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Abstract
For modern information systems, robust access control mechanisms are vital in safeguarding
data integrity and ensuring the entire system’s security. This paper proposes a novel semi-
supervised learning framework that leverages heterogeneous graph neural network-based
embedding to encapsulate both the intricate relationships within the organizational structure
and interactions between users and resources. Unlike existing methods focusing solely on
individual user and resource attributes, our approach embeds organizational and operational
interrelationships into the hidden layer node embeddings. These embeddings are learned
from a self-supervised link prediction task based on a constructed access control hetero-
geneous graph via a heterogeneous graph neural network. Subsequently, the learned node
embeddings, alongwith the original node features, serve as inputs for a supervised access con-
trol decision-making task, facilitating the construction of a machine-learning access control
model. Experimental results on the open-sourced Amazon access control dataset demon-
strate that our proposed framework outperforms models using original or manually extracted
graph-based features from previous works. The prepossessed data and codes are available on
GitHub,facilitating reproducibility and further research endeavors.

Keywords Access control · Semi-supervised learning · Heterogeneous graph · Node
embedding · Link prediction

1 Introduction

In the contemporary era of rapid technological progress, organizations and individuals enjoy
notable benefits in terms of enhanced convenience and productivity [1]. However, techno-
logical advancement also brings forth concerns, particularly as the volume of sensitive data
and system complexity increase, prompting a growing awareness and emphasis on data pri-
vacy issues and system security protection [2–4]. Access control serves as the first line of
safeguard, mitigating the risk of unauthorized resource access or data breaches [5–8]. In
an era where information is a valuable asset, effective access control strategies contribute
significantly to organizations’ overall security posture, fostering trust among stakeholders
and ensuring compliance with regulatory requirements [9–11].
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Traditional role-based access control (RBAC) strategies solely assign resource access
permissions to users basedon their roles,which suffer from limited context awareness and lack
of granularity [12, 13]. Consequently, RBAC often grants users more data or resource access
than necessary. On the other hand, attribute-based access control (ABAC) strategies make
authorization decisions based on attributes or characteristics of users, resources, and even
system environments rather than relying solely on roles [14]. While ABAC strategies offer
more fine-grained and flexible access control policies than RBAC, they still face challenges
due to the increasing complexity in design and implementation as the scale of users and
attributes grows [15, 16].

Some scholars have attempted to develop machine learning (ML) and deep learning (DL)
models for various applications including security [17, 18], data quality [19–22], health infor-
matics [23–25] and access control decision-making to enhance efficiency and adaptability to
concept drifts. While partial verification of their efficiency and adaptive capabilities has been
achieved, addressing the explainability and reliability of ML/DL methods remains essen-
tial. With recent advancements in knowledge graphs (KGs), graph theory, and graph neural
networks (GNNs) [26], more scholars are turning to graph-based methods to improve the
efficiency, performance, explainability, and reliability of access control decision-making. For
instance, Morgado, C., Baioco, GB., Basso, T., et al. proposed a security model to provide
access control for NoSQL graph-oriented database management systems, preserving data
integrity and protecting against unauthorized access [27]. Shan, D., Du, X., Wang, W., et
al. introduced a critical provenance identification framework based on heterogeneous graph
neural networks (HGNNs) to address dynamic attribute generation and multi-source aggre-
gation challenges arising from big data resources in dynamic access control scenarios [28].
Specifically, Mingshan, Y. et al. devised an algorithm to construct an access control KG from
user and resource attributes, then extracted topological features from the constructed KG
to represent high cardinality categorical user and resource attributes for building ML-based
access control models [29].

Despite the aforementioned progress, the unavailability of data and codes hinders repro-
ducibility and comparisonwith traditionalML/DLmodels [16, 30–32]. Furthermore, existing
literature lacks discussions on the impact of different relationship types on access con-
trol decision-making performance [33–36]. This paper aims to explore the capability of
HGNNs in integrating multi-source and multi-relationship data from large-scale information
systems comprising tens of thousands of users and resources. Specifically, we propose a semi-
supervised learning framework based on an access control heterogeneous graph (ACHG).
Firstly, we employ a self-supervised node embedding strategy based on an HGNN link pre-
diction task to learn node embeddings of users and resources. Subsequently, a supervised
MLmodel is trained as the classifier to make access control decisions, utilizing learned node
embeddings and original user and resource attributes.

The contributions of this paper are threefold:

(1) We introduce a comprehensive HGNN-based semi-supervised learning framework for
access control decision-making. This framework utilizes a self-supervised node embed-
ding strategy to learn node embeddings from an ACHG. Subsequently, a supervised
ML model is trained from access control log files by integrating node embeddings and
original features of users and resources as the features of access requests.

(2) We conduct empirical research to explore the impact of different relationship types
and node embedding lengths of heterogeneous graphs on access control performance.
Our investigations validate insights from existing literature regarding the influence of
heterogeneity and node embedding complexity on downstream task performance. These
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findings offer valuable insights for designing and implementing future heterogeneous
graph-based applications, including access control decision-making.

(3) We validate the effectiveness of node embeddings learned from an end-to-end HGNN-
based self-supervised link prediction task in enhancing access control decision-making
performance. This is demonstrated through experiments conducted on an open-sourced
Amazon access control dataset [37]. We share our data and codes on GitHub to facilitate
reproducibility and inspire future research endeavors.

We organize the rest of the paper as follows. Section 2 provides essential definitions, concepts,
and mathematical notions for the subsequent sections, including heterogeneous graph, meta-
path, node embedding, and link prediction, establishing a foundation for the remainder of
the paper. Section 3 outlines the components and workflow of the proposed semi-supervised
learning framework. Dataset introduction, experimental settings, evaluation metrics, experi-
mental design, results, and discussion are presented in Section 4, followed by a conclusion
in Section 5.

2 Preliminaries

Definition 1 (Heterogeneousgraph)Aheterogeneousgraph is definedasG = {V, E,TV,TE,

XV,XE}, where V and E denote the node and edge sets respectively, TV and TE are the node
type and edge type sets accordingly, and XV and XE are the original attribute (feature)
matrices of nodes in V and edges in E . Each node v ∈ V belongs to a node type T v ∈ TV

and has a feature xv ∈ XT v ∈ XV, where XT v
is the feature matrix of all nodes belongs

to node type T v . Similarly, each edge evu ∈ E belongs to an edge type T e ∈ TE and has a
feature xe ∈ XTe ∈ XE, where v ∈ V is the edge head, u ∈ V is the edge tail, and XT e

is the
feature matrix of all edges belongs to edge type T e.

The edgeswithin a heterogeneous graph can be described by a series of adjacencymatrices,
AE. Specifically, for an edge type (relationship) T e ∈ TE , AT vT u ∈ AE is the corresponding
adjacency matrix from node type T v to T u , whose dimension can be described as AT vT u ∈
R

|V |×|U |, where |V | and |U | are the total number of nodes belongs to node types T v and T u ,
respectively.

Given a heterogeneous graph, G = {V, E,TV,TE,XV,XE}, if |TV| = |TE| = 1, |XV| ≤ 1
and |XE| ≤ 1, it means that G contains only one node type, one relationship type, and at
most one node feature matrix and one relationship matrix. In this case, it degrades into a
homogeneous graph.

Example. An ACHG is illustrated in Figure 1 (b), which contains five types of nodes:
user, resource, department, title, and manager ( Figure 1 (a)). These nodes are connected by
different types of edges, such as the has_manager relationship between node types user and
manager and the has_department relationship between node types user and department.

Definition 2 (Meta-path) A meta-path is the path with a predefined node-edge type pat-

tern, denoted as P � T v
1

T e
1→ T v

2

T e
2→ · · · T e

l−1→ T v
l , where {T v

1 , T v
2 , · · · , T v

l } ∈ TV and
{T e

1 , T e
2 , · · · , T e

l−1} ∈ TE. The total number of nodes in a meta-path is l, and the total num-
ber of edges in a meta-path is l − 1. For convenience, the edge types can be omitted when
describing a meta-path, i.e., P = T v

1 →T v
2 → · · · →T v

l . Given a meta-path P , the paths that
follow the pattern of P are the instances of the meta-path.

Example. As demonstrated in Figure 1 (c), we list four instances of four different
meta-paths: user-resource-user, user-department-user, user-title-user, and user-manager-user,
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Figure 1 An illustrative example of an undirected ACHG. (a) Five types of nodes (i.e., user, resource, depart-
ment, title, manager). (b) An ACHG consists of five types of nodes and four types of edges. (c) Four instances
of meta-paths in ACHG (i.e., user-resource-user, user-department-user, user-title-user, user-manager-user).
(d) An illustration of node embedding: mapping the original attributes of nodes into continuous dense rep-
resentations. (e) An illustration of predicting whether a link exists between user node u4 and resource node
r1

omitting the edge types and directions. Meta-paths convey semantic meanings hidden in a
heterogeneous graph. For example, the meta-path user-department-user indicates that two
users belong to the same department, which is crucial background knowledge for access
control scenarios. In the corresponding instance, u3 - d1 - u4, the user u3’s granted access to
certain resources may be very similar to u4’s.

Definition 3 (Node embedding)Given a heterogeneous graph, G = {V, E,TV,TE,XV,XE},
node embedding refers to the process of representing the original attributes of nodes,XV, into
continuous dense representation matrices, HV, incorporating with edge and edge attribute
information. The mapping relationships betweenXV andHV can be described as fG:XV →
HV.

Example.We demonstrate an ACHG node embedding process in Figure 1 (d). Given that
all nodes belonging to the node type user have original attributes, denoted as XTu ∈ XV. For
a specific user u1, the original attribute is denoted as xu1 ∈ XTu

. Similarly, for all resource
nodes, the original attribute matrix can be presented as XTr ∈ XV. The original attribute
of a specific resource r1 is denoted as xr1 ∈ XTr

. With a mapping function fG , all original
attribute matrices in XV are transformed into continuous dense representation matrices in
HV. Specifically, xu1 and xr1 are also embedded into hu1 and hr1 . Typically, HGNN models
can be used to conduct node embedding.

Definition 4 (Link prediction)For any nodes u, v ∈ V , given their node embeddings, denoted
as hu and hv , link prediction is the process of learning a classifier fc that classifies whether a
link exists between hu and hv , based on the feature fusion of hu and hv . It can be formulated
as ŷ = fc(hu ⊕ hv), where ŷ is the predicted result and ⊕ is the operator of feature fusion,
for example, dot product, concatenation, or average.
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Example. Figure 1 (e) illustrates the process of link prediction between the user node u4
and the resource node r1, given their node embeddings hu4 and hr1 . It involves feature fusion
and classification stages. When user u4 requests access to resource r1, the link prediction
result can be used as the access grant decision.

3 Methodology

To fuse attributes and features frommultiple types of nodes and explore the intricate relation-
ships between nodes in an ACHG, we propose a heterogeneous graph-based semi-supervised
learning framework with a self-supervised node embedding component and a supervised link
prediction module for access control decision-making. This section will detail the framework
and its core elements.

3.1 The workflow of the proposed framework

The proposed semi-supervised learning framework consists of three stages: ACHG construc-
tion, self-supervised node embedding, and supervised access control decision-making.

As depicted in Figure 2, the workflow of the proposed framework begins with the
construction of an ACHG, G, based on users’ and resources’ original attributes and organi-
zational/operational information. We adopt the algorithm proposed by Mingshan, Y., et al.
[29] in 2022 to build the ACHG, as we utilize the same open-sourced Amazon access control
dataset. The algorithm starts by creating user and resource nodes and then iteratively builds
new node types and develops relationships between new node types and existing node types
or adds attributes to existing nodes or relationships based on the cardinality of the user’s or
resource’s original attributes.

The general rule for determiningwhether to create a new node type from existing attributes
is based on the cardinality of attributes. If the cardinality of attributes exceeds a preset thresh-
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Figure 2 An illustration of the proposed semi-supervised framework
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old, a new type of node will be created. Otherwise, the attributes will continue to be attributes
of an existing node type. This approach helps avoid adding too many new relationships to
decrease the value of each relationship. For more details on ACHG construction, please refer
to the original paper [29].

Once the ACHG, G, has been constructed, it can be used as the input for Stage 2:
self-supervised node embedding.During this process, anHGNNmodel consisting of a hetero-
geneous graph version of a two-layer GraphSAGE [38] is used to learn embedding matrices
of all node types,HV. FromG, we can select an edge type T e ∈ TE to define a link prediction
task and construct a corresponding dataset. The existing edges of type T e serve as positive
links. Negative links can be generated through negative sampling methods, such as randomly
selecting head and tail nodes with the same node type as the positive links. This process
generates a set of node pairs, denoted as Ee. Subsequently, by mapping and integrating the
node embeddings of nodes in Ee from HV, the features of Ee, denoted as Xe, can be used
as the input for a link prediction classifier, denoted as fec(·). Then, by minimizing the loss
function between the ground truth, denoted as Ye, and the predicted link labels, Ŷe, the HGNN
model parameters will be optimized. Finally, by partitioning the link prediction dataset into
training and validation sets, we monitor the loss function’s value on these sets and employ an
early stopping strategy to ensure the HGNN model is properly trained, avoiding overfitting
or underfitting.

Stage 3 involves supervised access control decision-making. Suppose we have access con-
trol logs, which record historical access control requests in the form of (user, resource) pairs,
denoted as E , and the access grant or refusal results, which can be used as the ground truth Y
of an access control dataset. To achieve better performance and retain potential information
loss in the node embedding stage, both the original attributes of users and resources from
XV and the node embeddings HV calculated from the well-trained HGNN model in Stage
2 are leveraged to generate the final features for access control decision-making, denoted as
X . Subsequently, we use the generated dataset {X , Y} to train a supervised classifier, fc(·),
to make access control decisions. Finally, the well-trained fc(·) can be used for future access
control decision-making.

The ACHG construction process implemented on the open-source Amazon access control
dataset and the statistics of the constructed ACHG will be further described in Section 4.1.
The detailed processes of Stage 2 and Stage 3 are presented in the following subsections.

3.2 Self-supervised node embedding

As described in Definition 1 in Section 2, a heterogeneous graph can be represented as
G = {V, E,TV,TE,XV,XE}. In the context of the constructed ACHG based on the open-
sourced Amazon access control dataset and the algorithm outlined in [29], TV is defined as
{user (T u), resource (T r ), department (T d ), title (T t ), manager (Tm)} and V represents the
set of nodes of all node types inTV. Similarly,TE is defined as {has_potential_access (T eur ),
has_department (T eud ), has_title (T eut , has_manager (T eum )}, with V representing the set of
edges of all edge types in TE. Additionally, XV is given by {XTu

, XTr
}, where XTu

and
XTr

represent the original attribute matrices of node types T u and T r , respectively. Finally,
XE = ∅ indicates that the constructed ACHG contains no edge attributes.

HGNN model: We adopt the GraphSAGE [38] convolutional neural network model as
the base model of HGNN. The message passing process of the l-th layer (l ≥ 1) of a
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homogeneous GraphSAGE model can be formulated as (1).

h(l)
i = W (l−1)

1 h(l−1)
i + 1

|N (i)|
∑

j∈N (i)

h(l−1)
j W (l−1)

2 + b(l−1), (1)

where h(l)
i is the embedding of the l-th layer for a node i ; W (l−1)

1 , W (l−1)
2 , and b(l−1) are the

learnable parameters of the homogeneous GraphSAGEmodel; h(l−1)
i is the (l −1)-th layer’s

embedding of node i ; N (i) is the set of neighbour nodes of node i . Specifically, h(0)
i = xi ,

represents the original attributes of node i .
To generate the HGNN model used in the proposed framework, we first define a two-

layer homogeneous GraphSAGE model, then convert it into its heterogeneous equivalent,
following paper [39]. In HGNN, node embeddings are learned for all node types in TV and
messages are exchanged between all edge types in TE.

Let f (l)
θ be themapping function of themessage passing process of GraphSAGE described

in (1), where θ={W (l−1)
1 , W (l−1)

2 , b(l−1)}. For the heterogeneous version, f (l)
θ will be dupli-

cated along with all edge types in TE and stored in a set { f (l,T e)
θ : T e ∈ TE }. Then, the

message passing process of the heterogeneous GraphSAGE model of layer l can be formu-
lated as (2).

h(l)
i = Agg

T e∈TE
f (l,T e)
θ (h(l−1)

i , {h(l−1)
j : j ∈ N (T e)(i)}), (2)

where N (T e)(i) represents the set of all neighbor nodes of node i ∈ TV under edge type
T e ∈ TE, and Agg denotes the aggregation strategy to use for fusing the node embeddings
generated by different edge types. The general options for Agg include sum, mean, min,
max, or multiplication.

Let the overall mapping function fromXV toHV be fHGNN (�,G), and the node embed-
dings for all node types in TE can be calculated as (3).

HV = fHGNN (�,G), (3)

whereHV is the node embeddings for all node types in TE, and G= {V, E,TV,TE,XV,XE}
is the constructed ACHG. The parameter matrix set � = {θ(l,T e): l ≥ 1, T e ∈ TE}, where
θ(l,T e)={W (l−1,T e)

1 , W (l−1,T e)
2 , b(l−1,T e)}.

Positive/negative sampling. To learn the parameter matrix set� of the HGNNmodel, we
define a self-supervised learning link prediction task on the constructed ACHG. Specifically,
we select the edge type has_potential_access (T eur ) from TE to build a dataset for link
prediction. The positive links can either be the entire set of edges with the relationship T eur

or a randomly sampled subset, a technique known as positive sampling. In either case, these
links’ corresponding ground truth label, denoted as Ye, is set to 1. To generate negative links,
with Ye = 0, we employ negative sampling by randomly selecting head nodes from nodes in
the user type (T u) and tail nodes from nodes in the resource type (T r ).

It’s worth mentioning that if a user node u has potential access to a resource node r , it only
suggests that u may request access to r , but this request may not necessarily be approved.
This scenario is akin to situations in an online shopping heterogeneous graph, where a user
clicks the link on a product, which does not necessarily result in the user making a purchase.

Mapping. Once the node pairs Ee = {(u, r) : u ∈ T u, r ∈ T r } with ground truth Ye are
generated, we can correspondingly create the node embedding feature set for Ee, denoted as
Xe, by mapping the node IDs of Ee with the node embeddings inHV. Specifically, the feature
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for an edge eur ∈ T eur }, where the head and tail node pair (u, r) ∈ Ee, is the concatenation
of node embeddings of nodes u and r , shown in (4).

xeur = [hu ||hr ], (4)

where || denotes the concatenation operation, hu ∈ HTu ∈ HV, and hr ∈ HTr ∈ HV. By
mapping the node embeddings of node pairs (u, r) ∈ Ee fromHV, the corresponding feature
set, Xe, for the link prediction task has been formed.

HGNN training and early stop. After forming the dataset, {Xe,Ye}, for link prediction,
a classifier fec(·) is adapted to generate the predicted results, Ŷe, as shown in (5).

Ŷe = fec(Xe, θec), (5)

where θec is the learnable parameter set of the classifier fec(·). The parameters of the HGNN
model and the classifier, i.e., � and θec, can be jointly learned by minimizing a binary
classification loss function L(Ye, Ŷe).

The early stop strategy is employed to avoid underfitting or overfitting the training pro-
cess. Specifically, the dataset, {Xe,Ye}, is split into a training set and a validation set. At
the beginning of training, both training loss and validation loss decrease. However, when
the HGNN model approaches the best model, validation loss increases when training loss
decreases. The value of patience can be used to control when to stop the training process to
avoid overfitting.

Once the training process stops, the HGNN model is well-trained, and the node embed-
dings in HV calculated from the well-trained HGNN model can be used as the features of
nodes for downstream applications, including node classification, link prediction, and graph-
level tasks.

3.3 Supervised access control decision-making

Access control logs serve as comprehensive records documenting and monitoring activities
related to access control systems. These logs provide detailed insights into who accessed
specific resources, the timing of these access events, and any pertinent details associated
with access attempts. Leveraging these logs is crucial for developing access control decision-
making models tailored to contemporary access control scenarios.

Stage 3 of the proposed framework involves extracting a set of user and resource pairs,
denoted as E = {(u, r) : u ∈ T u, r ∈ T r }, along with the corresponding ground truth of
access requests, denoted as Y . In this context, if an access request from a user node u to a
resource node r is approved, yur ∈ Y equals 1; otherwise, it equals 0.

Features for an access request u → r are sourced from two places. The first one is the
original attributes of users and resources, denoted as xu ∈ XTu ∈ XV and xr ) ∈ XTr ∈ XV.
Another one is node embeddings obtained from the well-trained HGNN model, denoted as
hu ∈ HTu ∈ HV and hr ) ∈ HTr ∈ HV. For each node pair (u, r) ∈ E , the final feature
xur ∈ X used for making access control decisions is calculated using (6).

xur = [xu ||xr ] ⊕ [hu ||hr ], (6)

where ⊕ is the feature fusion operation.
Subsequently, a binary classifier fc(·) is trained and tested on the dataset {X , Y } to make

access control decisions for requests u → r , where (u, r ) ∈ E , following the general practice
of machine learning classification tasks.
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4 Experiments

4.1 Dataset and ACHG construction

This paper uses the open-sourced Amazon access control sample data [37] sourced from
the UCI Machine Learning Repository, comprising two CSV files. The first file provides
static information about original user and resource attributes, serving as the foundation
for constructing the ACHG. We transcribe the provided variable and description details,
organizing them into the first two columns of Table 1. Additionally, we introduce three
columns-Cardinality, Usage, and Action-to describe the process of building an ACHG. The
second CSV file contains a dynamic access control log with 716,063 historical records of
user→ resource requests and their corresponding actions, which include adding or removing
access. This dynamic log is instrumental in generating the (user, resource) pair set E and the
associated ground truth Y for Stage 3 of the proposed framework.

Following the knowledge graph construction algorithm outlined in [29], we set the cardi-
nality threshold to 300. This threshold indicates that if a variable’s cardinality exceeds 300,
it will be utilized to establish a new node type and forge new relationship types between
existing node types and the newly created one. Conversely, variables with a cardinality of
300 or less will be used as attributes of existing node types. Thus, as depicted in Table 1,
apart from the user and resource node types, new node types such as manager, department,
and title are established, along with their corresponding relationships. The schema of the
final constructed ACHG is illustrated in Figure 3, and the statistical overview of the ACHG
is provided in Table 2.

4.2 Experimental setting and self-supervised node embedding results

All experiments in this paper are implemented using Python as the programming language.
The essential libraries employed for data processing include Pandas and NumPy, while Mat-
plotlib is utilized for visualization purposes. Scikit-learn facilitates the implementation of
classifiers during the supervised access control decision-making stage. PyTorch serves as
the primary deep-learning framework, with PyTorch Geometric utilized for the implementa-
tion of HGNN models. More implementation details can be found at the GitHub repository
associated with this paper1. An Nvidia GeForce RTX 2080 Ti GPU is utilized for HGNN
self-supervised training.

To construct the HGNN model described in Figure 2, we build a two-layer homogeneous
GraphSAGE model using the SAGEConv() module. Subsequently, a to_hetero() method is
applied to convert this model into its heterogeneous equivalent. Additionally, we utilize a
ToUndirected() method to convert the constructed ACHG into an undirected graph. This
conversion involves adding reverse connections for all existing edge types.

Then, to build the link prediction dataset for self-supervised node embedding, the 595,506
edges of the form u has_potential_access r are used as positive links in Ee, where the
corresponding ye ∈ Ye = 1. The RandomLinkSplit() method in the torch_geometric package
is then adopted to split Ee into a training set and a validation set, with a split ratio of 0.9:0.1.
Additionally, we set the ratio of sampled negative edges to the number of positive edges as
2, where the corresponding ye ∈ Ye = 0.

1 https://github.com/happyResearcher/ACHG-SSLF
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UserUser

ResourceResource

DepartmentDepartment TitleTitle

ManagerManager

Figure 3 The schema of the constructed ACHG

Since the self-supervised node embedding is not the target downstream application, there
is no need to set a separate test set to evaluate the performance of predicting the existence
of the has_potential_access edges. Instead, only a training and validation sets are required to
train theHGNNmodel and apply the early stop strategy to prevent overfitting and underfitting.

By mapping the node IDs of node pairs in Ee to the output of the HGNN model, i.e.,
the node embeddings in HV, we form the feature set Xe, along with the corresponding
ground truth labels in Ye, to create the dataset for a link prediction task. We utilize the Adam
optimizer with a learning rate of 0.001 to minimize the loss function on the training set,
gradually training the parameters of the HGNN model. To prevent underfitting, we ensure a
sufficiently large number of training epochs. Additionally, adopting the early stop strategy
with a patience of 10 on the validation set to prevent overfitting.

Figure 4 illustrates the learning curve of the self-supervised node embedding process.
The training loss shows a fluctuating decrease over the epochs during the training process.
In contrast, the validation loss reaches its lowest value when the epoch is 112, as indicated
by the red dashed line denoting the early stop checkpoint. Finally, the training process halts
at epoch 122, given that the patience parameter is set to 10 in the experiments. The model
parameters at the early stop checkpoint are preserved as the best-trained HGNN model for
node embeddings.

Table 2 Statistics of the constructed ACHG

Node type Node original attributes Count Relationship type Count

user PERSON_ID, PER-
SON_ROLLUP_1, PER-
SON_ROLLUP_2, PER-
SON_ROLLUP_3, PER-
SON_BUSINESS_TITLE_DETAIL,
PERSON_JOB_CODE,
PERSON_COMPANY, PER-
SON_JOB_FAMILY

36,063

resource RESOURCE_ID, GROUP_ID 33,252 has_potential_access 595,506

department PERSON_DEPTNAME 405 has_department 36,063

title PERSON_BUSINESS_TITLE 4,979 has_title 36,063

manager PERSON_MGR_ID 3,207 has_manager 36,063
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Figure 4 Early stop learning curve of the self-supervised learning process

4.3 Evaluationmetrics

Since access control decision-making for a request where user u requests a resource r is
a binary classification problem, this paper employs four well-known evaluation metrics:
accuracy, precision, recall, and F1 score.

The real-world access control problems are often highly imbalanced, with most requests
being legitimate and only a small proportion being unauthorized [40, 41]. To evaluate the
performance of the proposed framework under different imbalance statuses, three datasets
are manually constructed with ratios of access-approved samples to access-denied samples
set to 5:5, 3:7, and 9:1, in addition to the original dataset with a ratio of 98.41:1.59.

Denying legitimate requests may lead to repeated access control requests or even human
intervention, reducing the smooth operation and efficiency of information systems. Con-
versely, wrongly granting access to unauthorized requests may result in security breaches,
compromised data, legal repercussions, and reputational damage for individuals, organiza-
tions, or systems involved. Therefore, the performance of the minority (negative) class is
more crucial than that of the majority (positive) class for access control problems. In the
following sections, we not only report the macro-average performance of an algorithm over
the whole dataset but also focus on the minority (negative) class exclusively.

To compare the performance of the proposed method with other algorithms, we introduce
a � F1 score defined as (7).

�F1 = F1p − F1c
F1c

× 100%, (7)

where F1p represents the F1 score of the proposed method and F1c represents that of the
comparison method. If�F1 > 0, the proposed method outperforms the comparison method;
otherwise, the comparison method performs better.
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4.4 Access control performance evaluation

To evaluate the performance of the proposed framework in the Stage 3 access control decision-
making task, we compare the HGNN node embedding-based feature extraction strategies
with the non-topological (Nontopo) manual features and topological (Topo) manual features
adopted in [29]. Specifically, the four feature extraction strategies in this section as described
below:

• Nontopo: Denotes the manually extracted non-topological feature set from the orig-
inal attributes of individual users and resources. These attributes include u.userID,
u.titleDetail, u.Company, u.jobCode, u.jobFamily, u.Rollup1, u.Rollup2, u.rollup3,
r.resourceID, and r.resourceType, listed in Table 3 of [29].

• Topo: Represents the topological feature set extracted from a constructed knowl-
edge graph for the link prediction task. These features are derived through a series
of manual topological feature extraction algorithms, including PageRank, ArticleR-
ank, Betweenness, Degree, Closeness, Louvain, HarmonicCloseness, LabelPropagation,
WCC, triangleCount and Modularity, following the implementation of [29].

• NodeEmb: Refers to the node embeddings of users and resources learned from the trained
HGNN model.

• NodeEmb+: Encompasses NodeEmb and the original attributes of users and resources.

The reported results of Nontopo and Topo features in this section are directly excerpted
from Table 4 of [29]. This paper shares exactly the same experimental settings and dataset
splittingmethodswith [29], ensuring consistency and comparability in the evaluation process.

To assess the efficacy of the proposed methods across various classifiers and imbalanced
dataset scenarios, we conducted experiments using different classifiers on a balanced dataset,
as outlined in Section 4.4.1. Additionally, we present the experimental results for different
imbalanced datasets in Section 4.4.2.

4.4.1 Performance comparison on a balanced dataset

Table 3 presents the comparison results on a balanced dataset. The first column, Classifier,
lists four well-known machine learning algorithms: logistic regression (LR), multi-layer
perceptron (MLP), random forest (RF), and support vector machine (SVM), serving as the
fc(·) in Figure 2. The implementations of these classifiers are sourced from the scikit-learn
package, and their hyper-parameter settings can be found in detail in the GitHub project of
this paper.

Table 3 reveals that NodeEmb+ achieves the highest accuracy (Acc(%)) across all classi-
fiers, slightly surpassing NodeEmb and significantly outperforming both Topo and Nontopo.
Specifically, RF stands out as the top-performing classifier, achieving an accuracy of 76.25%.
This trend is also reflected in the macro average F1 scores. Regarding the macro average �

F1, a value of 0.00% for NodeEmb+ signifies that it represents the proposed method. In
contrast, positive values in other rows indicate the percentage improvements that NodeEmb+
achieves compared to the respectivemethods. For example,NodeEmb+demonstrates a 7.94%
improvement in macro average � F1 compared to Nontopo. It is worth noting that the Topo
feature set outperforms NodeEmb+ and NodeEmb in terms of Recall and F1 scores for the
negative class (access reject) when using the SVM classifier. This, however, does not imply
superior overall performance of the Topo feature set, as it performs poorly on the positive
class. This discrepancy could be attributed to the SVM classifier’s proficiency in classifying
the negative class in this specific application scenario.
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The F1 score comparisons of different feature extraction methods across different clas-
sifiers are visualized in Figure 5. It is evident that NodeEmb+ generally exhibits the best
performance, both in terms of the macro average and the negative class. The exception of
Topo on SVM can also be observed in Figure 5. Clearly, the RF classifier achieves the best
performance among the four classifiers. Therefore, we utilize RF as the classifier for the
remaining experiments in this paper unless otherwise specified.

4.4.2 Performance comparison on imbalanced datasets

To assess the robustness of the proposed methods on imbalanced datasets, we randomly
select positive samples to construct datasets with proportions of negative samples set to
0.3 and 0.1. We also investigate the performance on the original access log of the open-
sourcedAmazon dataset, where the negative ratio is 0.0159. Table 4 presents the performance
comparison results, indicating that NodeEmb and NodeEmb+ achieve higher accuracy than
Nontopo and Topo on all imbalanced datasets. Notably, when the minority ratio equals 0.3,
NodeEmb slightly outperforms NodeEmb+, reaching 73.92% on the macro average F1 score
and 61.34% on the minority class F1 score, compared with 73.83% and 61.21% achieved
by NodeEmb+, respectively. Conversely, when the minority ratio equals 0.1 and 0.0159,
NodeEmb+ performs slightly better than NodeEmb. However, overall, the performance of
NodeEmb and NodeEmb+ are comparable and significantly better than that of Nontopo and
Topo. An exception is observed for the minority ratio of 0.0159, where Topo achieves the
best F1 score for the minority class at 5.32%, surpassing NodeEmb+ by 6.03% at 5%. This
result is consistent with the exception noted in Table 3.

Similarly, we visualize the F1 score comparison results over different minority ratios in
Fig 6 to facilitate the interpretation of experimental findings. Overall, the proposedNodeEmb
and NodeEmb+ feature sets consistently outperform the Nontopo and Topo feature sets
proposed in [29].

4.4.3 Discussion

Experiments on various classifiers and imbalance settings consistently demonstrate that the
proposed HGNN-based feature extraction strategies, NodeEmb and NodeEmb+, outperform

Figure 5 Comparison of F1 scores across different classifiers on a balanced dataset
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Figure 6 Comparison of F1 scores across various minority ratios

Nontopo and Topo features, while NodeEmb and NodeEmb+ perform comparably. This
superiority can be attributed to several factors listed below.

• Semantic representation: NodeEmb captures the semantic representations of users and
resources through node embeddings learned from the trained HGNN model. Unlike
Nontopo, which relies solely on manually extracted non-topological features from users
and resources, NodeEmb leverages the underlying structure and relationships within
the constructed access control knowledge graph, resulting in more comprehensive and
informative representations.

• Heterogeneous graph-based information: NodeEmb heterogeneously incorporates
graph-based information, inherently encoded within the knowledge graph’s topology.
Consequently, it can capture complex relational patterns and dependencies among users
and resources simultaneously, surpassing the purely homogeneous extraction of topolog-
ical features in Topo.

• Dimensionality reduction: NodeEmb effectively reduces users’ and resources’ original
high-dimensional feature space into lower-dimensional embeddings, preserving essential
information while mitigating the curse of dimensionality. This allows NodeEmb to cap-
ture relevant patterns and relationships more efficiently than Nontopo and Topo, which
may suffer from high-dimensional feature spaces and potential sparsity issues.

• Adaptive learning: Through iterative learning, NodeEmb refines its embeddings adap-
tively based on the graph’s topology and structure, potentially capturing subtle but
meaningful relationships that may not be explicitly represented in Nontopo or Topo.

Overall, NodeEmb’s ability to capture semantic representations, leverage graph-based
information, reduce dimensionality, and adaptively learn from the knowledge graph con-
tributes to its superior performance compared to Nontopo and Topo in the context of the link
prediction task.

4.5 ACHG graph structure ablation study

As depicted in Figure 3, the constructed ACHG comprises four edge types: has_department,
has_title, has_manager, and has_potential_access. Among these, has_potential_access is
selected for the link prediction task in self-supervised node embedding, as the edge head
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and tail correspond to access requests. Therefore, this relationship is always retained in
ACHG during this graph structure ablation study.

The experiments in this section investigate the impact of graph structure on the final access
control decision-making performance through ablation studies. The results are reported in
Table 5, where the second column shows five different ACHG graph structures. Specifically,
ACHG_All refers to the entire constructed ACHG, as illustrated in Figure 3; ACHG-N
indicates that only the has_potential_access edges are retained, with none of the other types
of edges included; ACHG-M, ACHG-D, and ACHG-T represent ACHG-N supplemented
with has_manager, has_department, and has_title edges, respectively.

Surprisingly, despite the intuitive notion that a more complex graph would contain more
information and lead to better performance, the results show that different ACHG structures
perform equivalently across all negative ratio settings. Specifically, when examining nega-
tive class F1 scores, ACHG-T performs best at 76.51% and 31.93% for negative ratios of
0.5 and 0.1, respectively. For a negative ratio of 0.3, ACHG-M achieves the highest score at
61.38%, while ACHG-All performs best at 5% for a negative ratio of 0.0159. These findings
align with observations from other studies suggesting that explicit edge-type information
does not significantly enhance downstream applications [42]. One hypothesis to explain this
phenomenon is that the current HGNNmessage passing and information fusion mechanisms

Table 5 Performance comparison of various ACHG graph structures

Negative ACHG Acc(%) Macro average Negative class
ratio structure Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

0.5 ACHG-All 76.25 76.27 76.27 76.25 77.40 75.10 76.23

ACHG-M 76.44 76.46 76.46 76.44 77.72 75.04 76.36

ACHG-D 76.18 76.19 76.19 76.18 77.25 75.16 76.19

ACHG-T 76.62 76.66 76.65 76.62 78.00 75.07 76.51

ACHG-N 76.47 76.48 76.48 76.47 77.61 75.33 76.45

0.3 ACHG-All 79.91 77.31 72.18 73.83 72.70 52.85 61.21

ACHG-M 80.02 77.49 72.28 73.95 73.02 52.94 61.38

ACHG-D 79.46 76.81 71.40 73.07 72.20 51.25 59.95

ACHG-T 79.77 77.10 72.02 73.65 72.37 52.65 60.96

ACHG-N 79.83 77.24 72.01 73.68 72.68 52.48 60.95

0.1 ACHG-All 89.64 69.07 60.38 62.92 46.13 23.85 31.44

ACHG-M 89.63 68.98 60.19 62.71 45.99 23.42 31.03

ACHG-D 89.68 69.25 60.39 62.96 46.49 23.82 31.50

ACHG-T 89.69 69.37 60.59 63.18 46.70 24.25 31.93

ACHG-N 89.65 69.11 60.33 62.87 46.24 23.71 31.34

0.0159 ACHG-All 98.07 53.85 51.46 52.01 9.14 3.44 5.00

ACHG-M 98.07 53.78 51.43 51.97 8.99 3.38 4.92

ACHG-D 98.06 53.77 51.45 51.98 8.97 3.41 4.94

ACHG-T 98.07 53.78 51.42 51.96 8.99 3.35 4.89

ACHG-N 98.08 53.78 51.41 51.94 8.99 3.33 4.85
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may be insufficient to discern differences. Another possibility is that the simplest graph ver-
sion already possesses adequate strength to learn all necessary embeddings for the relevant
downstream applications. However, this remains an open question, necessitating further
investigation in future research endeavors.

Figure 7 compares the self-supervised node embedding training time and training epochs
across different ACHG graph structures. The embedding length is set to 64, and the batch
size is fixed at 1024 for all graphs. Among the various graph structures, ACHG-All, the
most complex structure, exhibits the longest training time at 5607.93 seconds and the highest
number of training epochs at 121. ACHG-T, which involves 4,979 title nodes, ranks second
in terms of embedding training time, recording 4410.25 seconds.

4.6 Impact of the embedding length hyper-parameter

This subsection presents the comparison results of hyper-parameter embedding lengths on
performance, embedding training time, and embedding training epochs, as shown in Table 6
and Figure 8. The graph used in these experiments is ACHG-N, and the epoch size is 1024.

As depicted in Table 6, in general, shorter embedding lengths generally outperform longer
ones on the ACHG-N graph constructed in our study. For example, an embedding length of
32 yields the highest accuracy, macro average F1 score, and negative class F1 score when the
negative ratio is 0.5. Similarly, for negative ratios of 0.3 and 0.1, embedding lengths of 16
and 32 perform nearly equally well and outperform other lengths. In the case of a negative
ratio of 0.0159, an embedding length of 16 achieves the best performance in terms of both
the macro average and negative class F1 scores.

Regarding the embedding training time and epochs, a consistent trend emerges: shorter
embedding lengths correlate with longer training times and larger training epochs, as shown
in Figure 8.We hypothesize that this phenomenon occurs because shorter embedding lengths
result in a finer-grained training process, thereby necessitating more time and epochs for con-
vergence but ultimately leading to improved performance. However, it’s worth noting that the
impact of embedding length may vary across different graphs and downstream applications.
Furthermore, the mechanism bywhich embedding length influences the self-supervised node
embedding process remains inadequately understood in the existing literature.

Figure 7 Comparison of node embedding training time and training epochs across different ACHG graph
structures
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Table 6 Comparison of hyper-parameter embedding lengths on performance

Negative Embedding Acc(%) Macro average Negative class
ratio length Pre(%) Rec(%) F1(%) Pre(%) Rec(%) F1(%)

0.5 16 75.81 75.81 75.81 75.81 76.64 75.21 75.92

32 76.61 76.62 76.62 76.61 77.64 75.66 76.64

64 76.39 76.39 76.40 76.39 77.02 76.17 76.60

128 75.98 75.99 75.99 75.98 77.00 75.04 76.01

256 75.65 75.68 75.67 75.65 77.00 74.11 75.53

0.3 16 80.08 77.42 72.59 74.20 72.63 53.89 61.87

32 79.98 77.19 72.61 74.16 72.11 54.20 61.89

64 79.73 76.98 72.06 73.66 72.07 52.91 61.02

128 79.61 77.05 71.54 73.24 72.61 51.39 60.18

256 79.41 76.66 71.46 73.09 71.82 51.59 60.05

0.1 16 89.75 69.68 60.83 63.46 47.28 24.71 32.46

32 89.71 69.51 60.90 63.49 46.91 24.91 32.54

64 89.65 69.17 60.50 63.05 46.32 24.08 31.69

128 89.60 68.86 60.26 62.76 45.74 23.62 31.15

256 89.60 68.85 60.13 62.64 45.74 23.33 30.90

0.0159 16 98.07 54.03 51.55 52.13 9.49 3.61 5.23

32 98.07 53.71 51.41 51.93 8.85 3.33 4.84

64 98.07 53.89 51.49 52.05 9.22 3.50 5.07

128 98.07 53.66 51.37 51.88 8.75 3.24 4.73

256 98.08 53.82 51.40 51.93 9.07 3.30 4.84

5 Conclusion

Access control stands as a fundamental pillar for safeguarding the security and integrity
of modern information systems. This paper introduces an innovative approach, a hetero-
geneous graph-based semi-supervised learning framework, for constructing access control

Figure 8 The relationships of embedding length vs embedding time and embedding epoch

123

35 Page 20 of 24



World Wide Web (2024) 27:35

decision-making models. Through rigorous experimentation on an open-sourced Amazon
access control dataset, the efficacy of this framework is demonstrated in enhancing access
control performance across balanced datasets and various imbalance settings. Moreover, the
exploration of the influence of heterogeneous graph structure and node embedding length
on access control performance offers invaluable insights applicable to a broad spectrum of
heterogeneous graph-based applications. Therefore, this research not only provides a pio-
neering solution for access control but also presents a promising methodology for enhancing
downstream applications based on heterogeneous graphs and HGNNs.
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