Predicting the web crippling capacity of cold-formed steel lipped channels using hybrid machine learning techniques
Download
Predicting_the_web_crippling_capacity_of_cold-formed_steel_lipped_channels.pdf
- Published Version
(13MB)
| Preview
Available under license: Creative Commons Attribution
Export
Shahin, Ramy I ORCID: 0000-0002-4795-8545, Ahmed, Mizan ORCID: 0000-0001-5499-3181, Liang, Qing ORCID: 0000-0003-0333-2265 and Yehia, Saad A (2024) Predicting the web crippling capacity of cold-formed steel lipped channels using hybrid machine learning techniques. Engineering Structures, 309. ISSN 0141-0296
Dimensions Badge
Altmetric Badge
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/48872 |
DOI | 10.1016/j.engstruct.2024.118061 |
Official URL | https://www.sciencedirect.com/science/article/pii/... |
Subjects | Current > FOR (2020) Classification > 4005 Civil engineering Current > Division/Research > College of Science and Engineering |
Keywords | cold-formed steel lipped channels; web crippling; machine learning; artificial neural network; genetic algorithm; particle swarm algorithm; finite element analysis |
Download/View statistics | View download statistics for this item |
CORE (COnnecting REpositories)