.3.2.1 AdB Model Results

AdB is a boosting ensemble technique that turns several weak classifiers into

robust classifiers. This experiment used various values of the hyperparameter

‘n estimator’ ranging from 10 to 50 and the base estimator as DT on a balanced

CERT insider threat dataset. The accuracy measures the proportion of correctly

classified instances from the total number of instances in the dataset.

The AdB hyperparameter in Table 4.4 demonstrates that the performance of

the AdB classifier increases significantly as the number of estimators increases.

AdB 30 achieved the maximum accuracy score of 0.9609. The F1-score measures

the balance between precision and recall by taking the harmonic mean of both.

The F1-score values for the AdB classifier are consistently high, ranging from

0.9581 to 0.9609 for different values of n estimator. Figure 4.3 shows that as the

value of n estimator increases, the F1-score and precision values decrease. AdB

40 has an F1-score and recall value of 0.9602.

4.3.2.2 KNN Model Results

This experiment used a balanced CERT insider threat dataset with k n neighbours

ranging from 1 to 11 and metric=‘minkowski’, p=2 as the classifier parameters.

Table 4.4 presents the performance metrics of the KNN classifier on the dataset.

Initially, the accuracy value is 0.8682 while k=1. As the number of neighbors

increased, the accuracy values decreased from 0.8505 to 0.8211.

The F1-score values also decreased from 0.8680 for KNN1 to 0.8196 for KNN11.

The precision values show a similar trend, with KNN1 having the highest preci-

sion value of 0.8713 and KNN11 having the lowest precision value of 0.8322. On
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Table 4.4: Performance comparison with different hyperparameters

Classifier Accuracy F1-score Precision Recall

AdB hyperparameters

AdB10 0.9581 0.9581 0.9581 0.9581

AdB20 0.959 0.959 0.9591 0.959

AdB30 0.9609 0.9609 0.961 0.9609

AdB40 0.9602 0.9602 0.9602 0.9602

AdB50 0.9593 0.9593 0.9593 0.9593

KNN hyperparameters

KNN1 0.8682 0.8680 0.8713 0.8682

KNN3 0.8505 0.8498 0.8566 0.8505

KNN5 0.8391 0.8381 0.8478 0.8391

KNN7 0.8336 0.8324 0.8439 0.8336

KNN9 0.8289 0.8275 0.8399 0.8289

KNN11 0.8211 0.8196 0.8322 0.8211

DT hyperparameters

DT5 0.7745 0.7699 0.798 0.7745

DT10 0.9176 0.9173 0.9235 0.9176

DT20 0.9529 0.9529 0.9529 0.9529

DT30 0.9504 0.9504 0.9504 0.9504

DT40 0.9506 0.9506 0.9506 0.9506
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Fig. 4.3. Performance comparison of AdB with different hyperparameters

the other hand, recall values are relatively consistent across all classifiers, with

KNN1 having the highest value of 0.8682 and KNN11 having the lowest value

of 0.8211. As the number of k increases, the accuracy, F1-score, precision, and

recall decrease. The results in Figure 4.4 show that the performance decreases

when k=11 with an accuracy of 0.8211, F1-score of 0.8196, and recall of 0.8211.

4.3.2.3 DT Model Results

Table 4.4 provides the performance evaluation of the DT classifier using vari-

ous maximum depths ranging from 5 to 40. The hyperparameters represent the

decision tree’s maximum depth, which determines the model’s level of complexity.

Table 4.4 reveals that the decision tree with a maximum depth of 20 achieved

the highest F1-score of 0.9529, indicating good overall performance. In contrast,

the decision tree with a maximum depth of 5 had a significantly lower F1-score

of 0.7699. The F1 scores for the decision trees with maximum depths of 10, 30,

and 40 were all around 0.95, indicating that the performance of these models is

not significantly different
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Fig. 4.4. Performance comparison of KNN with different hyperparameters

Fig. 4.5. Performance comparison of DT with different hyperparameters
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The models’ accuracy scores, ranging from 0.7745 for DT5 to 0.9529 for DT20

and DT30, indicate they are effective at classifying the data points.

All models have high precision, indicating that they effectively recognize pos-

itive events. As shown in Figure 4.5, the DT10 model correctly predicted 92.35%

of all occurrences to be positive, with a precision of 0.9235. Regarding recall, all

hyperparameters perform equally well, scoring 0.9504 or 0.9506. DT20 performs

well in accuracy, precision, recall, and F1 score.

4.3.3 Experiments on Various Imbalanced Datasets

This section examines the effectiveness of various supervised machine learning

approaches for handling imbalanced datasets, which are common in many real-

world scenarios. Table 4.5 illustrates the levels of data imbalance in the pre-

processed CERT r4.2 dataset, with 30% of the data used for testing and 70% for

training. The extremely unbalanced dataset with only 0.50% positive instances

has 1,025,219 training samples.

Table 4.5: Sample size details of imbalanced datasets

50% 40% 30% 20% 10% 1% 0.50%

Training data 10252 12814 17085 25630 51261 512609 1025219

Test data 4394 5493 7323 10985 21969 219691 306932

4.3.3.1 Accuracy for Various Imbalanced data

The accuracy values of different machine learning methods are shown in Table 4.6

for different data imbalance levels, from a balanced dataset to highly unbalanced

datasets with only 0.50% of positive samples. Accuracy is a measure of the overall

performance of a classification model, representing the proportion of correctly

classified instances out of the total number of instances in the dataset.

Table 4.6 shows that RF consistently demonstrated high accuracy, with values

ranging from 0.9590 for a balanced dataset to 0.9933 for the imbalanced dataset

of only 0.50% positive samples. XGB and KNN established good accuracy for
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Table 4.6: Accuracy comparison of various algorithms on imbalanced data

Balanced 40% 30% 20% 10% 1% 0.50%

RF 0.9590 0.9598 0.9537 0.9496 0.9598 0.9903 0.9933

XGB 0.9106 0.9359 0.8914 0.8858 0.9188 0.9902 0.9928

KNN 0.8393 0.8529 0.8655 0.8859 0.9221 0.9874 0.9900

GNB 0.5956 0.6080 0.7038 0.8002 0.9000 0.9900 0.9928

DT 0.9506 0.9481 0.9478 0.9445 0.9577 0.9906 0.9934

MLP 0.8209 0.8358 0.8581 0.8751 0.9210 0.9900 0.9928

AdB 0.9554 0.9552 0.9504 0.9476 0.9590 0.9906 0.9934

QDA 0.6475 0.6738 0.7156 0.8025 0.8985 0.9900 0.9928

moderately imbalanced datasets but struggled with highly imbalanced datasets

with only 1% or 0.50% positive samples. GNB and QDA demonstrated poor

accuracy for moderately to highly imbalanced datasets, with values ranging from

0.5956 to 0.8985.

For all levels of data imbalance, DT and AdB showed consistently good accu-

racy, with values ranging from 0.9476 to 0.9577 and 0.9504 to 0.9590, respectively.

Employing moderately imbalanced datasets, MLP demonstrated great accuracy

but struggled with highly imbalanced datasets. Figure 4.6 illustrates the accu-

racy for the different imbalanced datasets. The findings in the experiment show

that DT, AdB, and RF are suitable for classification tasks using the CERT r4.2

imbalanced datasets.

4.3.3.2 F1-score for Various Imbalanced data

F1 score combines both precision and recall into a single metric. F1 scores range

from 0 to 1, with 1 signifying perfect precision and recall and 0 signifying poor

precision and recall. A high F1 score implies that the model is performing well

in precision and recall, whereas a low F1 score suggests that the model is not

performing well in either precision or recall.
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Fig. 4.6. Accuracy comparison of various algorithms on imbalanced data

Table 4.7: F1 score comparison of various algorithms on imbalanced data

F1 Balanced 40% 30% 20% 10% 1% 0.50%

RF 0.9590 0.9507 0.9240 0.8782 0.8040 0.3654 0.2926

XGB 0.9103 0.9234 0.8031 0.6511 0.3764 0.0521 0.0009

KNN 0.8383 0.8281 0.7864 0.7221 0.6050 0.2745 0.2279

GNB 0.5956 0.1872 0.0339 0.0018 0.0000 0.0000 0.0000

DT 0.9506 0.9349 0.9129 0.8619 0.7843 0.3655 0.3010

MLP 0.8204 0.7959 0.7627 0.6729 0.4807 0.0135 0.0027

AdB 0.9554 0.9450 0.9175 0.8694 0.7933 0.3695 0.2934

QDA 0.6453 0.5203 0.2461 0.0936 0.0355 0.0000 0.0000
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Fig. 4.7. F1 score comparison of various algorithms on imbalanced data

Table 4.7 displays the F1 scores for different classifiers at multiple levels of

imbalance, from datasets with a balanced to datasets with just 0.50% of the

minority class. With values ranging from 0.9590 to 0.2926, the RF model has the

highest F1 score across all imbalance levels.DT has F1 scores that are consistently

high across all levels of imbalance, with the range of 0.9506 to 0.3010 but not as

high as RF. In datasets with only 0.50% of the minority class, DT achieves the

highest F1 score across all algorithms, while still maintaining consistently high

scores across all levels of imbalance, ranging from 0.9506 to 0.3010, although not

as high as RF

Conversely, the QDA model, with values ranging from 0.6453 to 0, has the

lowest F1 scores across all imbalance levels. Figure 4.7 shows that the QDA model

cannot perform well in terms of both precision and recall in highly imbalanced

data. Similarly, KNN performs relatively better on imbalanced datasets as the

level of imbalance increases. On the other hand, XGB has an F1 score of 0.9103

on the balanced dataset, but only 0.0009 for the highly imbalanced dataset. This

suggests that as the level of imbalance increases, the F1 score drops significantly.
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With the lowest F1 scores across all imbalanced levels, GNB is unsuitable

for imbalanced datasets. When the level of imbalance rises, MLP’s F1 scores

decline, showing that it performs poorly on imbalanced datasets. Overall, the

RF classifier was most effective in accurately identifying the samples, whereas

the GNB and QDA classifiers performed the least effectively.

4.3.3.3 Precision for Various Imbalanced data

Precision is a measure used to assess the accuracy of a binary classification algo-

rithm. Out of all the positive examples it detects, precision indicates how well a

classifier can identify true positive cases. Table 4.8 shows the precision values for

each classifier at different levels of class imbalance, ranging from 0.5% to 40% of

the minority class.

The RF and AdB models show the best precision values across all imbalance

ratios, demonstrating that these models are more accurate at identifying true

positives and minimizing false positives. On the other hand, the GNB classifier

has extremely low precision scores, particularly at high degrees of imbalance. The

low precision score indicates that it is ineffective in identifying positive cases; it

either correctly identified all negative cases or failed to identify any positive ones.

At the higher imbalance ratios (40% and 30%), the XGB model also performs

well, with high precision values. Compared to the top-performing models, the

precision values for the KNN and MLP models are considerably lower at 0.2546

and 0.3750, respectively, as shown in Figure 4.8. Low precision levels show a lack

of ability to recognize true positives and a propensity to classify negative events

as positive mistakenly.

4.3.3.4 Recall for Various Imbalanced data

The performance of a binary classification model is measured using recall, also

referred to as sensitivity or true positive rate. It measures the proportion of

actual positive samples that the model correctly identifies. A high recall score

indicates that the model can correctly identify most positive cases.
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Table 4.8: Precision comparison of various algorithms on imbalanced data

Precision Balanced 40% 30% 20% 10% 1% 0.50%

RF 0.9598 0.9318 0.9103 0.8494 0.7847 0.5327 0.5958

XGB 0.9160 0.8849 0.8810 0.8364 0.8127 0.8676 1.0000

KNN 0.8480 0.7775 0.7510 0.7042 0.6135 0.3250 0.2546

GNB 0.5956 0.5487 0.7917 1.0000 0.0000 0.0000 0.0000

DT 0.9506 0.9381 0.9150 0.8576 0.7995 0.5602 0.6181

MLP 0.8245 0.7913 0.7654 0.7066 0.7019 0.5172 0.3750

AdB 0.9556 0.9288 0.9164 0.8662 0.8006 0.5558 0.6166

QDA 0.6512 0.6316 0.6007 0.5685 0.3596 0.0000 0.0000

Fig. 4.8. Precision comparison of various algorithms on imbalanced data
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Table 4.9: Recall comparison of various algorithms on imbalanced data

recall Balanced 40% 30% 20% 10% 1% 0.50%

RF 0.9590 0.9704 0.9381 0.9090 0.8243 0.2781 0.1939

XGB 0.9106 0.9654 0.7378 0.5330 0.2449 0.0269 0.0005

KNN 0.8393 0.8858 0.8252 0.7410 0.5967 0.2376 0.2062

GNB 0.5956 0.1129 0.0173 0.0009 0.0000 0.0000 0.0000

DT 0.9506 0.9317 0.9108 0.8662 0.7697 0.2713 0.1989

MLP 0.8209 0.8006 0.7601 0.6422 0.3655 0.0068 0.0014

AdB 0.9554 0.9618 0.9185 0.8726 0.7861 0.2767 0.1925

QDA 0.6475 0.4424 0.1548 0.0510 0.0187 0.0000 0.0000

Fig. 4.9. Recall comparison of various algorithms on imbalanced data
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The accompanying Table 4.9 reports recall scores for each model at various

thresholds, ranging from 0.5% to 50%. The RF and AdB models show significant

recall scores across all thresholds, demonstrating their ability to identify a sig-

nificant portion of positive data accurately in Table 4.9. At a 40% level of class

imbalance, the RF model has a recall score of 0.9704, showing that it correctly

identified 97.04% of all actual positive cases in the dataset.

However, the recall scores for QDA and GNB models are comparatively low,

especially at higher thresholds, and these models may have difficulty appropri-

ately identifying positive samples. Figure 4.9 shows that, at a 1% imbalance level,

DT has a recall score of 0.2713, whereas MLP has a recall score of 0.0068. As

the level of class imbalance increases, the recall scores generally decrease for all

supervised models, as it becomes more challenging to recognize the relatively few

positive instances from the vast majority of negative cases.

4.4 Comparison with Existing work

In Table 4.10, a comparison of existing work with the results of the proposed work

is presented using performance evaluation metrics, including accuracy, precision,

True Negative Rate, Area Under Curve, and False Positive Rate. These results are

then compared with those of four established approaches: DNN [169], OCSVM

based on DBN [170], LSTM Autoencoder [7], and User behaviour Analysis [171].

The results demonstrate that supervised learning with a balanced dataset in RF

achieves the highest accuracy and F1-score of 95.9% compared to the existing

works.

Furthermore, it’s important to note that, to the best of our knowledge, no

existing work has conducted a comprehensive analysis of the impact of hyperpa-

rameters on the performance of AdB, KNN, and DT algorithms. Additionally, no

extensive research currently investigates the effects of imbalanced datasets with

varying class distribution percentages, including 40%, 30%, 20%, 10%, 1%, and

0.5%, on the performance of diverse supervised machine learning algorithms.
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Table 4.10: Comparison with Existing work Abbreviations: S-Supervised, U-

Unsupervised, M-Method, DV-Dataset Version, A-Accuracy, P- Precision, R-

Recall, TNR- True Negative Rate, AUC- Area Under Curve, FPR- False Positive

Rate

Approach M DV A P R
F1

score
TNR AUC FPR

DNN [169] S 4.2 N/A N/A N/A N/A N/A 0.944 N/A

OCSVM

based on

DBN [170]

U 4.2 87.79 N/A 81.04 N/A N/A N/A 12.18

LSTM

Autoencoder [7]
U 4.2 90.17 N/A 91.03 N/A 90.15 N/A 9.84

User Behaviour

Analysis [171]
U 4.2 87.3 84.9 81.7 81.9 N/A 0.89 N/A

Our Approach S 4.2 95.9 95.98 95.9 95.9 N/A N/A N/A
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4.5 Summary

This chapter explored the application of supervised machine learning algorithms

for insider threat detection. The study evaluated various CERT r4.2 balanced

dataset algorithms, including KNN, DT, AdB, and others. It investigated the

impact of hyperparameter tuning on the performance of KNN, DT, and AdB.

The results showed significant improvements with adjustments like modifying

the number of neighbors in KNN or the number of estimators in AdB. The chap-

ter then delved into the challenges of imbalanced datasets, which are common in

real-world insider threat scenarios. The performance of the algorithms was eval-

uated on datasets with varying levels of class imbalance, ranging from balanced

to a severe imbalance with only 0.5% insider data. The findings demonstrated

that Random Forest consistently achieved the best overall performance across all

metrics. XG Boost and AdB also performed well, while KNN and MLP struggled

with recall scores. Notably, GNB and QDA exhibited poor performance, sug-

gesting they may not be suitable for highly imbalanced datasets like CERT r4.2.

In conclusion, this chapter highlighted the importance of considering hyperpa-

rameter tuning and class imbalance when applying supervised machine learning

algorithms for insider threat detection. Random Forest emerged as the most ro-

bust performer across balanced and imbalanced datasets, while other algorithms

like KNN and DT exhibited sensitivity to hyperparameter adjustments.
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Chapter 5

Bilateral Insider Threat

Detection: Harnessing

Standalone and Sequential

Activities with Recurrent Neural

Networks

Insider threat refers to the potential danger posed by employees or individuals

within an organisation with access to sensitive information and resources. It is

a severe concern for organisations of all sizes and sectors. Insider threats can be

intentional or unintentional and may result in data breaches, theft of intellectual

property, and damage to an organisation’s reputation [172, 173]. The complexity

of insider threat lies in the fact that those with authorized access can cause sig-

nificant security risks. Insider threat is one of the most sophisticated information

security threats, and organisations must establish a process for tracking unusual

behaviour or potential incidents [10, 126, 174, 175].

analysing user device and application operation logs has emerged as a promi-

nent method in recent research to detect internal threats. This approach is cur-
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rently considered the primary method for uncovering potential insider threats

[176]. analysing user behaviour patterns allows for detecting deviations that may

indicate malicious intent or policy violations. By comparing current behaviour to

established normal patterns, it becomes possible to identify and address potential

internal threats [173]. Similarly, a supervised machine-learning-based approach

was presented in Chapter 4. However, the supervised learning approach has a

drawback. The approach used manual or standalone activities only to detect the

insider threat detection. To eliminate the issues, this chapter aims to: propose

a novel approach named Bilateral Insider Threat Detection for standalone and

sequential activities.

The primary aims of this chapter can be outlined as follows:

• A bilateral insider threat detection framework was proposed. It combines

both standalone activities and sequential activities to enhance the perfor-

mance of insider threat detection.

• A feature extraction method based on RNNs and LSTM was developed to

extract the sequential features of the data.

• Experiments were conducted on the CERT r4.2 dataset to compare the

performance of bilateral features using different classifiers, including KNN,

MLP, LR, and SVM classifiers. Additionally, the performance of RNN and

LSTM feature extractors was compared using the same classifiers, namely

KNN, MLP, LR, and SVM.

• Comparing the performance of the proposed bilateral framework against

previous insider threat detection methods.

This chapter is organised as follows: Section 5.1 delves into the related work.

Section 5.2 applies the methodology to detect insider threats, and section 5.3

delineates the implementation process. In Section 5.4, the experiments are elab-

orated upon, and subsequently, Section 5.5 draws the chapter to a summary.
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5.1 Related Work

Many ideas have been explored, and researchers have proposed numerous tech-

niques to address insider threats [141, 177, 178, 179].

In [180], they have proposed a trust-aware, unsupervised learning approach

for Insider Threat Detection. The approach focused on extracting relevant fea-

tures from system logs and utilizing unsupervised learning algorithms to identify

potential insider threats. Additionally, a trust score is assigned to each user based

on their anomaly score, taking into account their psychometric score. The study

also explored the impact of different system log structures on the effectiveness of

the approach.

The paper [181] serves as a tutorial that explains the fundamental concepts

of LSTMs and RNNs. It describes the derivation of the conventional RNN for-

mulation from differential equations and discusses the challenges encountered in

training conventional RNNs. The article also presents the equations related to

the LSTM system and explores ways to further improve it, highlighting new op-

portunities in the field.

Meng et al. [182] presented a comprehensive framework using LSTM-RNNs

for insider threat detection based on attribute classification. The method outper-

formed KNN, IF, SVM, and PCA-based techniques on the CERT insider threat

dataset v6.2. Optimized hyperparameters improve detection rates and reduce

false alarm rates.

The authors proposed a multilayer framework for insider threat detection

that combines misuse and anomaly detection methods [176]. The framework is

evaluated using performance metrics and computation time to effectively detect

both known and unknown insider threats.

This paper [183] proposed a novel approach for insider threat detection that

leveraged the power of deep learning. The system utilized an ensemble of stacked

LSTM and Gated Recurrent Unit (GRU) models with attention mechanisms.

These models were trained on user activity sequences and categorized into 282

distinct actions for improved detection performance. To capture the intricacies of

user behaviour, the approach employed stacked ensemble models for feature ex-

traction, resulting in a richer representation. Furthermore, the system addressed
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the challenge of data imbalance by introducing an equally weighted random sam-

pling technique, ensuring that both normal and malicious activities contributed

equally to the training process.

Building upon these prior works, this chapter proposes a novel bilateral ap-

proach that combines standalone and sequential features. This combined model

leverages the strengths of both architectures for improved feature extraction and

detection of insider threats using user activity data.

5.2 Methodology

In this section, we recognize that user behaviours can change over time, with

a malicious user often appearing harmless on most days and only showing ab-

normal behaviour occasionally. As a result, we adopt the standard practice of

analyzing user behaviours on a user-day. This section presents a comprehensive

demonstration of the complete workflow of the proposed bilateral insider threat

detection framework, which aims to detect insider threats.

In Section 5.3, we will delve into the detailed extraction of standalone and

sequential activity features, providing a thorough exploration of the methodol-

ogy. Malicious users exhibit distinct behavioural patterns compared to benign

users, which are reflected in their daily activities, such as login frequency, email

contacts, files and removable devices. To detect insider threats effectively, we

extract standalone activity features from user behavioural log files. The detailed

method for extracting these behavioural features is provided in Subsection 5.3.2.

Domain knowledge guides the selection of features for standalone activities on

a per user-day basis. The standalone feature matrix, denoted as Xm, is extracted

from the daily behaviours of isolated user-days, as depicted in Figure 5.1. This

matrix is derived from the daily behaviours of isolated user-days, where Xm ∈
Rn×dm . Here, m represents the total number of user-days and dm represents the

dimension of the manual features extracted from standalone activities. For each

individual user-day, the extracted feature vector can be represented as x
(m)
i ∈

Rdm , where i ∈ {1, 2, . . . , n}
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To handle sequential activities, deep learning models that specialized in pro-

cessing sequences are designed to extract relevant features through a supervised

training procedure. After training, the output for all user-days is used as the

feature matrix for sequential activities. Since those features are generated from

the daily activity sequence, we denote them as Hs, where Hs ∈ Rn×ds , with n

representing the total number of user-days, and ds denoting the dimension of se-

quential features. For each user-day, the sequential feature vector can be denoted

as x
(s)
i ∈ Rds , where i ∈ {1, 2, . . . , n}.

Hs = fSeq(Seq,ΘSeq) (5.1)

Fig. 5.1. Proposed Framework

The features extracted from the standalone and sequential methods are con-

catenated to form the final behavioural feature matrix, as illustrated in equation

5.2.

X = concatenate(Xm, Hs) (5.2)

where, the final user-day feature matrix for insider threat detection is denoted as

X ∈ Rn×(dm+ds), where the dimension of the final feature is equal to dm + ds.
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5.3 Implementation

5.3.1 Dataset and Pre-processing

In this chapter, we use the CERT r4.2 dataset. Due to the severe class imbal-

ance in the original dataset, we opted to create a smaller, balanced dataset by

downsampling the normal users [13]. The resulting dataset was then divided

into a training set comprising 70% of the data and a testing set comprising the

remaining 30%.

5.3.2 Feature Extraction

To provide a practical example of the proposed solution, we applied it to the

CERT r4.2 dataset for insider threat research [184]. This dataset is synthetic,

which helps address privacy concerns. We created a balanced sample dataset

using the down-sampling technique. This section provides detailed information on

the construction of the feature engineering and the execution of the classification

task.

5.3.2.1 Manual Features

This paper utilizes two activity files, device.csv, and logon.csv, to extract five

behavioural features from users’ daily routines. Regarding data labeling, if a user

engages in at least one malicious activity on a particular user-day, that user-day

is labeled as an insider threat incident. The behavioural features are represented

as F1, F2, F3, F4, and F5. For each user-day sample, the following are the five

standalone behavioural features listed:

• F1 represents the feature ”First logon time,” which is extracted from the

logon.csv file by mapping the timestamp of the initial login activity to the

range of [0, 1] based on a 24-hour basis.

• F2 corresponds to the feature ”Last logoff time,” derived from the logon.csv

file by mapping the timestamp of the final logoff activity to the range of [0,

1] on a 24-hour basis.
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• The third behavioural feature, denoted as ”F3” or ”First device activity

time,” is obtained from the device.csv file. It involves mapping the times-

tamp of the initial device activity (connect or disconnect) to a range of [0,

1], considering a 24-hour basis.

• The fourth behavioural feature, ”F4” or ”Last device activity time,” is

derived from the device.csv file. It entails mapping the timestamp of the

final device activity (connect or disconnect) to a range of [0, 1], considering

a 24-hour basis.

• The fifth behavioural feature, denoted as ”F5” or ”Number of off-hour de-

vice activities,” is obtained from the device.csv file. It involves counting

the occurrences of device activities (connect or disconnect) that transpire

during off-hour time. Off-hour time is defined as the period between 18:00

PM and 8:00 AM.

In manual feature engineering, the selection of potential indicators heavily

relies on domain knowledge.

5.3.2.2 Sequential Features

To automate the feature engineering process, the first step is to encode the daily

activities by assigning each activity a specific numerical representation or code.

Once encoded, the activities are arranged into a sequence according to their time

of occurrence. This sequential representation preserves the temporal order of the

activities, facilitating subsequent analysis and modeling. The approach described

in the referenced paper [58] was followed to perform the activities encoding.

We analysed activity logs contained in files such as file.csv, logon.csv, de-

vice.csv, and email.csv. Each activity was assigned a specific code based on

predefined rules, provided in detail in Table 5.1 for reference. Our study encom-

passed 12 distinct activity types, and to enhance granularity, we further catego-

rized them based on whether they occurred during working or off hours, resulting

in 24 activity types. Each activity type was assigned a unique numerical identifier

ranging from 1 to 24.
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Table 5.1: Sequential activities Encoding

Nature of the activity Code for on-duty hours Code for non-working hours

Logon a pc 1 13

Logoff a pc 2 14

Connect a usb drive 3 15

Disconnect a usb drive 4 16

Open a .doc file 5 17

Open a .exe file 6 18

Open a .jpg file 7 19

Open a .pdf file 8 20

Open a .text file 9 21

Open a .zip file 10 22

Send an email to internal address 11 23

Send an email to external address 12 24

Our sample dataset identified the longest daily activity sequence consisting of

74 activities. Consequently, we selected a sequence length of 74 when training the

sequential feature extraction model for feature engineering. The output of this

model is a two-dimensional representation, which will serve as the new feature

for the sequence of activities.

5.4 Experiments

To evaluate the performance of the proposed bilateral framework, we performed

comparative experiments in Section 5.4.1 between the bilateral framework and

the standalone activities, and in Section 5.4.2, we compared feature extraction

power between RNN and LSTM model. A brief analysis of our work and previous

similar work is presented in Section 5.4.3.

All experiments are conducted using the Python programming language. The

scikit-learn library was used to implement the binary classifiers. Default parame-

ter settings are adopted for SVM, LR, KNN, and MLP classifiers unless specified
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Table 5.2: Performance improvements with bilateral features across classifiers

Classifier Features Acc Pre Rec F1 ∆Acc ∆Pre ∆Rec ∆F1

KNN
Manual 87.59 84.32 90.30 87.21

3.15 4.21 1.87 3.10
Manual+RnnSeq 90.73 88.53 92.16 90.31

MLP
Manual 89.51 85.14 94.03 89.36

2.97 5.19 0.00 2.78
Manual+RnnSeq 92.48 90.32 94.03 92.14

LR
Manual 90.03 86.51 93.28 89.77

2.97 4.80 0.75 2.88
Manual+RnnSeq 93.01 91.30 94.03 92.65

SVM
Manual 90.21 86.55 93.66 89.96

2.10 3.16 0.75 2.04
Manual+RnnSeq 92.31 89.72 94.40 92.00

otherwise [16, 185, 186].

5.4.1 Comparison between standalone activities and bi-

lateral for different classifiers

To verify the impact of sequential features in our bilateral insider threat detec-

tion, we conducted binary classification using four popular classifiers: kNN, MLP,

SVM, and LR. By comparing the performance of these classifiers when utilizing

manual features versus incorporating sequential features extracted from a plain

RNN model, our aim was to assess the improvement achieved by incorporating

daily activity sequence in the domain of bilateral insider threat detection, consid-

ering its classifier-independent nature [187]. The comparison results between bi-

lateral features and the standalone or manual features in detecting insider threats

are presented in Table 5.2.

Table 5.2 presents the performance comparison of different classifiers using

various sets of features, including Accuracy (Acc), Precision (Pre), Recall (Rec),

and F1-score (F1). The table highlights the effectiveness of these approaches

in detecting insider threats. Additionally, it showcases the differences (∆) in

these metrics between using manual features and incorporating the features ex-
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(a) ROC Comparison for KNN (b) ROC Comparison for MLP

(c) ROC Comparison for LR (d) ROC Comparison for SVM

Fig. 5.2. ROC comparison between manual feature and bilateral feature for dif-

ferent classifiers
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tracted from daily activity sequences using a simple RNN model (referred to as

”RnnSeq”).

The results demonstrate a significant improvement in performance for each

tested classifier when incorporating the Manual+RNNseq features together com-

pared to using manual features alone. The comparison results reveal significant

improvements in precision and accuracy when incorporating the Manual+RnnSeq

features for all tested classifiers. Specifically, precision has increased by 4.21% ,

5.19%, 4.80%, and 3.16% for KNN, MLP, LR and SVM, respectively. Similarly,

accuracy has increased by 3.15% , 2.97% , 2.97% , and 2.10%, respectively, for

KNN, MLP, LR and SVM.

The F1 score, a widely used metric in classification tasks, offers a balanced

evaluation of a classifier’s performance, taking into account both precision and re-

call. By combining these measures into a single value, it enables a comprehensive

assessment of the classifier’s effectiveness.

Adding RnnSeq features into the classifiers’ feature sets leads to a significant

improvement in the F1 score. Specifically, when combining Manual+RnnSeq fea-

tures, the KNN classifier demonstrates a 3.10% increase in F1 score compared

to using Manual features alone. Similarly, the MLP classifier shows a 2.78% in-

crease, the LR classifier exhibits a 2.88% increase, and the SVM classifier achieves

a 2.04% increase in F1 score. These findings indicate that incorporating RnnSeq

features enhances the classifiers’ performance, as evident from the higher accu-

racy, precision, recall, and F1 score achieved when compared to using manual

features alone.

Figure 5.2 presents the receiver operating characteristic (ROC) curves for

all classifiers. The results demonstrate that combining manual features with

RNN sequential features (Manual features+RNN seq) outperforms using manual

features alone. The area under the ROC curve (AUC) values, which represent

the classifiers’ overall discriminative power, are provided in Figure 5.2.

For instance, in the case of KNN, incorporating Manual features+RNN se-

quential features leads to an improvement in the AUC from 0.916 to 0.940. Sim-

ilarly, for SVM, the AUC increases from 0.914 to 0.966. These results highlight

the effectiveness of integrating RNN sequential features with manual features, as
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demonstrated by the improved discriminative performance reflected in the ROC

curves and AUC values.

5.4.2 Comparison between RNN and LSTM features ex-

tractor

In the previous section, we could observe the performance improvement by im-

plementing a simple sequence data-oriented model, which naturally leads to fur-

ther exploration for better performance with the sophisticated model. We thus

compare the LSTM and RNN model’s sequential feature extraction power, as

presented in the table 5.3.

The table illustrates the accuracy differences between the RNN and LSTM

feature extractors for different classifiers. Specifically, the KNN classifier’s ac-

curacy improved by 4.37% when utilizing the LSTM feature extractor compared

to the RNN feature extractor. Similarly, MLP, LR, and SVM have increased

by 2.97%, 2.97%, and 3.32%, respectively. According to precision, the KNN

classifier exhibited a 6.92% improvement when utilizing the LSTM feature ex-

tractor instead of the RNN feature extractor. Similarly, the LR classifier showed

a precision improvement of 5.63% with the LSTM feature extractor. The SVM

classifier demonstrated an increase of 6.13% in precision, and the MLP classifier

also experienced a 6.13% increase in precision.

Figure 5.3 illustrates the F1-score performance. Comparing the KNN clas-

sifier, there was a 4.43% improvement in the F1-score when using the LSTM

feature extractor instead of the RNN feature extractor. For the LR classifier, the

F1-score showed a 3.01% improvement with the LSTM feature extractor. The

SVM classifier exhibited a 3.31% increase in the F1-score, and the MLP classifier

demonstrated a 2.99% increase when utilizing the LSTM feature extractor. These

results indicate the effectiveness of the LSTM feature extractor in enhancing the

F1-score performance across different classifiers.
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Table 5.3: Performance comparison between RNN and LSTM feature extractors

Classifier Feature Extractor Acc Pre Rec F1 ∆Acc ∆Pre ∆Rec ∆F1

KNN
RNN 90.73 88.53 92.16 90.31

4.37 6.92 1.87 4.43
LSTM 95.10 95.45 94.03 94.74

MLP
RNN 92.48 90.32 94.03 92.14

2.97 5.17 0.75 2.99
LSTM 95.45 95.49 94.78 95.13

LR
RNN 93.01 91.30 94.03 92.65

2.97 5.63 0.37 3.01
LSTM 95.98 96.93 94.40 95.65

SVM
RNN 92.31 89.72 94.40 92.00

3.32 6.13 0.37 3.31
LSTM 95.63 95.85 94.78 95.31

KNN MLP LR SVM
Classifiers

F1
 sc

or
e

90.31%

92.14% 92.65%
92.00%

94.74% 95.13% 95.65% 95.31%

RNN
LSTM
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   6%

F1
 sc

or
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Fig. 5.3. F1-score comparison between RNN and LSTM

5.4.3 Comparison with previous similar work

In insider threat detection research, a challenge arises when comparing previous

works fairly. This is mainly due to the complexity of user behaviours and the

absence of widely recognized problem settings.

As presented in Table 5.4, we provide a comparison with the most relevant

work regarding problem setting. Both studies use a supervised training approach

to detect insider users on a user-day basis. Although other classifiers were tested
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Table 5.4: Comparison with previous similar work

Classifier Paper Feature status Acc Pre Rec F1

LR

Previous work

(Wei, H. et al.)
bi-channel 91.26 88.93 92.91 90.88

Our work
Manual+RnnSeq 93.01 91.30 94.03 92.65

Manual+LstmSeq 95.98 96.93 94.40 95.65

SVM

Previous work

(Wei, H. et al.)
bi-channel 91.61 89.01 93.66 91.27

Our work
Manual+RnnSeq 92.31 89.72 94.40 92.00

Manual+LstmSeq 95.63 95.85 94.78 95.31

in each work, we specifically compared the performance of LR and SVM as the

final detection stage classifiers.

In the work conducted by Wei et al., they employ a more complex feature

extraction method based on graph neural networks (GNN). However, considering

the complexity of graph construction and the GNN model, the performance gain

from their approach appears to be overshadowed. As shown in the table, even

with our inferior feature extractor (RNN), our work performs better than the

comparative study.

It is worth mentioning that Wei et al. improved without introducing new user

activity information, attributing it to discovering hidden connections within an

organisation. In contrast, our work adopts a comprehensive feature engineering

process that leverages the characteristics of daily activity sequences. Therefore,

we consider our approach more practical and focused on detection performance.

5.5 Summary

This chapter proposed a bilateral insider threat detection approach that incor-

porates both standalone and sequential activities to enhance the performance of

insider threat detection. Experimental results on the open-accessed CERT 4.2
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dataset demonstrate that our Bilateral approach outperforms algorithms that

rely solely on features extracted from standalone activities. The experiments also

show that combining manual and sequential features improves the overall perfor-

mance compared to using manual features alone. Furthermore, when comparing

the performance of the RNN and LSTM feature extractors, it is observed that

LSTM achieves better results than RNN. However, it is important to acknowl-

edge the limitations of the study, which can be addressed in future research. One

such limitation is the imbalanced learning challenge in detecting insider threats,

as real-world scenarios often have a higher proportion of benign user-days. To

address this, a balanced dataset was created by randomly downsampling the ma-

jority class for the experimental evaluation.
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Chapter 6

Optimising Insider Threat

Prediction: Exploring BiLSTM

Networks and Sequential

Features

The evolving threat landscape of cybersecurity demands a paradigm shift. As

technology advances and malicious actors become more sophisticated, insider

threats are poised to become even more complex and challenging to detect. A

recent report from the Ponemon Institute underscores this critical need. Accord-

ing to their 2023 Cost of Insider Risks Global Report, the total average cost

of insider threat incidents skyrocketed by 95% between 2018 and 2023. These

figures highlight a troubling trend and emphasize the growing financial burden

of insider threats on organisations. In previous chapters 5, 4 discussed insider

threat detection under various features and imbalanced dataset ratios. However,

relying on techniques that primarily focus on detecting threats after they occur

may result in delays in corrections, particularly for large or critical organisations,

posing significant risks.

In the past few years, various approaches and techniques have been suggested
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to identify and address insider threats. In [55, 56, 57, 188], machine learning-

based insider threat detection techniques have been proposed to identify insider

threats. Similarly, [58, 59, 60] proposed user behaviour-based insider threat de-

tection techniques. Generally, most academic researchers have primarily con-

centrated on finding and identifying threats that have already occurred. They

usually start by examining the recorded actions of users, extracting important

information, and then using a detection model to differentiate between harm-

ful actions and those that are normal. Therefore, a proactive approach should

be advocated, emphasising prevention over mere detection. To overcome the

drawbacks, this chapter objective is to propose a novel, standalone, sequential

approach to insider threat prediction based on users’ daily activities. To ensure

accurate threat prediction, include the day’s ground truth (whether there was

malicious activity or not) as a feature in our model. This approach leverages a

BiLSTM architecture to analyse a user’s behavioural patterns in the days leading

up to a specific day, allowing us to predict potential malicious behaviour on that

particular day.

The main objectives of this chapter can be summarized as follows:

• Introduce a comprehensive framework for insider threat prediction that

leverages user activity features, including the ground truth of each day.

This framework addresses the challenge of accurately identifying potential

insider threats by considering both standalone and sequential user activity

data from previous days.

• Conduct a systematic evaluation to assess the impact of integrating stan-

dalone features Xm, sequential features Xs, and the ground truth for a

specific day Xg on insider threat prediction accuracy. This comprehen-

sive assessment involves a comparative analysis of the performance of three

distinct models: RNN, LSTM, and Bi-LSTM on Xm∥Xs∥Xg.

• Investigate the impact of varying predictive lengths on Bi-LSTM’s ability to

predict threats. Our goal is to identify the optimal length that maximises

Bi-LSTM’s efficiency in threat prediction. It is achieved by comparing its

performance with other models (KNN, LR, AdB, GNB) across different

predictive lengths.
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• Additionally, explore the impact of various embedding sizes (16, 32, 64, and

128) on a BiLSTM architecture with a fixed sequence predictive length (e.g.,

5). All models are evaluated using the combined feature set Xm∥Xs∥Xg).

The chapter is structured as follows: Section 6.1 discusses related work on

prediction-based insider threats. Following that, Section 6.2 outlines the method-

ology employed in this study. The implementation and discussion of the proposed

methodology are detailed in Section 6.3. Section 6.4 showcases the experimental

results on insider threat prediction, and the chapter concludes with a summary

in Section 6.5.

6.1 Related Work

Insider threat prediction has garnered significant attention recently as organisa-

tions strive to safeguard sensitive information from malicious activities within

their ranks. In this context, numerous studies have delved into various aspects

of insider threat detection, employing multiple methodologies and techniques to

address the unique challenges posed by individuals with legitimate access to an

organisation’s systems and information. This section provides an overview of pre-

vious studies on bilateral insider threat detection, highlighting both conventional

approaches and some previous methods for insider threat prediction.

Manoharan et al. [61] introduced a novel framework for insider threat de-

tection called a ”bilateral” approach. This framework combined standalone and

sequential activities using RNNs to improve insider threat detection by leverag-

ing insights from user behaviours. It extracted behavioural traits from log files

representing standalone activities and utilised RNN models to capture features

of sequential activities. Features from both methods were then concatenated to

form a final behavioural feature matrix, allowing for a comprehensive analysis

for improved security measures. Experiments on the CERT 4.2 dataset demon-

strated the effectiveness of this bilateral approach in detecting insider threats. It

outperformed traditional methods that focused solely on standalone or sequential

activities.
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The proposed approach in [189] focuses on developing an Insider Threat Pre-

diction Model that combines user taxonomy, psychological profiling, real-time

usage data analysis, and decision algorithms to identify potentially dangerous

users within an organisation. The model collects user characteristics and usage

information from the IT components of the system to assess the risk level posed

by each user. By categorizing users based on system roles (Novice, Advanced,

Administrator) and analysing their behaviour patterns, stress levels, and predis-

position to malicious actions, the model aims to predict insider threats effectively.

The paper [190] introduces a novel problem setting in insider threat research,

shifting the focus from detecting threats to predicting them based on historical

behaviour. By analysing user behaviour in the days leading up to a specific day,

the goal is to forecast potential malicious activities in advance. The study uti-

lized the CERT 4.2 dataset and tested various machine learning and deep learning

models, finding that deep learning models did not consistently outperform ma-

chine learning models for this task.

Wei et al. [191] propose a proactive insider threat detection method using

unsupervised anomaly detection. Unlike traditional methods that identify threats

after they occur, this approach focuses on predicting potential insider threats by

analysing user activity data. The system identifies deviations from normal user

behaviour through a cascaded autoencoder model, flagging anomalies for further

investigation.

Our comprehensive literature review reveals a critical gap in research concern-

ing BiLSTM models for insider threat prediction. Specifically, no prior studies

have investigated BiLSTM models that leverage a combination of manual fea-

tures, sequential features, and ground truth labels for daily activity in insider

threat prediction.

6.2 Methodology

This section details the methodology employed in our study. We begin by for-

mally defining the problem setting in subsection 6.2.1 and introducing the overall

framework in subsection 6.2.2 utilised for our insider threat prediction analysis.
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Subsequently, we delve into the process of sequential feature embedding based

on the BiLSTM subsection in 6.2.3. Finally, we discussed the various learning

algorithms employed in this chapter are mentioned in Chapter 3.

6.2.1 Problem Setting

Traditionally, insider threat research has focused on identifying potential threats

by analysing past user behaviour. This involves meticulously examining the char-

acteristics of activities associated with specific users [10, 61]. For instance, be-

cause employees typically follow workload patterns aligned with the calendar day,

researchers define the insider threat detection task as identifying days where a

user might exhibit malicious behaviour. Researchers scrutinise these past be-

haviours to uncover patterns that might indicate malicious intent. Such analysis

contributes to a comprehensive understanding of potential insider threats within

organisations.

For example, the detection system might classify such activity as potentially

malicious if a user’s login duration is significantly longer than in previous days.

An additional instance occurs when a user accesses a website significantly differ-

ent from those frequented by colleagues; in such cases, the detection system may

likewise flag it as a potential insider threat. As these detection tasks hinge on

actions that have already occurred, their implementation is relatively straightfor-

ward but offers limited practical significance.

Our initial research explores a new approach that suggests a strong correlation

between a user’s recent behavioural patterns and the possibility of malicious

activity on a specific day. This hypothesis is based on two key observations:

1. Specific previous user actions can serve as warning signs for potential mali-

cious activities in the present day. For instance, consider a scenario where

employees are subjected to continuous overtime demands or workplace hos-

tility. Such stress could manifest as retaliatory actions that the system

might flag as malicious. Similarly, if abnormal access attempts compromise

the system’s security in the previous days, the risk of further misuse on the

current day becomes significantly increased.
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2. Some past activities involve laying the groundwork for malicious actions

in the present. Hackers often face difficulties in directly stealing sensitive

data. To overcome this, they may conduct reconnaissance to access accounts

with high privileges beforehand. However, these seemingly innocuous activ-

ities, such as meticulously mapping the network, identifying vulnerabilities,

and creating a hidden access point (backdoor), wouldn’t necessarily trigger

alarms alone. By analysing a user’s past behaviour for these patterns, our

system can predict an increased risk of a future attack.

Therefore, our proposed approach can predict malicious intent by analysing a

user’s behavioural patterns over the past few days. This analysis includes login

times, device usage patterns, and deviations from normal behaviour.

Since many organisational employees follow routine work patterns, and the

risk of malicious activity can vary daily, we utilise a ”user-day” approach similar

to the one presented in [10, 61]. Our system then aims to predict the likelihood

of a specific user engaging in malicious activity on a particular day by analysing

their daily activity logs for the past few days.

6.2.2 Framework

In Figure 6.1, the illustrated framework outlines the user-day based insider threat

prediction approach. Initially, behavioural logs were categorised based on various

activities, including device, logon, file, etc. However, our new approach shifts the

organisation of behavioural logs, emphasising the day for improved threat predic-

tion. This modification entails forecasting whether a user could partake in ma-

licious activities on a particular day, emphasising the pivotal role of behavioural

logs in this predictive process. By analysing user behaviour daily, the framework

offers a proactive approach to identifying and mitigating insider threats before

they materialise.

In the initial stage of our proposed method, we begin by pre-processing the

entire dataset. The comprehensive dataset, including all activities, was restruc-

tured during this crucial phase. Specifically, all user activities are systematically

reorganised into daily activity logs for each user-day. After pre-processing, we
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extract the manual features Xm, sequential features Xs, and ground truth of the

day Xg.

We retrieve activity features from log files that record user behaviour, and the

detailed procedure for extracting these behavioural features is outlined in Section

6.3.

The standalone feature matrix, denoted as Xm, is derived from the daily

behaviours of individual user-days, where each row corresponds to one user-day,

and the columns signify various manual features extracted from standalone ac-

tivities. The dimensions of Xm are c× dm, with c representing the total number

of user-days and dm indicating the dimension of the manual features obtained

from standalone activities. Each row Xmc captures the manual feature values

for a specific user-day, forming a sequence Xmc−t+1, Xmc−t+2, . . . , Xmc. This

sequence delineates the temporal evolution of manual features leading up to and

including the target day t.

We use all user-days to obtain a sequential feature matrix from the activities

within the daily sequence. Since these features are derived from this sequence,

we label them as Xs. The matrix Xs has dimensions c × ds, where c signifies
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the total number of user-days, and ds represents the dimension of the sequential

features. Similar to the manual features, each row Xsc signifies the sequential

feature values for a specific user-day, forming a sequence Xsc−t+1, Xsc−t+2, . . . ,

Xsc that illustrates the temporal evolution of sequential features.

Xg encompasses the ground truth corresponding to a user-day. This feature

sequence, represented as Xgc, spans the total number of days denoted by c. For

a given user-day labeled with t, the associated ground truth values progress from

Xgc−t+1, Xgc−t+2, ..., Xgc. Here, i is an index representing the temporal distance

from the user-day labelled t, taking values from t to 0. Consequently, Xgc−i refers

to the ground truth value for the specific day i units in the past relative to the

target user-day. Each element in this sequence, Xgc−i, where i ranges from t to

0, signifies the actual outcome for the respective day, forming an essential basis

for evaluating and training predictive models.

Upon acquiring the reconstructed sequential features Xs, they are fed into the

BiLSTM model. The output of the BiLSTM model is represented as Xs emb.

This will be explained in Section 6.2.3.

After receiving the reconstructed data, all the features extracted from stan-

dalone activities, sequential activities, and ground truth of the day approaches

are joined to construct the ultimate behavioural feature matrix X as in equation

6.1.

X = concatenate(Xm,Xs emb,Xg) (6.1)

Ultimately, a binary classifier serves as the insider threat detector, and the

predicted values of the detector are determined by equation 6.2.

Ŷ = fc(X,Θc) (6.2)

The equation 6.2 represents the predicted outcomes, indicating whether a

user-day is malicious. The equation Ŷ represents the predicted labels, fc denotes

the mapping function of the selected classifier, and Θc corresponds to the train-

able parameters of the classifier. Optimisation of these parameters, Θc, can be

achieved on the training set by comparing the predicted results Ŷ with the actual

labels Y and minimising the loss function.
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6.2.3 Sequential Feature Embedding based on BiLSTM

BiLSTMs facilitate understanding sequential dataXs by analysing sequences, like

user actions, based on their activities. However, preparing the sequential data

Xs for BiLSTMs requires careful consideration. Traditionally, one-hot encoding

has been the go-to method. This method transforms each unique activity in

the sequence into a high-dimensional binary vector. We also performed one-hot

encoding for the 24 activity types listed in Table 6.2 before feeding them into the

BiLSTM.

One-hot encoding treats all activities as completely isolated entities, failing

to capture any inherent relationships between them. It assigns a unique binary

vector to each activity in Xs. The vector’s dimensionality matches the total

number of activities. In this vector, only one element is set to 1 (representing

the active element), while all others are 0. As the number of unique activities

increases, the one-hot encoded vectors become very high-dimensional, which can

lead to overfitting.

To overcome these drawbacks, the embedding layer emerges as a powerful tool.

The embedding layer aims to transform the one-hot encoded vectors into denser,

lower-dimensional representations called embeddings. This layer acts as a trans-

lator between one-hot encoded vectors and a more meaningful representation,

converting the activity vectors into embeddings.

These embeddings hold the key to unlocking the hidden relationships between

activities. Unlike one-hot encoding, which indicates presence or absence, embed-

dings encode the semantic meaning of an activity and its connection to others in

the sequence. With these embeddings, the BiLSTM can more effectively grasp

the context and relationships within the sequence. This deeper understanding

improves performance, allowing the BiLSTM to learn more effectively and gener-

alise its knowledge to unseen data. The embedding layer bridges the gap between

one-hot encoding’s simplicity and the BiLSTM’s need for meaningful represen-

tations, paving the way for a more robust and insightful analysis of sequential

data.

After processing the sequential data Xs through the embedding layer, the

BiLSTM takes over. The BiLSTM’s output, representing the learned contextual
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features of the sequence, is then denoted as Xs emb.

6.3 Implementation

To implement the proposed BiLSTM-based insider threat prediction system,

we leverage the open-source CERT r4.2 dataset. This section details the pre-

processing steps, which involve preparing the data for the BiLSTM model. We

extract manual features Xm, sequential features Xs, and ground truth of the

day Xg.

6.3.1 Datasets and Data Pre-processing

In this research, we conducted all experiments on the CERT r4.2 dataset, which is

recognised as the most comprehensive dataset 1. All the descriptions on the CERT

r4.2 dataset are described in Chapter 3. Due to the class imbalance in the original

dataset (70 insider threat instances out of 1000 users), we performed additional

downsampling on a balanced dataset. This involved pairing each malicious user-

day with a benign counterpart, resulting in a downsampled dataset with a size of

1908. The resulting dataset was divided into a 70% training set and a 30% testing

set for model evaluation. The paper [61] proposed a standalone and sequential-

based insider threat detection method for daily user activity. This chapter adopts

the same methodology to extract the daily activities of the user.

6.3.2 Manual Features

This section describes the process of extracting manual features from the CERT

r4.2 dataset. We leverage two activity files, device.csv and logon.csv, to derive

five features that capture different aspects of users’ daily routines. These features

are specifically chosen to capture behaviours and patterns in users’ daily routines

that might indicate potential insider threats within an organisation. In data

1https://kilthub.cmu.edu/articles/dataset/Insider Threat Test Dataset/12841247/1
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Table 6.1: Description of Manual Features

Manual Features Description Content

m1 First logon time
In logon.csv, map initial login

timestamp to [0, 1] within 24h.

m2 Last logoff time
In logon.csv, map the final logoff

timestamp to [0, 1] on a 24-h.

m3
First device

activity time

In device.csv, map the initial device

activity timestamp to [0, 1] over 24h.

m4
Last device

activity time

In device.csv, map the final device

activity timestamp to [0, 1] in 24h.

m5

Number of

off-hour

device activities

From device.csv, count device

activities (connect/disconnect)

between 18:00 and 8:00.

labelling, a user-day is classified as an insider threat incident if the user engages

in at least one malicious activity on that day.

These features, denoted as m1, m2, m3, m4, and m5, provide insights into

potential insider threats by capturing various behavioural patterns. The specific

details of these features are listed in Table 6.1.

6.3.3 Sequential Features

To automate feature engineering, we first encode daily activities. Each unique

activity is assigned a numerical code. These encoded activities are then arranged

into sequences based on their chronological order within a user’s day. This sequen-

tial format preserves the temporal information of user actions, enabling effective

analysis and modelling by the BiLSTM.

The activity encoding approach used in this study is derived from the method-

ologies described in the referenced papers [10, 58]. We examine activity logs from
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various files, including file.csv, logon.csv, device.csv, and email.csv. Each ac-

tivity is assigned a unique numerical identifier (1-24) based on predefined rules.

These rules consider the activity type and whether it occurs during working or

off-hours, resulting in 24 unique codes. Table 6.2 shows the detailed mapping

between sequential activities and their corresponding codes.

6.3.4 Ground Truth of the Day

This section describes the Ground truth of the day Xg feature, which is incor-

porated to enhance the prediction accuracy. This feature identifies the specific

day users transition from regular activity to confirmed insider behaviour. Unlike

other features that capture user actions, the ground truth of the day provides a

more precise indicator of malicious behaviour onset through a timestamp.

We leverage timestamps associated with historical data for users identified as

insiders. By analysing these timestamps, potentially including individual times-

tamps for each day within an activity log, we can pinpoint the exact day the user

transitioned to insider activity. This specific day is then assigned as the ground

truth of the day feature. The ground truth of the day captures the date a user’s

behaviour deviates from normal patterns, transitioning from regular users to con-

firmed insiders. This feature is represented as a binary value: 1 for confirmed

insider activity and 0 for normal user behaviour.

6.4 Experiments

This section details the experiments conducted in Python’s Jupyter Notebook en-

vironment to evaluate the effectiveness of the proposed insider threat prediction

framework. We perform comparative analyses using various feature combina-

tions: standalone features Xm, sequential features Xs, standalone features with

ground truth Xm∥Xg, and all features combined Xm∥Xs∥Xg- details in section

6.4.1. Furthermore, section 6.4.2 explores the framework’s performance using

various RNN models with the combined features Xm∥Xs∥Xg. Furthermore,

section 6.4.2 explores the framework’s performance using various RNN models
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Table 6.2: Sequential activities Encoding

Nature of the

activity

Code for

working hours

Code for

off-duty hours

Logging onto PC 1 13

Logging off from PC 2 14

Connecting a USB drive 3 15

Disconnecting a USB drive 4 16

Opening a .doc file 5 17

Opening a .exe file 6 18

Opening a .jpg file 7 19

Opening a .pdf file 8 20

Opening a .text file 9 21

Opening a .zip file 10 22

Sending an email to an internal address 11 23

Sending an email to an external address 12 24
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Fig. 6.2. Performance of various sequential features on supervised learning algo-

rithms

with the combined features Xm∥Xs∥Xg. Section 6.4.3 investigates the influence

of predictive length on performance, identifying the optimal length for improved

BiLSTM results. Section 6.4.4 explores the effect of different embedding sizes on

BiLSTM performance, using a predictive length of 5 and the combined features

Xm∥Xs∥Xg.

6.4.1 Comparison of Insider Threat Prediction Models on

Various Feature Configurations

Table 6.3 compares various supervised learning algorithms for insider threat pre-

diction using different feature configurations. The evaluated supervised learning

algorithms include KNN, LR, AdB, and GNB. Five distinct feature sets are con-

sidered: standalone features Xm, sequential features Xs, ground truth of the day

Xm, standalone with ground truth of the day Xm∥Xg, and a combination of all

features Xm∥Xs∥Xg. The assessed metrics include Accuracy (Acc), Precision

(Pre), Recall (Rec), and the F1 score.

The KNN model achieved its most robust performance (F1 score: 0.8730)

by utilising all three feature sets of Xm∥Xs∥Xg, which includes individual user
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actions Xm, sequential activity patterns Xs, and explicit ground truth informa-

tion Xg. This combination yielded the highest accuracy (Acc: 0.8766) and F1

score. Even standalone features Xm provided a baseline for prediction (F1 score

0.5240), demonstrating the model’s ability to identify potential threats based on

user actions alone. Adding sequential features Xs further improved performance

(F1 score 0.5702), highlighting the importance of considering the order of activ-

ities. Furthermore, Xg achieved an F1 score of 0.8221. Notably, incorporating

ground truth information for specific days Xm∥Xg significantly boosted perfor-

mance (F1 score 0.8391), underlining the value of such information for accurate

prediction.

Similarly, focusing exclusively on Xm in the LR model results in an F1 score

of 0.5257. Adding Xs improves performance, yielding an F1 score of 0.6159.

Furthermore, Xg achieved a significantly higher F1 score of 0.8403. Including

ground truth information for specific days, Xm∥Xg, significantly improves LR’s

predictive capabilities, achieving an F1 score of 0.8578. The most resilient per-

formance is achieved when LR integrates all the features Xm∥Xs∥Xg, yielding

the peak F1 score of 0.9084.

For AdB, relying solely on Xm leads to an accuracy of 0.4961 and an F1 score

of 0.4935. However, incorporatingXs or utilising only the ground truth of the day

Xm∥Xg enhances AdB’s performance, resulting in improvement, although Xg

is higher than these features. AdB demonstrates its most resilient performance

when using a combination of standalone, sequential, and ground truth features

Xm∥Xs∥Xg, achieving an accuracy of 0.8425 and an F1 score of 0.8394.

Likewise, GNB’s Xm produces an F1 score of 0.5182 and an accuracy of

0.5433. When combining sequential features Xs or standalone with ground truth

of the day Xm∥Xg, GNB exhibits enhanced accuracy and F1 score, with F1

score values of 0.6039 for Xs and 0.8096 for Xm∥Xg. However, Xg achieved a

significantly higher F1 score of 0.8210. The combination of standalone, sequential,

and ground truth features Xm∥Xs∥Xg delivers the best results; GNB achieves

an accuracy of 0.8504 and an F1 score of 0.8484.

In Table 6.3, the feature Xm∥Xg was introduced in [190]. When comparing

our proposed work Xm∥Xs∥Xg to existing approaches, our method achieves su-

perior accuracy and F1 score in insider threat prediction. Figure 6.2 shows that
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Table 6.3: Performance of various sequential features on supervised learning al-

gorithms

Classifier Features Acc Pre Rec F1 score

KNN

Xm 0.5276 0.5255 0.5260 0.5240

Xs 0.5932 0.5781 0.5717 0.5702

Xg 0.8241 0.8207 0.8262 0.8221

Xm∥Xg 0.8425 0.8392 0.8392 0.8392

Xm∥Xs∥Xg 0.8766 0.8766 0.8705 0.8731

LR

Xm 0.5879 0.5694 0.5470 0.5257

Xs 0.6457 0.6396 0.6184 0.6159

Xg 0.8451 0.8446 0.8375 0.8403

Xm∥Xg 0.8609 0.8581 0.8575 0.8578

Xm∥Xs∥Xg 0.9108 0.9108 0.9065 0.9084

AdB

Xm 0.4961 0.4963 0.4962 0.4935

Xs 0.5512 0.5453 0.5459 0.5451

Xg 0.8294 0.8258 0.8253 0.8256

Xm∥Xg 0.8058 0.8034 0.8094 0.8041

Xm∥Xs∥Xg 0.8425 0.8389 0.8399 0.8394

GNB

Xm 0.5433 0.6357 0.5885 0.5182

Xs 0.6115 0.6037 0.6041 0.6039

Xg 0.8241 0.8200 0.8223 0.8210

Xm∥Xg 0.8110 0.8092 0.8155 0.8096

Xm∥Xs∥Xg 0.8504 0.8467 0.8515 0.8484

overall, LR outperforms other models in the performance comparison, achiev-

ing the highest accuracy of 0.9108 and an F1 score of 0.9084 when utilising a

combination of standalone, sequential, and ground truth features Xm∥Xs∥Xg.
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6.4.2 Performance of Various RNNs

This section presents KNN, LR, AdB, and GNB performance metrics across vari-

ous RNN models, including RNN, LSTM, and BiLSTM, focusing on Xm∥Xs∥Xg

configurations.

Table 6.4: F1 score of various RNN on Xm∥Xs∥Xg

Model Architecture Acc Pre Rec F1 score

KNN

RNN 0.8425 0.8392 0.8392 0.8392

LSTM 0.8661 0.8706 0.8559 0.8609

BiLSTM 0.8766 0.8766 0.8705 0.8731

LR

RNN 0.8609 0.8581 0.8575 0.8578

LSTM 0.9081 0.9093 0.9027 0.9055

BiLSTM 0.9108 0.9108 0.9065 0.9084

AdB

RNN 0.7795 0.7755 0.7795 0.7767

LSTM 0.8241 0.8203 0.8247 0.8218

BiLSTM 0.8530 0.8494 0.8514 0.8503

GNB

RNN 0.8163 0.8135 0.8193 0.8145

LSTM 0.7375 0.7556 0.7544 0.7375

BiLSTM 0.8504 0.8467 0.8515 0.8484

Table 6.4 shows that the BiLSTM architecture proves most effective for KNN,

achieving the highest accuracy (0.87664) and surpassing both RNN (0.8425) and

LSTM (0.8661). Similarly, BiLSTM achieves the best F1 score (0.8730) within

the Xm∥Xs∥Xg feature setting. For LR, accuracy increases from 0.8609 (RNN)

to 0.9081 (LSTM), and the F1 score improves from 0.8578 to 0.9055. Finally,

BiLSTM achieves the highest accuracy (0.9108) and F1 score (0.9084).

Similarly, the AdB model, under the RNN architecture, attains an accuracy

of 0.7795 and an F1 score of 0.7767. Switching to LSTM improves the F1 score

to 0.8218, followed by BiLSTM with an F1 score of 0.8503. This emphasises

the effectiveness of AdaBoost in capturing temporal features. GNB achieves an
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Fig. 6.3. Performance of various RNN on Xm∥Xs∥Xg

accuracy of 0.8163 and an F1 score of 0.8145 under RNN. Shifting to LSTM

architecture slightly decreases GNB’s performance (accuracy: 0.7375, F1 score:

0.7375), suggesting challenges in capturing long-term dependencies. However,

the BiLSTM model revitalises GNB’s effectiveness, resulting in an accuracy of

0.8504 and an F1 score of 0.8484, demonstrating the model’s ability to leverage

bidirectional information for improved predictive capabilities.

The Figure 6.3 indicates that the performance in the BiLSTM architecture

consistently outperforms others, yielding the highest F1 scores across various su-

pervised learning algorithms. Specifically, under the BiLSTM setting, LR and

AdB exhibit F1 scores of 0.9084 and 0.8503, respectively, underscoring the effec-

tiveness of bidirectional long short-term memory in achieving a balance between

precision and recall. In contrast, the GNB model demonstrates relatively lower

F1 scores, particularly under the LSTM configuration, with an F1 score of 0.7375.

Overall, the BiLSTM architecture stands out for insider threat prediction because

it understands complicated patterns and relationships over time in user activities.

6.4.3 F1 Score of Various Predictive Length on Bi-LSTM

This section comprehensively overviews the Bi-LSTM model’s performance under

various predictive lengths. This experiment evaluated four KNN, LR, AdB, and
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Table 6.5: F1 score of various predictive lengths on Bi-LSTM

Model 1 2 3 4 5 6 7 8

KNN 0.8806 0.9086 0.8895 0.8520 0.8731 0.8522 0.8630 0.8602

LR 0.8689 0.9138 0.8898 0.8869 0.9084 0.8662 0.8843 0.8606

AdB 0.8269 0.8697 0.8850 0.7949 0.8503 0.8116 0.8308 0.7959

GNB 0.6154 0.7017 0.7682 0.8054 0.8484 0.7937 0.8030 0.7740

GNB algorithms across eight predictive lengths. This allows for exploring their

performance in diverse temporal contexts with the Xm∥Xs∥Xg feature combi-

nation.

The presented Table 6.5 illustrates the F1 scores of various predictive lengths

on the Bi-LSTM model, with each model denoted as 1 to 8. In the KNN model,

it consistently performs well across all predictive lengths. Notably, the predictive

lengths of 2, 5, and 6 yield high F1 scores above 0.9, showcasing the robustness of

KNN in various prediction scenarios. Similarly, LR exhibits strong performance,

particularly at predictive lengths 2 and 5, with F1 score values of 0.9138 and

0.9084, respectively.

On the other hand, AdB shows a moderate performance, with scores ranging

from 0.7949 to 0.8850. Fluctuating scores suggest limitations in handling se-

quences of different lengths. Furthermore, GNB consistently lags, with F1 scores

from 0.6154 to 0.8484, implying challenges with the complexities of predictive

lengths.

Figure 6.4 demonstrates that KNN and LR emerge as robust choices, display-

ing consistent high performance across various predictive lengths. AdB, while

effective in a specific length of 3, shows sensitivity to changes in sequence length,

and GNB appears less suitable for this particular task based on the observed

F1 scores. Predictive length 2 is more suitable than other predictive lengths for

achieving effective results in this experiment.
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6.4.4 Impact of BiLSTM Embedding Size on Performance

In this experiment delves into the impact of various embedding sizes (16, 32, 64,

and 128) on the performance of a BiLSTM architecture with a fixed sequence pre-

dictive length of 5. The input features for the BiLSTM model are a combination

of Xm, Xs, and Xg, likely representing different data modalities that contribute

to the overall prediction task.

The evaluation employs diverse machine learning algorithms: KNN, LR, AdB,

and GNB. This allows us to compare the effectiveness of different learning paradigms

when dealing with the interplay between embedding size and BiLSTM perfor-

mance.

The results in Table 6.6 demonstrate a clear trend for most models. As the

embedding size increases, so does the F1 score, indicating improved performance.

For instance, KNN’s F1 score steadily climbs from 0.8392 on an embedding size

16 to 0.8731 on an embedding size 128. Similarly, LR exhibits a consistent rise

in F1 score with larger embedding sizes, achieving its peak performance at 128.

LR outperforms all other models for all embedding sizes except 16, where KNN
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Table 6.6: Performance various embeded size on BiLSTM

Model 16 32 64 128

KNN 0.8392 0.8499 0.8555 0.8731

LR 0.8578 0.8731 0.8787 0.9084

AdB 0.8019 0.8048 0.8580 0.8394

GNB 0.8096 0.8176 0.8186 0.8484
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takes a slight lead.

In contrast, AdB presents a contrasting pattern, reaching its peak F1 score

at an embedding size of 64 before declining at 128. This suggests that for AdB,

a sweet spot exists where a larger embedding size might introduce unnecessary

complexity. GNB, on the other hand, follows the prevailing trend, attaining its

highest performance with an embedding size of 128. These findings highlight

the significance of selecting an optimal embedding size to maximise the BiLSTM

model’s effectiveness. While Figure 6.5 visually confirms the generally positive

impact of larger embedding sizes, the extent of this influence varies across different

machine learning algorithms.

6.5 Summary

This chapter tackles the critical issue of predicting insider threats to minimize

damage to an organisation’s sensitive assets. It proposes a novel approach us-

ing a BiLSTM model to proactively identify potential threats before they occur.

This method analyses past user behaviour, considering both individual actions

and sequences of actions, along with information about the current day. The

researchers conducted experiments on the CERT r4.2 dataset, comparing the

BiLSTM model’s performance across different feature combinations (standalone,

sequential, and combined) and against other RNN architectures. They also eval-

uated the BiLSTM’s effectiveness with a specific feature set and its performance

under various prediction horizons (1-8 days) and embedding layer dimensions.

To ensure a comprehensive understanding, the chapter compared the BiLSTM

model with various machine learning algorithms. These comparisons confirmed

that the BiLSTM with the combined features achieved superior results in terms of

F1 score across all prediction horizons and embedding sizes tested, outperforming

other feature combinations and RNN architectures.
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Chapter 7

Conclusion & Future Work

This chapter concludes the thesis by highlighting the study’s main contributions,

discussing its limitations, and exploring promising directions for future investiga-

tion.

7.1 Summary of Contributions

Insider threats, a growing worldwide problem, pose a significant risk as autho-

rized users leverage their access for malicious or negligent purposes. Stolen data,

sabotage, and difficulty detecting trusted insiders with legitimate access can cause

financial loss, reputational damage, and operational disruptions. The global busi-

ness landscape further intensifies the issue, with remote workforces and diverse

locations challenging consistent security protocols. As reliance on technology in-

creases and economic pressures fluctuate, organisations must prioritize measures

such as employee screening, access control, data encryption, and incident response

plans to mitigate these ever-present threats.

While conventional research on insider threats has primarily concentrated on

developing detection algorithms, there has been a recent trend towards exploring

the human aspect. Nowadays, cybersecurity experts are increasingly focusing on

identifying behavioural patterns and motivations that might predict malicious

intent. Additionally, research expands beyond technical solutions, exploring or-
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ganisational culture, access control policies, and employee training programs as

potential deterrents.

This holistic approach promises a more comprehensive understanding of in-

sider threats, leading to more effective prevention and mitigation strategies. Many

types of research are proposed to detect and predict insider threats, such as

anomaly-based and behaviour-based. The findings of this research will contribute

to the detection and prediction of insider threats with better performance. The

first challenge in evaluating insider threat detection algorithms is the absence of

standardized datasets and problem settings. Each detection approach uses differ-

ent datasets and different feature extraction methods. This inconsistency hinders

the comparison of different approaches, making it challenging to provide clear

recommendations for decision makers.

The second challenge is that many existing works only use standalone activi-

ties or sequential activities. The third challenge lies in the limitations of existing

research. While previous efforts have focused on identifying malicious insider ac-

tivities after they occur, they offer minimal assistance in preventing these very

risks. Based on the identified limitations of existing research, this study seeks to

achieve the following objectives:

• to evaluate and conduct a comparative analysis of supervised machine learn-

ing algorithms to assess their suitability for insider threat detection in the

same settings.

• to propose a novel method: bilateral insider threat detection to detect ma-

licious insiders. This approach leverages RNNs to analyse both individual

activities and their sequences, enhancing overall detection accuracy.

• to propose a novel method for predicting potential insider threats. The

approach utilizes bidirectional LSTM networks to capture and analyse in-

dividual user actions and the sequences in which they occur. This focus on

sequential patterns allows the model to predict the likelihood of an individ-

ual transitioning into a malicious insider.

This thesis presents a corresponding solution for each to address the aforemen-

tioned objectives. Machine learning and deep learning techniques have emerged
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as promising tools for detecting insider threats. Additionally, various monitor-

ing systems such as SIEM and UAM are crucial in user activity surveillance.

However, current approaches to insider threat detection face two key challenges:

imbalanced datasets, where malicious activities are far less frequent than normal

behaviour, and limitations in capturing the sequential nature of user actions.

This thesis proposed a comparative analysis of supervised machine learning

algorithms to assess their suitability for insider threat detection within a stan-

dardized experimental setting in Chapter 4. Many existing research studies anal-

yse and compare different supervised learning algorithms with various feature

extraction methods using diverse datasets. However, this lack of standardization

in datasets and evaluation metrics makes it difficult to compare the effectiveness

of these approaches and draw definitive conclusions about which method per-

forms best. To address this issue, a comparative analysis of various supervised

machine learning algorithms, including RF, XG Boost, KNN, GNB, DT, MLP,

AdB, and QDA, was conducted. This analysis is performed using the balanced

CERT r4.2 dataset. This technique utilizes the CERT r4.2 dataset and extracts

features containing both text and numerical data.

To prepare these features for the machine learning algorithm, text features

are converted into numerical values, with ”1” representing the presence of a fea-

ture and ”0” representing its absence. Moreover, no existing work researches

the impact of hyperparameters in ML algorithms. This chapter compares the im-

pact of hyperparameter modifications on the performance of the machine learning

models KNN, DT, and AdB in the balanced dataset. Similarly, existing in its

exploration of the impact of varying imbalanced dataset ratios. This study in-

vestigates the performance of various supervised machine learning methods in

handling imbalanced datasets, a common challenge in real-world scenarios. We

specifically examine how these methods perform under different levels of class im-

balance, ranging from a high imbalance of 0.5% insider representation to a more

balanced 40% insider representation. Compared with existing works, the results

demonstrate a similar trend: performance degradation for all algorithms as the

class imbalance level increases. However, this study uniquely identifies random

forest as the most resilient algorithm across all imbalanced scenarios.
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The aforementioned approaches only use standalone features. Similarly, tra-

ditional insider threat detection involves analysing user logs and developing clas-

sifiers to categorize individuals as malicious or not. However, these methods only

consider individual activities or sequences. A more comprehensive approach is

needed to capture the complex and nuanced nature of insider threats. To address

the limitations of existing methods, Chapter 5 proposed a novel bilateral insider

threat detection framework. This approach leverages both individual user activi-

ties and their sequential patterns, leading to a more comprehensive understanding

of user behaviour and improved detection of malicious insiders. To capture these

sequential patterns, the chapter employed a feature extraction method based on

RNNs. RNNs extract sequential features from data, making them well-suited

for extracting sequential data. Experiments on the CERT r4.2 insider threat

detection benchmark evaluated the performance of various RNNs with differing

capabilities for handling sequential data. The experiment compared a standard

RNN, an LSTM network adept at learning long-term dependencies, and a BiL-

STM that analyses data in both directions for richer context. This evaluation

aimed to identify the model best suited to capture the sequential patterns in user

activities indicative of malicious insider threats. In this approach, the feature

extraction process involved two main steps. First, manual feature engineering

extracted five behavioural features from the user activity data in ”device.csv”

and ”logon.csv” files. These features capture daily activity patterns and rely

on domain knowledge about suspicious behaviours. The second step focused

on extracting sequential features. This step involved transforming user activity

sequences into numerical representations suitable for learning algorithms. The

experiments on the CERT 4.2 dataset yielded positive results for the proposed

bilateral approach. This approach, which analyses both individual user activi-

ties and their sequential patterns, significantly outperformed algorithms that rely

solely on standalone features. This highlights the importance of considering the

order and context of user actions in identifying insider threats.

The aforementioned existing research is constrained by limitations that im-

pede proactive prevention efforts. Previous investigations have predominantly fo-

cused on identifying insider threats post-occurrence, providing limited assistance

in preemptively thwarting such incidents. To solve this issue, chapter 6 proposed
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a comprehensive framework for insider threat prediction, leveraging user activity

features, including the ground truth of each day. This framework addresses the

challenge of accurately identifying potential insider threats by considering both

standalone and sequential user activity data from previous days. Moreover, a

systematic evaluation is conducted to assess the impact of integrating standalone

features Xm, sequential features Xs, and the ground truth for a specific day Xg

on insider threat prediction accuracy. This comprehensive assessment involves a

comparative analysis of the performance of three different models: RNN, LSTM,

and BiLSTM on Xm∥Xs∥Xg. Furthermore, the investigation delved into the

impact of varying predictive lengths on BiLSTM’s ability to predict threats. Ad-

ditionally, exploration was undertaken on the impact of various embedding sizes

(16, 32, 64, and 128) on a BiLSTM architecture with a fixed sequence predic-

tive length (e.g., 5). All models were evaluated using the combined feature set

Xm∥Xs∥Xg. In this chapter, the feature extraction process is divided into three

parts: manual features, sequential features, and ground truth of the day. Man-

ual features are extracted from device.csv and logon.csv files in the CERT r4.2

dataset. Five features (m1-m5) are derived to capture the user’s daily routines.

Sequential features capture the order of user activities in a day. Each unique

activity is assigned a numerical code based on activity type and working/off-

hour occurrence. These encoded activities are then arranged chronologically into

sequences. Ground truth of the day Xg is a binary feature indicating a user’s

transition to insider activity. It is derived from timestamps of confirmed in-

sider historical data and captures the specific day the user’s behaviour deviates

from normal patterns. The experiment results show that combining all features

Xm,Xs,Xg with a BiLSTM model proved the most effective. This approach

achieved the highest F1 scores across various testing conditions, consistently out-

performing other feature sets and model types.
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7.2 Study Limitations

7.2.1 Imbalanced Data

In insider threat detection, a significant hurdle is the class imbalance problem.

This arises because most user activity represents legitimate actions (normal class).

This creates a lopsided dataset to train detection models. These models inher-

ently prioritize identifying the dominant class (normal activity), making them

susceptible to overlooking rare instances of malicious insider activity (minority

class). This can lead to a situation where the models perform well at identifying

normal behaviour but fail to detect the crucial yet infrequent signs of malicious

intent. The models become overly focused on the common and miss the rare,

critical threats. Addressing this class imbalance is crucial for building effective

insider threat detection systems.

7.2.2 High False Alarm

Insider threat detection systems are plagued by high false alarm rates when config-

ured with excessive sensitivity. This oversensitivity leads to many false positives,

where innocent activities are mistakenly flagged as malicious. Security teams be-

come inundated with these false alarms, diverting their focus and resources from

investigating genuine threats. The challenge lies in calibrating the system to

effectively detect malicious activity without generating overwhelming false alerts.

7.2.3 Lack of Real-world Data

The lack of real-world data hinders the building of strong detection models for

insider threats. While helpful, public datasets like CERT are often synthetically

generated, creating a gap between simulated and real-world scenarios. These syn-

thetic datasets might contain randomly generated activities that lack the com-

plexity of true insider attacks. This dearth of real-world data makes it challenging

to train models that can effectively handle the full range and intricacy of insider

threats in the real world.

138



7.3 Future Work Directions

7.3.1 Imbalanced data

Insider threat detection remains challenging due to the inherent imbalance in

available data. Future research should focus on improved data collection strate-

gies. Furthermore, exploring machine learning algorithms suitable for imbal-

anced data, alongside deep learning and unsupervised learning techniques, holds

promise. Human expertise will remain crucial, so integrating machine learning

with human analysis and fostering explainable AI is vital. Finally, considering

adversarial learning and broader behavioural analysis will be essential to stay

ahead of evolving insider threats.

7.3.2 Dataset

The future of insider threat detection hinges on leveraging a wider range of data

sources, each with its strengths and limitations. System logs offer a detailed his-

tory, but future systems need to glean context from user activity data (keystrokes,

mouse movements) while addressing privacy concerns and storage costs. Network

traffic analysis will require advanced algorithms to pinpoint unusual data trans-

fers amidst the ever-growing volume. Content analysis, though valuable, needs

anonymization techniques to ensure data privacy. Finally, exploring psychological

data (surveys, biometrics) holds promise, but ethical considerations necessitate

careful interpretation and validation methods. By overcoming these limitations

and harnessing the power of diverse data, future insider threat detection can

become more robust and proactive.

7.3.3 New Theories

Moving beyond traditional methods, exploring new theoretical approaches like

hybrid techniques holds immense promise for insider threat detection. These

techniques combine the strengths of different approaches to address the limita-

tions of individual methods. Hybrid techniques offer the following advantages:

139



Combining Supervised and Unsupervised Learning: Supervised learn-

ing excels at identifying known threats, while unsupervised learning excels at

detecting anomalies. Combining them allows for leveraging pre-defined threat

indicators while also adapting to novel insider tactics.

Enhancing Anomaly Detection with Context: Traditional anomaly de-

tection in system logs might miss insider threats with subtle behavioural changes.

Hybrid approaches can integrate user context (department, access level) and psy-

chological data to understand suspicious activities better.

Leveraging Content Analysis with Network Traffic Data: analysing

content alone might miss exfiltration attempts via network channels. Hybrid

approaches that combine content analysis with network traffic data can provide

a more comprehensive picture of potential insider activities.

7.3.4 Federated Learning for Decentralized Training

Federated learning offers a promising approach to address the challenge of siloed

and sensitive insider threat data within organisations. Traditional methods often

require centralizing this data, raising privacy concerns. Federated learning allows

training deep learning models directly on decentralized datasets across different

departments. Each department trains a local model on its own data and only

shares model updates, not the raw data. This collaborative approach leverages

the collective power of the organisation’s data for improved threat detection while

maintaining departmental data privacy.

7.3.5 Practical Evaluation Metrics

Insider threat detection suffers because common evaluation metrics like accuracy

don’t account for the rarity of insider incidents. To address this, future research

should explore the use of cumulative recall (CR-k) which considers a daily budget

for investigating suspicious activities. CR-k prioritizes catching real threats even

if they mean some false alarms, which better reflects the true cost of missing an

insider attack.
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