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Abstract: We have previously performed preclinical studies with the oxidized mannan-conjugated
peptide MOG35–55 (OM-MOG35–55) in vivo (EAE mouse model) and in vitro (human peripheral
blood) and demonstrated that OM-MOG35–55 suppresses antigen-specific T cell responses associated
with autoimmune demyelination. Based on these results, we developed different types of dendritic
cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy
controls presenting OM-MOG35–55 or MOG-35–55 to autologous T cells to investigate the tolerogenic
potential of OM-MOG35–55 for its possible use in MS therapy. To this end, monocytes were differen-
tiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin
D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured
with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations
were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On
day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature
phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in
an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in
secreted cytokines, mainly due to increased TGF-β1 levels. The best tolerogenic effect was obtained
when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35–55, resulting in
the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ T cells. In conclusion, the tolerance
induction protocols presented in this work demonstrate that OM-MOG35–55 could form the basis for
the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.

Keywords: peptides; MOG35–55; mannan; vitamin D; dendritic cells; cytokines; regulatory T cells;
immunomodulation; human

1. Introduction

MS is a chronic demyelinating disease of the central nervous system (CNS) with an
inflammatory and autoimmune etiology. A reduced number or dysfunctional regulatory
cells, especially CD4+CD25+Foxp3+ T regulatory cells (Tregs), overactive effector CD4+
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helper T (Th) cells, especially Th1 and Th17, CD8+ cytotoxic T cells, autoantibody produc-
tion and activated antigen-presenting cells (APCs), including dendritic cells (DCs), play a
critical role in mediating an inflammatory milieu that leads to an autoimmune attack on
intrinsic protein components within the myelin sheath. This leads to axonal damage and
neurodegeneration [1]. The best-characterized autoantigens in MS are myelin basic protein
(MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) [2].

A promising approach to combat autoimmune diseases such as MS is immunothera-
pies aimed at restoring tolerance and avoiding the use of non-specific immunosuppressive
drugs or biological agents such as monoclonal antibodies. These include cyclic peptides
based on MBP, PLP and MOG, as well as altered peptide ligands (APL), which are closely
related to native peptides (agonists or wild-type) and have 1–2 substituted amino acid
residues that interact with the T cell receptor (TCR) but retain their binding ability to the
human leukocyte antigen (HLA) [3–6].

Human clinical trials (phase I, II or III) conducted with MBP peptides, agonists or APLs
yielded unsatisfactory results, either because of a lack of efficacy or because, although they
were effective in blocking or switching autoreactive clones, they caused side effects such as
the development of immediate-type hypersensitivity reactions, the formation of antibodies
that cross-reacted with native MBP or poor tolerability [7–10]. Therefore, further extensive
preclinical testing is required, and new peptides must be used with an appropriate carrier
that induces tolerance or alters the resulting immune response.

Mannan, a poly-mannose isolated from the wall of yeast cells, has been shown to
bind to the mannose receptor on DCs and is a ligand for Toll-like receptor 4 [11]. Mannan
conjugated to the cancer protein MUC1 elicits an immune and protective response in mice,
and its translation into human clinical trials has shown both immunologic and clinical
efficacy [12,13]. Due to the immunomodulatory properties of mannan, its effect as a carrier
for MS peptides is being investigated by our group [14].

Mannan in oxidized or reduced form conjugated to the immunodominant agonist
MOG35–55 peptide protected mice in prophylactic and therapeutic protocols against ex-
perimental autoimmune encephalomyelitis (EAE, an animal model for MS), with oxidized
mannan-conjugated MOG35–55 (OM-MOG35–55) yielding the best results. Protection was
peptide-specific and was associated with reduced antigen-specific T cell proliferation but
not with changes in Th1, Th17 and T regulatory cell (Treg) differentiation or T cell apoptosis
compared to EAE in controls [15]. Furthermore, humanized HLA-DR2 transgenic mice
immunized with OM-MOG35–55 were protected against EAE in both prophylactic and
therapeutic protocols [16].

In a previous study [17], in which peripheral blood from patients with relapsing-
remitting MS (RRMS, n = 83) and healthy controls (n = 45) was used to investigate the types
of regulatory cells and how they are affected by disease activity and type of treatment, we
were able to show that in patients in the acute phase of the disease without therapy, the
concentration of CD4+CD25+Foxp3+ T regulatory cells (Tregs) was significantly reduced
compared to healthy controls and that Tregs responded to various peptides mapping to
myelin antigens in culture with proliferation and cytokine secretion, with the OM-MOG35–
55 peptide having the best tolerogenic effect. In addition, the stability and integrity of
OM-MOG35–55 were confirmed using analytical and enzymatic methods [18,19].

To further these studies, we developed different types of DCs from peripheral blood
monocytes of MS patients presenting OM-MOG35–55 or MOG-35–55 to autologous T
cells to investigate the tolerogenic potential of OM-MOG35–55. Our working hypothesis
is that the OM-MOG35–55 conjugate is a strong candidate for a therapeutic vaccine or
immunomodulatory treatment of MS in the context of personalized medicine.

2. Results
2.1. Development of DCs from Peripheral Blood Monocytes

Monocytes isolated from PBMCs of RRMS patients and controls were differentiated
into different DC types in the presence of IL-4 and GM-CSF with or without the addition
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of DEXA or VITD3 [20,21]. At the end of their differentiation, DCs were loaded with
OM-MOG35–55 or MOG35–55 and received the LPS maturation signal [22]. They were then
co-cultured with autologous, non-adherent PBMCs in the presence of IL-2 for 4 antigen
presentation cycles (Figure 1).
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Figure 1. Protocol for in vitro differentiation of peripheral blood monocytes into different types of
DCs presenting peptides to T cells. PEP, peptide; LCs, lymphocytes. This image was created with
BioRender (https://biorender.com, accessed on 28 November 2023).

Phenotypic analysis of adherent PBMCs on day 0 of culture showed that they were
100% CD14+ monocytes. On day 8 of culture, the cells had the morphology of DCs, as
determined using light microscopy. Phenotypic analysis of the cells showed that they ex-
pressed all markers typical of DCs, i.e., HLA-DR, CD40, CD80, CD83 and CD86 (Figure 2).
DCs generated with VITD3 or VITD3+DEXA showed the most typical semi-mature pheno-
type with low expression of CD80 [23,24]. The results were similar between patient and
control DCs.

https://biorender.com
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day 8 (* p < 0.05). MFI, mean fluorescence intensity; CTRL, control DCs; DEXA, DEXA-DCs; VITD3, 
VITD3-DCs; V+D, VITD3+DEXA; d0, day 0. 
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patient-derived CTRL-DCs secreted significantly higher amounts of IL-1, IL-6, IL-8, IL-12 
and TNF-α. Patient-derived VITD3-DCs secreted significantly lower amounts of IL-1, IL-
10 and IL-12 (Figure 3). 

Figure 2. Phenotypic markers on the surface of cultured monocytes on day 0 and DCs on day 8. The
results shown are from patient-derived cells. Data are presented as mean (SD). Asterisks indicate
statistically significant differences between markers expressed on monocytes on day 0 and DCs on
day 8 (* p < 0.05). MFI, mean fluorescence intensity; CTRL, control DCs; DEXA, DEXA-DCs; VITD3,
VITD3-DCs; V+D, VITD3+DEXA; d0, day 0.

2.2. Cytokines Secreted by the Different DC Types

DCs secreted the pro-inflammatory (type-1) cytokines IL-1, IL-6, IL-8, IL-12 and TNF-
α and the anti-inflammatory (type-2) cytokines IL-10 and TGF-β. Overall, the highest
secretion rates were observed for IL-8 and TGF-β. Compared to control-derived DCs,
patient-derived CTRL-DCs secreted significantly higher amounts of IL-1, IL-6, IL-8, IL-12
and TNF-α. Patient-derived VITD3-DCs secreted significantly lower amounts of IL-1, IL-10
and IL-12 (Figure 3).
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Figure 3. Cytokines secreted by DCs generated from controls or RRMS patients under different
culture conditions on day 8 of culture. Data are presented as mean (SD). Asterisks indicate statisti-
cally significant differences between cytokine levels secreted by patient- and control-derived DCs
(* p < 0.05).

The ratio of type-2/type-1 (anti-inflammatory/pro-inflammatory) cytokines in the
different DC cultures, reflecting an effector or suppressor shift in the overall cytokine
profiles, shows a strong suppressor shift in the cytokines secreted by patient-derived DCs
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generated from monocytes in the presence of VITD3 or DEXA. A suppressor shift was
not observed in control-derived DCs generated from monocytes in the presence of DEXA,
VITD3 or DEXA+VITD3; control-derived VITD3-DCs had the highest suppressor cytokine
profile, but the mean difference from the suppressor cytokine profile of CTRL-DCs did not
reach statistical significance (Figure 4).
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2.3. Effect of Antigen Presentation by DCs to Autologous T Cells
2.3.1. Beginning of Cultures

The viability of the stored lymphocytes was estimated to be over 70% before the cells
were added to the DC cultures (Supplementary Figure S1).

Phenotypic analysis of lymphocytes (Figure 5A) showed significant differences in
the concentrations of CD4+ T cells and B cells; specifically, patients had a 10% lower
concentration of CD4+ T cells and twice the concentration of B cells than the control group.
In addition, patients had a significantly lower concentration of naive (CD45RA) CD4+ and
CD8+ T cells and a significantly higher concentration of memory (CD45RO) CD4+ and
CD8+ T cells than controls (Figure 5B,C).
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Figure 5. Phenotypic analysis of (A) lymphocytes, (B) naive and memory CD4+ T cells and (C) naive
and memory CD8+ T cells added to DC cultures on day 8. Data are presented as mean (SD). Asterisks
indicate statistically significant differences between cell concentrations in patients and controls
(* p < 0.05). CD45RA+, naive cells; CD45RO+, memory cells.

2.3.2. End of Cultures

• Cells

At the end of the culture and after four rounds of antigen presentation, the lympho-
cytes in the cultures consisted exclusively of T cells (>99.5%). As determined using light
microscopy, DCs were still present in the cultures. In the cultures with DEXA+VITD3-DCs,
there were very few viable cells that could not be characterized via phenotypic analysis. In
the remaining cultures, all T cells were viable. Phenotypic analysis performed on days 33
and 36 of culture showed that the majority of T cells derived from both patients and controls
and cultured with the different types of DCs presenting OM-MOG35–55 or MOG35–55
consisted of CD4+ T cells (Figure 6A). T cells cultured with CTRL-DCs presenting MOG35–
55 contained the highest proportion of CD8+ T cells (Figure 6B). T cells cultured with
CTRL-DCs presenting MOG35–55 or OM-MOG35–55 contained the highest proportion of
CD4-CD8-T cells (Figure 6C).
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Figure 6. Phenotypic analysis of (A) CD4+ T cells, (B) CD8+ T cells and (C) CD4-CD8-T cells on
days 33 and 36 of culture with DCs presenting the peptide OM-MOG35–55 (PEP) or the peptide
MOG-35–55 (PEPc). Data are presented as mean (SD). Asterisks indicate statistically significant
differences between cell levels (* p < 0.05, ** p < 0.01).

Phenotypic analysis of CD4+ and CD8+ T cells showed that culture with all types of
DCs mainly promoted the generation of memory CD4+ T cells derived from both patients
and controls (Figure 7A,B), and to a much lower extent, the generation of memory CD8+ T
cells (Figure 7C,D).
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Figure 7. Phenotypic analysis of (A) naive CD4+ T cells, (B) memory CD4+ T cells, (C) naive CD8+ T
cells and (D) memory CD8+ T cells on days 33 and 36 of culture with DCs presenting the peptide
OM-MOG35–55 (PEP) or the peptide MOG-35–55 (PEPc). Data are presented as mean (SD). Asterisks
indicate statistically significant differences between cell levels (* p < 0.05, ** p < 0.01). (%), data are
presented as % of total CD4+ or CD8+ T cell populations.
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OM-MOG35–55-specific CD4+ T cells derived from the patients exhibited significantly
increased PD-1 expression compared to control-derived CD4+ T cells when cultured for
33 days with DEXA-DCs and VITD3-DCs and on day 36 under all culture conditions,
reaching a maximum of over 80% when cultured with VITD3-DCs (Figure 8A). In addition,
the proportion of OM-MOG35–55-specific Tregs derived from the patients was significantly
higher than that of Tregs from the control group, reaching a maximum of over 30% when
cultured with VITD3-DCs on day 36 (Figure 8B).
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Figure 8. Percentage of (A) CD4+PD-1+ T cells and (B) CD4+CD25+Foxp3+ Tregs on days 33 and
36 of culture with DCs presenting peptide OM-MOG35–55 (PEP) or peptide MOG-35–55 (PEPc).
Asterisks indicate statistically significant differences between CD4+PD-1+ T cell or Treg levels in
cultures with control-derived T cells (gray bars) and patient-derived T cells (black bars). * p < 0.05;
** p < 0.01; *** p < 0.001.

• Cytokines

At the end of the 36-day culture and after four rounds of antigen presentation, the
results in the cultures with DCs derived from patients or controls were different in terms
of cytokine secretion. In the cultures with DCs presenting OM-MOG35–55, the secreted
cytokines were IL-4, IL-6, IL-10, IFN-γ, TNF-α and TGF-β, with TGF-β having the highest
concentration; IL-17 was not detected in any of the cultures (Figure 9).



Int. J. Mol. Sci. 2024, 25, 6092 10 of 16

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 16 
 

 

The cultures with the MOG35–55 peptide contained significantly lower TGF-β levels 
compared to the cultures with OM-MOG35–55. In the cultures of DCs presenting OM-
MOG35–55, the strongest suppressor cytokine shift was observed in the cultures with 
DEXA-DCs, whereas in the cultures of DCs presenting MOG35–55, the strongest suppressor 
cytokine shift was observed in the cultures with VITD3-DCs (Figures 9 and 10). 

 
Figure 9. Cytokine concentration in supernatants of 36-day cultures of DCs and T cells derived from 
RRMS patients and controls. Cytokine concentrations are shown as mean (SD). Type-2/type-1 cytokine 
ratio: [IL-4+IL-10+TGF-β1]: [IFN-γ+IL-6+TNF-α]. * p < 0.05, ** p < 0.01. PEP, OM-MOG35–55. 

Figure 9. Cytokine concentration in supernatants of 36-day cultures of DCs and T cells derived from
RRMS patients and controls. Cytokine concentrations are shown as mean (SD). Type-2/type-1 cy-
tokine ratio: [IL-4+IL-10+TGF-β1]: [IFN-γ+IL-6+TNF-α]. * p < 0.05, ** p < 0.01. PEP, OM-MOG35–55.

In the cultures of DCs with MOG35–55, the secreted cytokines were IL-6, IL-10, IFN-γ,
TNF-α and TGF-β, with TGF-β having the highest concentration; IL-4 and IL-17 were not
detected in any of the cultures (Figure 10).

The cultures with the MOG35–55 peptide contained significantly lower TGF-β levels
compared to the cultures with OM-MOG35–55. In the cultures of DCs presenting OM-
MOG35–55, the strongest suppressor cytokine shift was observed in the cultures with
DEXA-DCs, whereas in the cultures of DCs presenting MOG35–55, the strongest suppressor
cytokine shift was observed in the cultures with VITD3-DCs (Figures 9 and 10).
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3. Discussion

Our data suggest that OM-MOG35–55-presenting DCs induce T cell tolerance that is
maintained via the administration of free OM-MOG35–55 peptides at 11-day intervals. OM-
MOG35–55 peptides induced IL-4 secretion, whereas MOG35–55 did not, and furthermore,
OM-MOG35–55 induced much higher TGF-β secretion, suggesting that this was due
to mannan. Comparing the results of DC cultures with OM-MOG35–55 or MOG35–55
peptides, it is clear that the type of DCs is the main factor influencing the outcome of
MOG35–55 presentation to T cells, while conjugation of the peptide to mannan appears
to be the key factor for tolerance induction and overrides the maturation state of DCs.
These results confirm our previous finding that the peptide OM-MOG35–55 elicits the best
tolerogenic effect when added to PBMC cultures from RRMS patients [17].

Our data also emphasize the importance of dexamethasone and vitamin D in the
creation of tolerogenic DCs [20,21,25]. Our results show that vitamin D has a better effect
in this regard on DCs derived from healthy individuals. Moreover, the use of vitamin D or
dexamethasone alone in the differentiation of monocytes into tolerogenic DCs resulted in
the maintenance of viable T cells in long-term cultures compared to the joint use of vitamin
D and dexamethasone. This is an interesting point that could be useful in experimental



Int. J. Mol. Sci. 2024, 25, 6092 12 of 16

studies on the differentiation of human monocytes into DCs and the use of peptides in
vaccination protocols. Importantly, presentation of OM-MOG35–55 by DCs generated in the
presence of vitamin D resulted in the highest levels of CD4+PD-1+ and CD4+CD25+Foxp3+
T cells, which are significantly reduced in MS patients [17,26]. Considering that carefully
monitored vitamin D supplementation has been shown to improve MS and other inflam-
matory conditions [27–29], the administration of OM-MOG35–55 to patients together with
vitamin D supplementation should also be considered.

The antigen presentation system developed by our research team to test the induction
of tolerance of host T cells to MS antigens needs to be thoroughly evaluated with a larger
number of peripheral blood samples from MS patients to determine the phenotype of the
resulting T cell clones, their TCR repertoire, their function, their proliferation potential,
their phenotypic stability over time and over several cycles of antigen challenge, and finally
their suppressive potential against autologous effector T cells isolated from fresh blood
samples from the same patients. In addition, peripheral blood samples from patients with
RRMS with relatively low EDSS were used in this study. It would be interesting to test the
effect of OM-MOG35–55 in other forms of MS and a broader EDSS spectrum.

A prerequisite for the clinical testing of a potential vaccine or immunomodulatory
treatment with conjugated peptides in humans is the efficacy and stability of the peptides
and conjugates. We have already conducted preclinical and clinical studies with man-
nan conjugated to a cancer protein and demonstrated its efficacy and safety [12,13]. We
have also performed preclinical studies with mannan-conjugated peptides mapping to
myelin epitopes in the EAE mouse model [14–16] and in human peripheral blood [17] and
demonstrated that oxidized mannan gave the best results, suggesting that OM-peptides
may be useful for suppressing antigen-specific CD4+ T cell responses associated with
autoimmune CNS demyelination. We have also demonstrated the stability and integrity of
OM-MOG35–55 [18,19].

More and more studies are looking at the manipulation of the immune system as a
means of controlling or curing various diseases, from malignancies to autoimmune diseases.
Harnessing the body’s own processes of antigen presentation is a promising tactic with a
limited number of side effects and a broad spectrum of activity [24,30].

Our group is working on the development of peptide-based treatments for MS. The
present work completes a cycle of preclinical testing (EAE → short-term testing in human
PBMC cultures → long-term testing in antigen presentation cultures of DCs and T cells
derived from human PBMCs) and demonstrates that the OM-MOG35–55 conjugate is the
best candidate for human clinical trials to test whether it can be used as a therapeutic vaccine
or as an immunomodulatory treatment for MS in the context of personalized medicine.

4. Materials and Methods
4.1. Study Subjects

Ten patients diagnosed with RRMS [1] and 10 healthy control subjects participated in
the study (Table 1). All study participants donated peripheral blood, which was used for
preliminary experiments to establish the experimental protocols described in this study.
Additional blood samples from 5 RRMS patients and 5 controls from the original pool of
patients and control subjects were used for the experiments presented in the results.

Ethics: This study was approved by the Scientific Review Boards and Ethics Commit-
tees of Patras University Hospital (Reg# 451/17.10.2008) and Eginition Hospital, National
and Kapodistrian University of Athens, Athens, Greece (Reg# 560/30.07.2018) in the context
of applications for studies on the pathogenesis of multiple sclerosis involving the use of
clinical data from study participants (without disclosure of their names) and blood samples
for in vitro experiments described in publications. Both hospitals adhere to the Declaration
of Helsinki on the ethical principles of medical research involving human subjects.
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Table 1. Data of the study subjects.

Study Subjects RRMS Controls

n (M/F) 10 (4/6) 10 (5/5)

Age (range, y) 24–38 24–38

Disease duration (range, y) 2–7 na

EDSS (range) 1–2.5 na

Treatment with IFNβ (n) 6 na

% of lymphocytes in peripheral blood (mean (SD)) 35.19 (9.14) 28.97 (10.19)

% of monocytes in peripheral blood (mean (SD)) 7.25 (1.53) 6.86 (1.49)
RRMS patients: Medical history and neurological examinations were used to assess disease progression, current
status, disease duration and degree of disability according to the Expanded Disability Status Scale (EDSS) [31]. n,
number of subjects; M, male; F, female; y, years; na, not applicable; SD, standard deviation.

4.2. Cells and Cultures

Peripheral blood samples (10–20 mL) were collected from RRMS patients and controls
in heparinized BD vacutainers (Becton Dickinson, BD, Franklin Lakes, NJ, USA). The
percentage of peripheral blood lymphocytes and monocytes in the blood samples is shown
in Table 1. PBMCs were isolated via density gradient centrifugation with Ficoll (Biochrom,
Feucht/Nuremberg, Germany) as described [32]. Cells were cultured in RPMI1640 medium
(Gibco-BRL, Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 10% fetal bovine
serum (FBS, Gibco-BRL), 1% penicillin/streptomycin and 6 mM 2-mercaptoethanol (Sigma-
Aldrich, St. Louis, MO, USA) (culture medium, CM) at a concentration of 2 × 106 cells/mL
for 2 h. At the end of the culture, non-adherent cells were collected and stored at 4 ◦C.

For the differentiation of monocytes into different DC types, adherent cells (monocyte-
enriched fraction) were cultured in CM containing GM-CSF and IL-4 (PeproTech, Thermo
Fisher Scientific Inc.) at a concentration of 1000 IU/mL, as described in [33], in the presence
or absence of 1 nM calcitriol (active form of vitamin D3, VITD3) or 10−6 M dexametha-
sone (DEXA) (Tocris Bioscience, Bristol, UK) or both for 6 days [20,21]. The CM with
cytokines ± VITD3, DEXA or VITD3+DEXA was renewed every 2 days. At the end of their
differentiation (day 6 of culture), the DCs were loaded with OM-MOG35–55 or MOG35–
55 peptides that were added to the cultures at a concentration of 10 µg/mL. After 2 h,
lipopolysaccharide (LPS, Sigma-Aldrich) was added to the cultures at a concentration of
0.25 µg/mL [22].

Two days later (day 8 of culture), the DCs were phenotyped using flow cytometry (see
below) and co-cultured with non-adherent PBMCs that were added to the cultures together
with IL-2 (PeproTech) at a concentration of 25 IU/mL. OM-MOG35–55 or MOG35–55 was
added to the cultures at a concentration of 10 µg/mL every 11 days for a total of 4 antigen
presentation cycles.

4.3. Flow Cytometry

Cells harvested from the cultures at different time points were analyzed on a BD
FACSCanto™ II flow cytometer with fluorescently labeled monoclonal antibodies against
CD3, CD4, CD8, CD14, CD25, CD40, CD45RA, CD45RO, CD56, CD69, CD80, CD83, CD86,
CD279 (PD-1), HLA-DR and Foxp3 for phenotypic analysis (Table 2). Cell viability was
determined using the PE Annexin V Apoptosis Detection Kit I (BD). At least 10,000 events
were recorded for extracellular or intracellular staining. All measurements were performed
in triplicate. Data analysis was performed using FlowJo V10.8 software (Tree Star Inc.,
San Carlos, CA, USA).
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Table 2. Antibodies used for phenotypic analysis.

Target Antigen Company Clone Fluorochrome

CD3 Beckman Coulter UCHT1 PC5

CD4 Beckman Coulter 13B8.2 FITC

CD8 Beckman Coulter B9.11 FITC

CD8 Becton Dickinson PRA-T8 PE

CD14 Becton Dickinson M5E2 FITC

CD25 Becton Dickinson M-A251 PE

CD40 Becton Dickinson 5C3 PE

CD45-RA Becton Dickinson HI100 PE

CD45-RO Becton Dickinson UCHL1 PE

CD56 Beckman Coulter N901 PE

CD69 Becton Dickinson FN50 PE

CD80 Becton Dickinson L307.4 PE

CD83 Becton Dickinson HB15e PC5

CD86 Becton Dickinson IT2.2 PE

CD279 (PD-1) Beckman Coulter PD1.3 PE

HLA-DR Becton Dickinson TU36 PE

HLA-DR Becton Dickinson TU36 PC5

Foxp3 eBioscience PCH101 PC5
Note: Beckman Coulter, Brea, CA, USA; Becton Dickinson, Franklin Lakes, NJ, USA; eBioscience, San Diego,
CA, USA.

4.4. Measurement of Cytokines

The concentration of the cytokines IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A,
IFN-γ and TNF-α in the culture supernatant was measured using flow cytometry on a BD
FACSArray™ Bioanalyzer using the CBA Human Inflammatory Cytokine Kit (BD) and
the CBA Human Th1/Th2/Th17 Kit (BD). The concentration of TGF-β1 was measured
using ELISA (R&D Systems, Minneapolis, MN, USA). All measurements were performed
in triplicate. Data analysis was performed using FlowJo V10.8 software and GraphPad
Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA).

4.5. Statistical Analysis

Data are presented as median or mean (SD) of at least three independent experi-
ments. The Kolmogorov–Smirnov test was performed to determine distribution normality.
Differences between two groups were analyzed using the unpaired Student’s t-test. A signif-
icance level of p < 0.05 was considered statistically significant. Data analysis and graphical
representation were performed using GraphPad Prism 8.0 (GraphPad Software Inc.).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25116092/s1.
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