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The advancement of convolutional neural networks (CNNs) has markedly progressed in the field of face
detection, significantly enhancing accuracy and recall metrics. Precision and recall remain pivotal for
evaluating CNN-based detection models; however, there is a prevalent inclination to focus on improving true
positive rates at the expense of addressing false positives. A critical issue contributing to this discrepancy is
the lack of pseudo-face images within training and evaluation datasets. This deficiency impairs the regression
capabilities of detection models, leading to numerous erroneous detections and inadequate localization. To
address this gap, we introduce the WIDERFACE dataset, enriched with a considerable number of pseudo-face
images created by amalgamating human and animal facial features. This dataset aims to bolster the detection
of false positives during training phases. Furthermore, we propose a new face detection architecture that
incorporates a classification model into the conventional face detection model to diminish the false positive
rate and augment detection precision. Our comparative analysis on the WIDERFACE and other renowned
datasets reveals that our architecture secures a lower false positive rate while preserving the true positive rate
in comparison to existing top-tier face detection models.

1. Introduction across all positions of multi-scale feature maps with various scales and
aspect ratios. Typically, this framework consists of four key compo-
nents: the backbone, feature module, head network, and multi-task loss.
The feature module employs a Feature Pyramid Network (FPN) [29,
30] to aggregate hierarchical feature maps between the backbone’s
high-level and low-level features. Additionally, modules for refining
receptive fields [16,22,31], such as the Receptive Field Block (RFB), are
introduced to provide abundant hard-surface contextual information.

Face detection constitutes the initial and foundational step for nu-
merous tasks and applications related to faces, including face align-
ment [1,2], facial attribute analysis [3-6], face recognition [7-10], and
identity verification [11]. This makes it an exceptionally crucial task
within the realm of computer vision. Consequently, over recent years,
diverse approaches have been proposed to tackle this challenge from
various angles. Some works [12-14] introduce annotated landmark

information as supplementary supervisory signals, while others [15-21] Furthermore, the multi-task loss encompasses binary classification and

prioritize network design aspects. Additionally, novel loss formula-
tions [15,16,22] and data augmentation methodologies [17,18] have
been put forward. Most notably, certain contributions [21,23] have
initiated a rethinking of matching strategies and label assignment
processes.

Another subset of research focuses on the architecture of face de-
tectors, mainly encompassing single-stage face detectors [12,16,17,22,
24,25], as well as two-stage and multi-stage face detectors [26-28].
Among these, the single-stage approach relies on domain and anchor-
based face detection methods, employing tiling rules and dense anchors
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bounding box regression. The former classifies predefined anchors into
faces and backgrounds, while the latter accurately regresses detected
faces to their precise locations.

All these efforts have significantly elevated the performance of face
detection by focusing on accurately identifying genuine faces. However,
they often neglect another vital face detection metric: the false positive
rate, which gauges the ability to exclude non-authentic images. One
contributing factor to a high false positive rate is the lack of robust
regression ability, leading to Localization (LOC) errors that manifest as
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Fig. 1. Various face detection models exhibit different detection outcomes on both real and fake face images. Our model demonstrates a remarkable ability to accurately discriminate

and exclude fake faces.

Fig. 2. Examples of synthetic face images in our dataset.

numerous erroneous detections and imprecise positioning. Enhancing
the regression capability of facial detectors could mitigate these false
positives stemming from regression errors. As highlighted in [16], with
increasing IoU thresholds, the Average Precision (AP) drastically drops,
indicating the need for enhanced accuracy in bounding box localiza-
tion. Nonetheless, blindly introducing multi-step regression into face
detection tasks can paradoxically yield counterproductive outcomes,
and many multi-view learning [32]and multi-view clustering [33]can
solve these problems, demanding further exploration.

Another factor contributing to a high false positive rate is attributed
to deficiencies within the dataset itself, as facial datasets often include
counterfeit face images. When considering genuine facial images versus
counterfeits, the significance of face detection becomes apparent. The
essence of face detection lies in identifying actual faces for subsequent
recognition or authentication purposes, which generally pertain to
authentic individuals. Ensuring that the detected faces correspond to
real individuals rather than animated or sculpted representations is of
paramount importance. Despite this, within some of the well-regarded
facial detection datasets like FDDB [34] and the WIDERFACE[35]
dataset, instances of non-authentic “faces” can still be found. We
contend that this is less than ideal, as dataset flaws can lead to flaws in
detection outcomes. For instance, training on datasets with a significant
number of non-authentic “face” images may yield models with higher
false positive rates. Such models could potentially compromise down-
stream tasks’ security, such as making identity verification systems

susceptible to attacks or raising safety concerns in autonomous driving
scenarios.

In this paper, we begin by conducting a series of experiments that
highlight the prevalent issue of high false positive rates in current
face detection models (as depicted in Fig. 1). Addressing this issue is
of utmost significance. Subsequently, we introduce a synthetic dataset
named “FAKEFACE”, comprising images that are not actual human
faces but generated through image synthesis. Interestingly, all images
in this dataset are identified as faces by the RetinaFace detector.
Although the authenticity of images in these datasets was not detected
on other face detection models, as this would require a significant
amount of time and efficiency. But it should be noted that Retinaface
has better facial detection capabilities than most detection models, so
its results have enough ability to replace most facial detection models.
Furthermore, we propose a false positive rate evaluation metric for this
dataset, aimed at assessing different models’ ability to exclude non-
genuine images. Lastly, we present a methodology to mitigate the false
positive rates in face detection models. In summary, our contributions
are as follows:

» We conducted relevant experiments to assess the capability of
various face detection models to exclude counterfeit face images.

» We introduced a dataset comprising synthetic facial images that
are all detected as faces. Our dataset can serve as a means to
evaluate the false positive rate of a face detection model.

» Lastly, we presented an approach to mitigate the false positive
rates in face detection models.
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2. Related work

With the advent of the deep learning era, general object detection
has rapidly transitioned under the dominance of deep learning method-
ologies. Multi-task models amalgamate multiple single-task methods
within a single framework. In MTCNN [36], the authors employed a
cascade of image pyramids and shallow CNNs to predict facial bounding
boxes and landmarks. In [29], the naturally occurring feature pyramid
in CNNs was utilized. For landmark localization, additional regression
heads were incorporated into popular detectors such as SSD [37]
and RetinaNet [38], as demonstrated in [12,39]. In [12,40], branches
for predicting facial 3D shapes were added. Mask R-CNN [41] offers
a versatile and flexible architecture for multi-task handling. While
most literature is dedicated to the application of OHEM in face detec-
tion, maskface [14] demonstrated the efficacy of focal loss in yielding
advanced outcomes.

The two-stage approach originated from R-CNN [42] and Fast R-
CNN [43]. Faster R-CNN [28] swiftly introduced the Region Proposal
Network (RPN), replacing selective search with predefined anchor
boxes, thus becoming the most renowned anchor-based general object
detection method. The anchor-based method encounters significant
class imbalance between positive and negative anchors. Class imbal-
ance issues are typically addressed through techniques like Online Hard
Example Mining (OHEM) [37] or dynamically scaled cross-entropy loss
(focal loss) [37,38]. Building upon Faster R-CNN [28], numerous new
methods emerged, such as FPN [29], Mask R-CNN [41], Cascade R-
CNN [44], and more. Context can be modeled by explicitly enlarging
the window surrounding candidate proposals [45]. In single-shot de-
tection methods, context is integrated through additional convolutional
layers that expand the receptive field [20,22].

To overcome the high latency of two-stage methods, several single-
stage methods have been proposed. In single-stage face detection mod-
els, bounding boxes are predicted in a single forward pass [37,46].
To detect challenging objects, such as small or highly occluded facial
features with complex poses, YOLO [47,48] introduced novel anchor
matching strategies that involve feedback on proposals, associating
ground truth with an anchor, and reweighting the regression of object
width and height. Regression and segmentation techniques are utilized
for facial landmark prediction. Regression methods often rely on L1 and
L2 loss or their variations [49-51]. Furthermore, multiple stages for
landmark refinement can be employed to enhance accuracy [49,52].
Non-Maximum Suppression (NMS) [53] is used to compute the final
predicted boxes. Methods that utilize 3D facial reconstruction for dense
landmark prediction also exist [54,55].

For deep convolutional networks, VGG [56] employed an archi-
tecture with very small 3 x 3 convolutional filters to increase depth.
ResNet [57] demonstrated the importance of the information flow and
introduced skip connections to address degradation in deeper networks.
The PyramidBox series [17,18] recommended their own upsampling
blocks to enhance the expressiveness of features for finer facial details.
The Feature Pyramid Network (LFPN) and the Contextual Prediction
Module (CPM) emphasized the significance of context and data anchor
sampling enhancement, merging strong semantic features with low
resolution and weak features from high-resolution layers. DSFD [22] in-
troduced a dual-head detector using Improved Anchor Matching (IAM)
and Progressive Anchor Loss (PAL). Subsequently, RetinaFace [12]
manually annotated five facial landmarks as extra supervisory signals
on facial regions. RefineFace [16] introduced five additional modules:
Selective Two-step Regression (STR), Selective Two-step Classification
(STC), Scale-aware Margin Loss (SML), Feature Supervision Module
(FSM), and Receptive Field Enhancement (RFE).

HAMBox [23] underscored strong regression capability for some
mismatched anchors and proposed an online high-quality anchor min-
ing strategy. Moreover, ASFD [15] employed neural architecture search
techniques to automatically discover architectures for efficient multi-
scale feature fusion and context enhancement. Mogface [58] intro-
duced an adaptive online incremental anchor mining strategy, selective
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scale enhancement strategy, and hierarchical context-aware module,
achieving state-of-the-art results on WIDERFACE [35].

Despite the superior performance of these detection methods, as
shown in Fig. 1, even the most powerful Mogface model has not solved
the problem of false positives. We conducted a series of experiments to
try to solve the problem of false positives.

3. FAKEFACE dataset

In this section, we introduce our proposed dataset called “FAKE-
FACE” a challenging synthetic dataset for face detection(see Fig. 2).
Face detection forms the foundation for downstream tasks like face
recognition and identity verification. The distinction between face de-
tection and facial feature detection needs to be clarified: face detectors
must learn to identify real human faces, rather than images containing
facial features that may belong to animations, sculptures, or graffiti.

While many datasets contain faces with wild makeup or facial
abnormalities, or even heavily blurred faces [59], the classification of
whether these facial images qualify as authentic is a subject of debate.
However, our dataset eliminates such ambiguities. The FAKEFACE
dataset we propose is synthesized using starganv2 [60] and consists
of images blending animal faces with human faces.

3.1. Overview

Our dataset comprises 20,307 trainable synthetic face images, 2303
validation images, and 1410 testing images. We refrained from anno-
tating the dataset, as we do not consider these to be genuine human
face images; however, they exhibit strong facial features, capable of
deceiving many face detection models.

The envisaged scenarios for our dataset’s utilization are as follows:
Train facial detectors on external datasets and test on FAKEFACE.
Alternatively, train/validate facial detectors on the training/validation
partitions of FAKEFACE and test on FAKEFACE.

3.2. Data collection

Our dataset is created by synthesizing “human” faces through the
fusion of human and animal faces using starganv2. We selected human
face images from CelebA-HQ with varying genders, skin tones, and
ages, and combined them with diverse animal face images from AFHQ.
Subsequently, we employed RetinaFace to detect the images that were
classified as faces, and extracted these as part of our dataset. The
fusion of different human and animal features produces the synthesized
“human” faces in our dataset.

The image synthesis model is shown in Fig. 3, The generator con-
verts the input image into an output image, reflects the style code of
a specific domain through instance normalization (IN) [61] downsam-
pling, and outputs the image using adaptive instance normalization
(AdalIN) [62]upsampling. Where the mapping network or style encoder
provides a specific domain style code S, which is injected into the gen-
erator using ADAIN. We sample latent codes from a standard Gaussian
distribution and input them into an MLP to generate the style code. The
style encoder transforms the input style image into a style code using
a CNN.

To generate face images, a generator G takes an image x and a style
code § as input, and learns to generate an output image G(x, 5) through
an adversarial loss:

Eadu =Ex,y[log Dy(X)]+
E, 5:[log(l = Dy(G(x, )] <))

Among them, § = Fj(z) is the style code generated by using a mapping
network to input a random latent code z, and D,(.) and Dj(.) are the

outputs of the discriminator. In order to use the style code § when
generating images, we employ a style reconstruction loss:

£sty = ]Ex,j},z [

|5 - E(Gix, s»“l] @
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Fig. 3. Starganv2 [60] model structure.

And a style diversity loss to enhance the diversity of generated images:

£, =E

= Xz,

(|GG, 1) = G(x, $H)||4] ®

Among them, the target style codes s, and s, are generated by a
mapping network conditional on two random latent codes z; and z,,
respectively. At the same time, in order to ensure that the original
features such as face pose can be maintained in the generated image,
we use the cycle consistency loss:
Loy =Eyy5:0llx = G(G(x,9), 9]

cye

(€]

Among them, § is the style code of the original image. The overall
objective function can be summarized as:

+ Ay, L

GInI-lr}:‘ mgXE sty~sty — j’u’s[idx + AeyeL

cyc™cye )

adv

Where 4, 445, Ay are the hyperparameters of each item, and they are
all set to 1 in our training model.The discriminator structure is consis-
tent with the style encoder and includes multiple output branches.

We selected face images from CelebA-HQ with different genders,
skin tones, and ages, and synthesized them with various animal face
images from AFHQ. The resulting images were then fed into Retinaface
for detection, and any images detected as faces were cropped and
included as part of our dataset. This means that every image in our
dataset is detected as a face by Retinaface.

4. Method

In this section, we will introduce our approach for optimizing and
reducing false positives in face detection. Our method is based on
Retinaface [12], an efficient and fast face detection model. The main
structure of the model is illustrated in Fig. 4, which utilizes a feature
pyramid to extract image features and employs the Context Module to
enlarge the network’s receptive field, enhancing the model’s ability to
capture small facial details. Subsequently, the multi-task loss assists in
simultaneously predicting face scores, face bounding boxes, five facial
landmarks, as well as the 3D positions and correspondences of each
facial pixel, significantly improving the effectiveness of face detection.

Finally, our Classification Module is employed to reduce false positives
and can be applied to other detection models.

Classification Network. We believe that current face detection
models have already achieved very high precision and recall rates on
the WIDERFACE dataset, with only some room for improvement in
terms of details. To address this issue, we adopted an early solution
from object detection, which is image classification. Image classifica-
tion models are not only easy to train but also exhibit good modular
performance and robustness. They can be applied to other face de-
tection models facing high false positive issues. The structure of our
classification network is shown in Fig. 5. The dashed box represents
the ResNet50 network, which is trained using cross-entropy loss for
classification.

Backbone Network. As shown in Fig. 5,for our classifier, we em-
ploy ResNet50 [57] as the backbone network, Output parameters are
computed using cross-entropy loss and updated through the Adam
optimizer to minimize the loss. The depth of this model allows it to
grasp more intricate features, thereby enhancing its accuracy. Addition-
ally, ResNet50 employs residual learning. If the input and output of a
layer are the same, that layer is an identity mapping; if they differ,
it is a residual mapping. ResNet50 uses residual blocks to implement
this concept. Each residual block consists of two convolutional layers
and a skip connection. This skip connection directly passes the input
to the output, mitigating the vanishing gradient problem. The model
also employs global average pooling, computing the average value of
all pixels in each feature map as its output. This technique reduces
the model’s parameter count, thereby curbing the risk of overfitting.
Overall, ResNet50 is a powerful deep learning model widely applied in
the field of computer vision.

Classification Loss. Cross-entropy loss is a commonly used loss
function in deep learning, frequently employed for classification tasks.
It quantifies the discrepancy between predicted and actual outcomes,
serving as a key metric for optimizing model parameters.

N
L(x,y) = = Y x,logy,

i=1

©

Given the input data x and N as the number of classes, where x; denotes
the ith element of the true labels and y; signifies the probability of x
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Fig. 5. The diagram of the classification network structure is shown with dashed lines.

belonging to the ith class, the essence of cross-entropy loss lies in mea-
suring the distance between two probability distributions. When these
distributions are closer, the cross-entropy loss is smaller, indicating
more accurate predictive results from the model.

An added advantage of using cross-entropy as a loss function is
that it sidesteps the issue of diminishing learning rates during gradient
descent, which is commonly encountered with the mean squared error
loss function. This is because the learning rate can be regulated by the
error in the output when employing the sigmoid function.

Optimizer.Adam optimizer [63] combines the advantages of both
AdaGrad and RMSProp optimization algorithms, making it suitable for
sparse gradients and mitigating the issue of gradient oscillation. By
considering both the first-order moment estimate (mean of gradients)
and the second-order moment estimate (uncentered variance of gradi-
ents), Adam calculates the update step. The core concept is to compute
moving averages of gradients and squared gradients at each time step,
using them to update model parameters.

Specifically, the Adam optimizer defines two exponential moving
averages: the first one for the exponential moving average of gradients

and the second one for the exponential moving average of squared
gradients. These two averages are utilized to adaptively adjust the
learning rate for each parameter, achieving the effect of adaptive
learning rates. The update rule for the Adam optimizer is as follows:
To compute the gradient at time step t: g, = V, f,(6,_,) Compute the
exponential moving average of the gradient, where m is initialized to
0. g, is a coefficient that controls the weighting between momentum
and the current gradient, typically set close to 1 (default: 0.9).m, = g, -
m,_; +(1-p)-g,. Next, calculate the exponential moving average of the
squared gradient, with v, initialized to 0.p, is a coefficient that controls
the influence of previous squared gradients (default: 0.999). Weighted
average is applied to the squared gradient.v, = f, - v,_; + (1 — f,) - g,2
Correct the bias of the gradient mean to reduce its impact during the
initial training phase./, = 1'_% Similarly, the bias correction is applied

to vyas well: 9, = # The final formula is as follows:
2
mt

0,=0_1—a- @

Vo, +e
where g, is the gradient of the parameters.;, and g, are decay coef-
ficients for the two exponential moving averages./, and o, are bias-
corrected moving averages of the gradient.d, is the updated parameter.
N = 0.001 is the learning rate.e = 1078 is a small constant to avoid
division by zero.

5. Experiment

In this section, we presented our approach of using an image classi-
fier to address the issue of high false positive rates in object detection,
as described in Section 5.1. Subsequently, the detection validation in
Section 5.2 demonstrated that our method does not compromise the
original effectiveness of object detection. Lastly, Section 5.3 employs
false positive rate assessment to evaluate and validate the outcomes of
our approach in reducing false positive rates.

5.1. Training classifiers

Dataset. For classifier training, we utilized both the CelebA-HQ
dataset and the FAKEFACE dataset. The CelebA-HQ dataset consists of
26,579 training images and 2000 validation images, all with a resolu-
tion of 1024 x 1024. The FAKEFACE dataset contains 20,307 training
images and 2303 validation images, with a resolution of 256 x 256.

Training. Firstly, we adjusted the image data from both datasets
to a size of 224 x 224 pixels and normalized the pixel values to be
within the range of 0 to 1 to meet the input requirements of ResNet-
50. Simultaneously, we split the data into training and testing sets and
employed data loaders for batch loading to efficiently handle the data.

We utilized ResNet-50 as the backbone network, initializing all its
weights randomly, and trained all layers from scratch. In this process,
we employed cross-entropy loss as the classifier’s loss function, which is
a commonly used loss function in multi-class classification problems. To
optimize the model parameters, we used the Adam optimizer, primarily
for adjusting the parameters of the fully connected layers. By iteratively
training on the dataset, we continuously updated the parameters of the
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Fig. 7. Test loss and accuracy for each Epoch in the test set.

fully connected layers, allowing the model to gradually adapt to the
dataset’s features. Throughout the training, the model’s objective was
to minimize the cross-entropy loss as much as possible.

In summary, through this training process, our model gradually
learned the features within the dataset and optimized the classifier by
minimizing the cross-entropy loss to achieve improved classification
performance.

We employed a learning rate scheduler to dynamically adjust the
learning rate during training to optimize the model’s convergence and
performance. After training, we evaluated the model’s performance
using the test set. We trained for 30 epochs on a batch size of 16 on
3070 GPUs, reducing the learning rate by half every 5 epochs. Finally,
we saved the trained network and incorporated the classifier at the end
of Retinaface to assess the face detection performance.

Fig. 6 illustrates the results of our classifier training. The loss
decreases as the batch size becomes smaller, and after 1000 batches, the
training loss stabilizes, while the accuracy approaches 1. This suggests
that our classifier performs well.

Fig. 7 presents the training results on our test set. After one epoch,
the test loss approaches zero, and the test accuracy gradually stabilizes
close to 1.

Classifier Operation. After Retinaface detects a face, we crop the
detected face and feed it into our classifier to determine whether this
detected face belongs to fake faces. If it is determined to be a fake face,
we do not draw a bounding box around it. If it is not a fake face, we
display its detection result in the image as usual and save it.

5.2. Verification of facial detection effect

We will add the trained classifier to the Retinaface network after
the last step, and use Retinaface’s pre trained network and our trained
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classifier to run the WIDERFACE validation function to obtain the facial
label information of the validation set images. Use MATLAB to compare
the evaluation indicators of the validation set on the WIDERFACE
dataset, and draw a recall accuracy curve. As shown in Figs. 8 and 9,
the left table shows the accuracy of each face detection model in each
mode, and the left side shows the recall accuracy curve. Among them,
our model name is Ours T.

As shown in Fig. 8, Although our enhanced Retinaface can reduce
false positives on the FAKEFACE dataset, it also reduces validation
results on WIDERFACE. The accuracy results of the original Retinaface
in simple, medium, and difficult modes are 0.954, 0.940, and 0.844,
respectively. After adding our classifier (Ours-T), the results became:
0.795, 0.788, 0.579. This greatly reduces the performance of the de-
tector, which we believe is due to the classifier only learning facial
information from the training images CelebA-HQ and FAKEFACE, and
mistakenly identifying some facial information from WIDERFACE as
fake facial images.

Therefore, we saved the images detected by Retinaface in the
WIDERFACE training set as the positive training images for the classi-
fier and retrained the classifier. On this basis, we re ran the evaluation
of Retinaface on WIDERFACE, as shown in Figures 9, and the results
met our expectations. Our model remained consistent with Retinaface
in simple and moderate modes, with only 0.001 lower than Retinaface
in difficult modes. Overall, our enhanced face detection model can
ensure the original face detection performance while reducing false
positives.

5.3. False positive rate test

We employed the CelebA-HQ and FAKEFACE datasets as valida-
tion sets containing genuine and fake facial images. The CelebA-HQ
dataset comprises 1421 validation images, while the FAKEFACE dataset
contains 1410 validation images. We assessed the reduction in false
positive rates (FPR) by evaluating the YOLO5-Face, RetinaFace, Mog-
Face, and our enhanced RetinaFace models on these two datasets. The
results are presented in Table 1 as follows:

As shown in Table 1, positive and negative represent the real face
of CelebA-HQ and the “fake” face of FAKEFACE, respectively. “True”
indicates that a certain model judges the face images in the dataset
as true, and “fake” indicates that the model judges the face images
in the “positive” or “negative” dataset as false (for example, 5 in the
table means that the Yolo5 face model judges 5 images in the fake face
dataset as true). Determine the false positive rate of a person’s face
detection model based on its recognition rate of positive and negative
facial images.

Both Retinaface and Mogface have a false positive rate of 100%,
classifying all fake face images as positive. Surprisingly, YOLO5, which
performs slightly worse on the WIDERFACE validation set, can detect
some fake face images. This suggests that when a model’s detection
performance is better, it becomes more challenging to detect fake face
images, possibly due to extreme regression measures causing regression
errors. In contrast, our Model has a false positive rate of only 0.56%,
with only 8 out of 1410 fake face images being misclassified. On
the other hand, our -T Model, which applies the classifier without
incorporating WIDERFACE images in its training, successfully excludes
all fake face images. This also confirms our hypothesis that the presence
of fake face images in the dataset can affect the detector’s robustness.

6. Conclusion

In this paper, we focus on another crucial aspect of object detection,
the false positive rate. We have curated a non-real facial dataset called
FAKEFACE, which provides the opportunity for any face detection
model to train or evaluate its capability to discern and exclude fake
images. Furthermore, we introduce an approach designed to mitigate
the false positive rate of object detection models. Our experiments
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Fig. 8. Using the classifier trained on CelebA-HQ and our FAKEFACE dataset.

(a) Easy

Recal Recal

(b) Medium

Recal

(c¢) Hard

Fig. 9. The classifier trained with the inclusion of face images from the WIDERFACE dataset yields validation results in the WIDERFACE dataset.

Table 1

Our detection model achieves the best performance in fake face validation, making it challenging for other detection models to evade the

deception presented by our dataset.

Yolo5-face Retinaface Mogface Ours-T Ours
Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative
True 1416 5 1421 0 1421 0 1421 0 1421 0
False 1100 310 1410 0 1410 0 0 1410 8 1402
demonstrate that our method effectively reduces the false positive rate References

by 99.5% while preserving the inherent facial detection capabilities of
the model(only a 1% decrease in difficult modes).

Our viewpoint emphasizes that detection models should not only
maintain strong detection performance but also strive to reduce the
false positive rate. Additionally, the accuracy of the dataset proves to
be a significant factor influencing the model’s detection effectiveness.
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