
An effective ensemble learning approach for 
classification of glioma grades based on novel MRI 
features

This is the Published version of the following publication

Hassan, Mohammed Falih, Al-Zurfi, Ahmed Naser, Abed, Mohammed Hamzah
and Ahmed, Khandakar (2024) An effective ensemble learning approach for 
classification of glioma grades based on novel MRI features. Scientific 
Reports, 14 (1). ISSN 2045-2322  

The publisher’s official version can be found at 
https://www.nature.com/articles/s41598-024-61444-1
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/48949/ 



1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11977  | https://doi.org/10.1038/s41598-024-61444-1

www.nature.com/scientificreports

An effective ensemble learning 
approach for classification 
of glioma grades based on novel 
MRI features
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Khandakar Ahmed 4*

The preoperative diagnosis of brain tumors is important for therapeutic planning as it contributes to 
the tumors’ prognosis. In the last few years, the development in the field of artificial intelligence and 
machine learning has contributed greatly to the medical area, especially the diagnosis of the grades 
of brain tumors through radiological images and magnetic resonance images. Due to the complexity 
of tumor descriptors in medical images, assessing the accurate grade of glioma is a major challenge 
for physicians. We have proposed a new classification system for glioma grading by integrating novel 
MRI features with an ensemble learning method, called Ensemble Learning based on Adaptive Power 
Mean Combiner (EL‑APMC). We evaluate and compare the performance of the EL‑APMC algorithm 
with twenty‑one classifier models that represent state‑of‑the‑art machine learning algorithms. 
Results show that the EL‑APMC algorithm achieved the best performance in terms of classification 
accuracy (88.73%) and F1‑score (93.12%) over the MRI Brain Tumor dataset called BRATS2015. In 
addition, we showed that the differences in classification results among twenty‑two classifier models 
have statistical significance. We believe that the EL‑APMC algorithm is an effective method for the 
classification in case of small‑size datasets, which are common cases in medical fields. The proposed 
method provides an effective system for the classification of glioma with high reliability and accurate 
clinical findings.

Keywords Brain tumors, Tumor classification, Ensemble learning, Machine learning, Novel MRI features

Machine learning models have made significant achievements in various medical fields such as the classification 
of Alzheimer’s  Disease1, COVID-19  Recognition2,3, and  others4. They assist in tasks like image segmentation, 
tumor detection, and anomaly identification in medical images like X-rays, MRIs, and CT  scans5. One of the 
most life-threatening types of tumors is a malignant brain tumor which is associated with a high mortality  rate6. 
Cancer Research UK (CRUK) states that in the last forty years, the rates of malignancy have increased by about 
39% in the UK. Brain tumors can grow rapidly, become more aggressive, and eventually lead to death. There 
are several types of brain tumors and one of the most common types is glioma, which can be classified into four 
grades (I, II, III, IV) according to the World Health Organization (WHO). Low-grade gliomas, which include 
grade I and grade II, grow very slowly with a significantly better  prognosis7. High-grade gliomas, which include 
grades III and IV, are managed with primary chemotherapy, radiotherapy, or resection. It is very important to 
distinguish between low-grade and high-grade gliomas before surgical intervention because this effectively affects 
the treatment approach and the patient’s health during the recovery  phase8.

Malignant brain tumors such as glioma can be diagnosed based on the traditional way, which is based on the 
visual assessment of the various attributes of MRI medical images. However, making a good decision needs a 
high level of experience in the neuroradiology field. Furthermore, the inconsistency and heterogeneity of many 
visual characteristics of malignant brain tumors lead to very complicated issues in the  diagnosis7,8. For all those 
reasons, this study aims to design and develop a classification model of malignant grades glioma that can help the 
specialist achieve accurate classification of glioma grades with a minimum error rate. In other words, developing 
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a classification model for glioma grades using a statistical analysis of tumor descriptors, led to achieving an 
accurate differentiation between glioma grades, which assists physicians in distinguishing them.

Many factors and MRI characteristics can be used in the clinical center for brain tumor diagnosis. For exam-
ple, the analysis of necrosis, edema, enhancement of non-enhanced MRI tumors and different MRI features that 
appear after tumor  enhancement6. Furthermore, determining the malignancy grade of glioma depends on the 
specialist’s experience and level of qualifications. The diagnosis of an MRI brain tumor on visual examination 
through magnetic resonance image analysis may take a long time as it requires strong experience for the result 
of the diagnosis to be  accurate9. In addition, with the enhancement of the MRI protocols and the development 
in this industry, the diagnosis of glioma grading based on visual diagnosis is considered  difficult10. Therefore, 
in attempting to enhance the sensitivity and quality of classification methods, we proposed novel MRI features 
integrated with an effective ensemble learning method.

Using machine learning in the detection and classification of malignant brain tumors poses’ several 
 challenges4,5. For example, limited data availability of brain tumor images can affect the performance and gen-
eralization ability of models. In addition, machine learning models are prone to overfitting, especially when 
dealing with limited data. Data imbalance is another challenge in which the distribution of different types of 
brain tumors in datasets can be highly imbalanced. This can lead to biased models and difficulty in accurately 
detecting malignant tumors. Brain tumors exhibit considerable heterogeneity in terms of size, shape, texture, 
and location. The selected feature extraction method and machine learning models need to be robust enough 
to accurately classify tumors despite these variations. Addressing these challenges requires careful design that 
takes the consideration all the challenges previously mentioned.

To address these challenges, we proposed an automated classification model based on a novel feature extrac-
tion method integrated with an effective machine-learning algorithm called EL-APMC11. EL-APMC is built on 
an ensemble of base classifiers that adaptively combine to maximize classification results. This structure allows for 
several benefits; for example, incorporating more classifiers can effectively reduce overfitting and improve their 
generalization performance on unseen data. In addition, EL-APMC is trained using bootstrap bagging without 
replacement which can mitigate the effects of class imbalance. Unlike other ensemble learning methods that use 
fixed fusion methods, EL-APMC uses an adaptive fusion method called Power Mean Combiner (PMC) that is 
trained to match data statistics which results in maximizing classification accuracy. Also, we used the subspace 
training method to maximize independence among base classifiers and improve diversity which brings benefits 
such as improved accuracy, robustness, and reduced overfitting. As a result, the EL-APMC algorithm is consid-
ered a promising technique that is used to classify small-size datasets which is a common problem in the medical 
domain. The effectiveness EL-APMC algorithm is compared with twenty-one machine learning methods which 
are considered state-of-the-art machine learning. The findings indicate that the EL-APMC algorithm demon-
strated notable performance in both classification accuracy (88.73%) and F1-score (93.12%) when evaluated on 
the BRATS2015 MRI Brain Tumor dataset. In addition, this work investigates the effectiveness of the proposed 
MRI features on the classification of glioma grades.

The rest of the paper is organized as follows. The recent literature related to the brain tumors classification is 
introduced in Section II. Section III discusses the impact of dataset size on classification performance. Section 
IV reviews the feature extraction method and working principles of EL-APMC algorithms. Section V discusses 
the paper’s results. Finally, section IV gives the main conclusion and future direction.

Related work
Various machine learning methods have been used and proposed in recent years to classify brain tumors as shown 
in Table 1. In the last few years, the use of machine learning and the application of AI increased rapidly and many 
researchers have proposed different classification methods.  In12, MRI glioma grades have been classified into three 
grades (II, III, and IV). The classification system was developed using Gabor texture as input features and SVM 
was selected as the classification model. The results show a classification accuracy of 88%.  While13, has proposed 
a classification system based on statistical MRI features and K-means clustering to differentiate low grades from 
high grades of MRI brain tumors and achieved a classification accuracy of 80.40%. Similarly, MRI images have 
been classified into two classes (normal and abnormal)14. The proposed model consists of many phases starting 
with an enhancement of the brain MRI images using Shift-Invariant Shearlet Transform (SIST). Then researchers 
proposed the Gabor Grey Level Co-occurrence Matrix (GLCM) and Discrete Wavelet Transform (DWT) for 
the features extraction phase. Finally, these selected features were fed to a feed-forward backpropagation neural 
network and obtained an accuracy rate of 99.8%. Hsieh et al.15 suggested a classification model using logistic 
regression to classify low grades against high grades based on Local Binary Pattern (LBP) texture features and 
achieved a classification accuracy of 93%. Deep learning based on CNN has also been proposed to classify MRI 
glioma  grades16. The work has accomplished a classification accuracy of 91.16%. Shree et al.17 proposed a brain 
tumor classification model for binary classification (normal and abnormal). They used GLCM for feature extrac-
tion and a PNN classifier, which resulted in 95% classification accuracy. The mean intensities of the MR regions 
were used to produce a classification system for glioma grades using SVM as a classification  method18 and the 
obtained classification result was 93%.  Likewise19, proposed an automatic tumor detection and segmentation 
based on a hybrid energy-efficient method for automatic tumor detection and segmentation. The developed 
methods consist of seven long phases to achieve 98% accuracy.  In20, a two-stage ensemble learning approach 
is proposed to classify three glioma grades (Glioma Grade II, Glioma Grade III, and Glioma Grade-IV). The 
number of subjects used in the study is 135 (90 patients and 45 controls) and five characteristics are used in 
classification which is human telomerase reverse transcriptase (hTERT), chitinase-like protein (YKL-40), inter-
leukin 6 (IL-6), tissue inhibitor of metalloproteinase-1 (TIMP-1) and neutrophil/lymphocyte ratio (NLR). They 
claimed to achieve better classification accuracy compared to the state-of-the-art machine learning classifiers. 
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The work given  in21 used anisotropic noise removal filtering, GLCM for feature selection, and SVM classifier to 
identify the tumor region from brain MRI images. According to their results, they can localize tumor regions 
with 98% accuracy. Rajeev et al.22 investigated a hybrid deep learning approach for brain tumor classification, by 
using an improved Gabor wavelet transform and BiLSTM network. The experiments have been done based on 
the Kaggle dataset which is public and open source, the dataset includes four directories such as glioma-tumor, 
meningioma-tumor, no-tumor, and pituitary-tumor. The proposed methods have been implemented using the 
MATLAB platform and the highest performance accuracy was achieved at 98.4%. An automated classification 
system for the segmentation of MRI brain tumors has been accomplished based on the combination of the Inter-
val Type-II fuzzy logic system and an artificial bee colony algorithm to identify tumor  regions23. The developed 
algorithm has investigated using image sequences available in the BRATS challenge datasets (2015, 2017, and 
2018). The researcher claimed to achieve 96% classification results in terms of the Dice-Overlap Index (DOI). 
The summary of the classification models and features used for the classification of glioma grades and their 
details are shown in Table 1.

Impact of dataset size on classification performance
In this section, we review the challenges of training machine learning models on small data sizes and investigate 
the most effective machine learning algorithms that target this issue. Dataset plays a pivotal role in modern 
healthcare services for example in personalized medicine and automated  diagnosis24. The size of data is consid-
ered a crucial factor in determining the performance of a machine learning algorithm. In practice, small data 
size leads to overfitting problems while large data size leads to better classification  results25–27.

Data collection in the medical area faces many obstacles such as rare medical conditions and medical organi-
zations’ privacy. Deep learning algorithms provide good results in different applications. However, to get an 
accurate result with a deep learning algorithm it is necessary to train it with a large amount of data which in 
some cases is not  available28. In addition, training machine-learning algorithms on large data sizes require a 
considerable amount of time and computation resources that may not be available in certain circumstances.

Many efforts in literature tried to define the size of small datasets but there is no clear definition for that. For 
example, Shawe-Taylor et al.29 presented a method that specifies the minimum number of features to achieve 
the desired accuracy called Probably Approximately Correct (PAC).  While30 proposed, an algorithm based on 
information theory for defining a minimum data size. Other  work31 examined different works that dealt with 
small data sizes to define a range for small dataset sizes.

Training a machine-learning algorithm on a small data size is a challenging task since the data does not 
represent the actual data distribution, which may lead to an overfitting problem. In an overfitting situation, the 
classification algorithm performs well on training data and provides poor performance on testing data. In other 
words, the fitted algorithm is generalized well on training data which does not represent the actual data distri-
butions. In this case, the trained model is not generalized well and leads to unreliable and biased classification 
results. Increasing the accuracy of classification on limited data size is a challenging research area. To address this 
problem, some literature focused on increasing the accuracy of the classification algorithm on a limited-size data-
set while others investigated the effect of the dataset size on the performance of the classification  algorithm32,33. 
In this work, EL-APMC as well as the state-of-the-art machine learning methods are investigated to tackle the 
problem of classification limited data size. In the following sections, we reviewed our proposal and compared 
its performance against the state of art machine learning algorithms. Then, the comparison is evaluated among 
different classification metrics.

Table 1.  Summary of works used various classification models for glioma grading.

Author Year Dataset size Features extraction method Classification method Accuracy (%)

Zacharaki et al. 2009 102 brain tumors: II (22), III (18), glioblas-
tomas (34) Gabor filter texture analysis SVM 88

Inano et al. 2014 14 (low grade), 19 (high grade) Statistical MRI-features K-mean clustering 80.40

Arunachalam 2017 230 MRI images Gabor, GLCM, and Discrete wavelet trans-
form (DWT)

Feed-forward back propagation neural 
network 99.8

Hsieh et al. 2017 34 glioblastomas and 73 lower-grade 
gliomas Texture-LBP Logistic regression 93

Khawaldeh et al. 2017 109 subjects – CNN 91.16

Shree and Kumar 2018 650 MRI images Grey level co-occurrence matrix Probabilistic neural network (PNN) 95

Citak-Er et al. 2018 34 patients I (3), II (12), III (8), IV (20) Statistical measures from advanced MRI, 
mean of intensities of the MR regions SVM 93

Rajan and Sundar 2019 41 MRI images Adaptive grey-level co-occurrence matrix 
(AGLCM) Support vector machine (SVM) 98

Joshi et al. 2021 135 cases (90 patients and 45 controls) – Ensemble-based approach (multi-grade 
classification) 83.33

Rajeev et al. 2022 Kaggle dataset Gabor wavelet transform BiLSTM network 98.4

Rasheed et al. 2023 DICOM datasets Grey-level co-occurrence matrix (GLCM) SVM 98

Alagarsamy et al. 2023 BRATS datasets (2015, 2017, and 2018) – Artificial bee colony and interval type-II 
fuzzy logic system DOI = 96
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Proposed method
In this section, we reviewed several MRI descriptors of brain tumors that are used to extract eight novel features. 
Then we described the structure of the EL-APMC algorithm that used to develop an automated classification 
system for glioma grades.

Feature extraction
In this experimental work, standard labeled datasets were used to evaluate the proposed approach, namely 
 BRATS201534. This dataset has a labeled identification layer and it is used to generate four masks to individually 
bring in labeled regions. These regions include necrosis, edema, non-enhanced, and enhanced tumors. Visualiza-
tions of these brain tumor descriptors show different recognized regions for a brain tumor, which are extracted 
using T1 with enhancement as shown in Fig. 1.

The presence of tumor descriptors is measured by utilizing the number of pixels within each labeled region of 
the tumor. A search process is conducted to determine the total number of pixels in each region across all slices. 
This procedure is carried out for all patients in the dataset. Subsequently, an average of the results is calculated 
for each patient. The following equation is used to determine four MRI features that are used in this work.

The average presence of tumor descriptors denoted as Name_M , is calculated based on the label identification 
layer (SEG) provided by the dataset. z represents the total number of MRI slices that contain a tumor, while x 
and y represent the coordinates of each MRI slice. An additional four novel features are extracted and involved 
in the classification process. These features are measured based on the following equations;

Names_M takes the following values tC_M , tnC_M , Edm_M , and Nec_M . Where tC_M , tnC_M , Edm_M , 
and Nec_M are the average presence of contrast enhancement, non-enhancement, edema, and necrosis respec-
tively. They are calculated from (1) where tC_R , tnC_R , Edm_R , and Nec_R are the resultant ratios of tumor 
enhancement, non-enhancement, edema, and necrosis respectively.

(1)Name_M =
1

z

x
∑

i=1

y
∑

j=1

z
∑

k=1

{

1 if SEG
(

x, y, z
)

= Descriptor label
o othwise

(2)tC_R =
tC_M

tCM + NecM + Edm_M + tnC_M

(3)tnC_R =
tnC_M

tnCM + NecM + Edm_M + tnC_M

(4)Edm_R =
Edm_M

tnCM + NecM + Edm_M + tnC_M

(5)Nec_R =
Nec_M

tnCM + NecM + Edm_M + tnC_M

Figure 1.  The MRI images of Grade IV glioma exhibit distinct characteristics in terms of the morphology of the 
brain tumor. These characteristics include the presence of tumor enhancement in the T1 images after contrast 
enhancement. The center of the tumor is marked by necrosis, while edema surrounds the tumor and is visible in 
the T2 images.
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Ensemble learning based on adaptive power mean combiner (EL‑APMC)
EL-APMC is a classification method proposed  in11, which belongs to the family of ensemble learning methods. 
In this work, a theoretical framework is developed to understand how the fusion methods for ensemble learning 
systems interact with base classifiers. Based on the theoretical results a new adaptive classification method is 
proposed and achieved notable results against several fusion methods. In this work, we investigate the strength-
ening of the classification accuracy of the EL-APMC algorithm and compare it with the state-of-the-art machine 
learning algorithms in case of limited dataset size. The fusion method used in the EL-APMC is called power 
mean combiner (PMC) and is defined as follows

where k1, k2, . . . , kN are positive real numbers that represent base classifiers outputs and α is a real number that 
represents the aggregation method used in fα(.) . PMC refers to a function that combines infinite arithmetic 
fusion operations, including arithmetic, geometric mean, harmonic mean, and more. However, it is unclear why 
certain fusion methods work better than others for a given classification task. Fortunately, PMC can aggregate 
infinite fusion functions, and we can search for an optimal function that minimizes classification error.

The working principle of the EL-APMC is described as follows. The ensemble setup consists of two main 
phases: training and testing. During the training phase, a fivefold cross-validation approach is employed. In each 
fold, the data is pre-processed before being used to train individual classifiers. The goal of the pre-processing 
stage is to introduce diversity among the base classifiers. To achieve this, we employ two well-known methods, 
namely bagging, and subspace. The combination of bagging and subspace techniques enhances randomness and 
minimizes the generalization error at the decision combiner stage. In bagging, a bootstrap method is utilized, 
it is a technique of generating multiple bootstrap samples from the original training dataset to train individual 
base learners within the ensemble. Each bootstrap sample is created by randomly sampling observations from 
the original dataset without replacement, resulting in multiple subsets that may contain duplicate instances. 
These subsets are then used to train each base learner independently which helps improve the diversity among 
the base learners. This is crucial for enhancing the overall performance and robustness of the ensemble model. 
By training base learners on different subsets of the data, bootstrapping reduces the risk of overfitting and helps 
capture different aspects of the underlying data distribution.

The bootstrap process generates N subsets each generated bootstrap subset is divided into two equal parts: 
one for In-Bag (InBag) samples and the other for Out-of-Bag (OutBag) samples. The InBag portion is utilized to 
train the N base classifiers, while the OutBag samples are used to estimate individual classifier weights, which are 
later used in the decision combination process. Additionally, all the OutBag replicas are aggregated and utilized 
to train the PMC. This setup offers the advantage of eliminating the need for additional data to train the PMC, as 
the OutBag samples are used for this purpose. Bagging with bootstrap aggregating is considered a regularization 
technique that reduces overfitting and improves generalization performance. Another method used to control 
regularization is early stopping which is a method used to prevent overfitting by halting the training process 
when the performance on a validation set starts to degrade. In our proposal, we can control the number of base 
classifiers (N) that are used in the ensemble to prevent them from becoming overly complex.

The second method employed to enhance diversity is the random subspace technique. Instead of using the 
entire feature set for training each base model, a random subset of features is selected for each model. After 
selecting the feature subset, each base model is trained on the corresponding subset of features. This results in 
improving the performance and robustness of ensemble learning, particularly in scenarios where overfitting is a 
concern or where datasets have high dimensionality. Using bootstrap bagging and random subspace training as 
well as performing thorough hyperparameter tuning can mitigate underfitting in ensemble learning and improve 
the predictive performance of the model.

The number of features used is determined by taking the square root ( mr ) of the total number of predictors 
generated from the bootstrap sampling. In the final stage of training, the aggregated replicas of OutBag samples 
are employed to train PMC. The approach used to implement PMC is called Adaptive PMC with Threshold 
Estimation (APMCT). This method involves estimating the probability density functions (pdfs) of the classes 
with an optimal threshold. An adaptive algorithm is utilized to estimate the prior and posterior probabilities 
of the combiner. For the two classes case, the optimal threshold is determined by minimizing the classification 
error using the following formula.

where Pe is the classification error, P
(

wj

)

, j = 1, 2 is the classes’ prior probabilities, Fj(.), j = 1, 2 is the cumulative 
distribution function of the class wj , and µopt, is the optimal threshold. Fj(.) is estimated using the histogram 
technique. During the training phase, the EL-APMC algorithm minimizes Pe according to the following formula

There are many optimization algorithms available to solve (8), among these, we used surrogate optimization. 
It refers to a method used in optimization algorithms where a surrogate model is employed to approximate the 
behavior of a complex, computationally expensive, or difficult-to-evaluate objective function. Instead of directly 
evaluating the objective function, which might involve time-consuming simulations or expensive experiments, 
the surrogate model is used as a proxy to guide the optimization process. This involves iteratively updating the 
surrogate model based on a limited set of evaluations of the true objective function. Then the surrogate model 

(6)fα(k1, k2, . . . kN ) =

(

1

N

N
∑

i=1

kαi

)1/α

, where −∞ < α < ∞

(7)Pe = P(w1)F1
(

µopt,m1, σ1
)

+ P(w2)F2
(

µopt,m2, σ2
)

(8)min(Pe(x)) , x ∈
(

αopt ,µopt

)
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is used to predict the objective function values at unexplored points in the search space. These predictions are 
used to select new points to evaluate the true objective function, aiming to improve the overall optimization 
process efficiently. The primary advantage of surrogate optimization is its ability to reduce the computational 
cost of optimization by replacing expensive function evaluations with inexpensive surrogate model  predictions35.

Using (8), αopt and µopt are estimated and used to classify data in the test phase. It can summarize the working 
principle of the EL-APMC in algorithm 1 and Fig. 2 shows the working principles of the EL-APMC Algorithm.

Figure 2.  Workflow principles of EL-APMC.
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Algorithm 1.  EL-APMC Algorithm.

Result analysis and discussion
In this section, we investigate the effectiveness of the integration of the proposed MRI features with different 
machine learning algorithms as well as the EL-APMC algorithm for the classification of glioma grades based on 
the BRATS 2015 dataset. The environment used for the classification is  MATLAB36 since it has various tools that 
support machine learning tasks. We evaluated the glioma grade classification dataset on twenty-one machine 
learning models available in MATLAB that represent the state-of-the-art machine learning models. As  known37 
deep learning algorithms are only effective in large datasets and fail to achieve a good performance in small 
datasets size. Since our dataset size is about 275 instances, we have not included deep learning algorithms in 
the comparison. Table 2 shows the basic default parameter values for the 21 classifier models. The classification 
results are averaged over fivefold cross-validation. The parameters used in the training EL-APMC algorithm are 
defined in Table 3.

Many evaluation metrics have been measured and evaluated such as the classification accuracy, recall, preci-
sion, and F1 score. These metrics are the most familiar tools used to measure the performance of a classification 
model. All these metrics measures are derived from the confusion matrix defined in Table 4. Where True Posi-
tive (TP) represents the number of instances that the model predicts as positive where they are actual positive 
instances. False Negative (FN) is the number of instances that the model predicts as negative where they are actual 
positive instances. False Positive (FP) is the number of instances that the model predicts as positive where they 
are actual negative instances. True Negative (TN) is the number of instances that the model predicts as negative 
where they are actual negative instances. The performance measures metrics such as accuracy, recall, precision, 
and F1-score are derived from confusion matrix parameters (TP, FN, FP, and TN) as defined in (9)–(12). The 
accuracy metric measures the ability of a model to identify the true total positive and negative instances compared 
to the total instances. In the case of the imbalanced dataset, the accuracy measure provides inaccurate results 
since the class with a high majority overwhelms the minority class. The recall metric tries to capture how many 
positive instances are predicted compared to the actual positive instance. This will be beneficial in case there is 
a high cost related to the prediction of false negatives. Precision metric measures how accurate the classification 
model is in predicting positive instances, in other words, how many of them are actual positive instances. This 
will be beneficial in case there is a high cost related to the false positive. The F1-score metric is the harmonic 
mean of the recall and precision metrics, it will benefit when both recall and precision are important and the 
average results of both metrics are needed.

(9)Accuracy =
TP + TN

TP + TN + FP + FN
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(10)Recall =
TP

TP + FN

Table 2.  Classification models and their parameter values.

No Classification model Parameter values

1 Logistic regression Standard parameters

2 Linear SVM
Kernel function: Linear
Kernal scale: Automatic
Box constraint level: 1

3 Ensemble bagged trees
Ensemble method: Bag
Learner type: Decision tree
Maximum number of splits: 350
Number of Learners: 100

4 Ensemble subspace discriminant
Ensemble method: Subspace
Learner type: Discriminant
Number of Learners: 100
Subspace dimension: 17

5 Linear discriminant Covariance structure: Full

6 Medium Gaussian SVM
Kernel function: Gaussian
Kernel scale: 5.8
Box constraint level: 1

7 Quadratic SVM
Kernel function: Quadratic
Kernel scale: Automatic
Box constraint level: 1

8 Coarse Gaussian SVM
Kernel function: Gaussian
Kernel scale: 23
Box constraint level: 1

9 Weighted KNN
Number of neighbors: 10
Distance metric: Euclidean
Distance weight: Squared inverse

10 Gaussian naive Bayes Distribution name for numeric predictors: Gaussian
Distribution name for categorical predictors: MVMN

11 Ensemble subspace KNN
Ensemble method: Subspace
Learner type: Nearest neighbors
Number of learners: 100
Subspace dimension: 17

12 Medium KNN
Number of neighbors: 10
Distance metric: Euclidean
Distance weight: Equal

13 Cubic KNN
Number of neighbors: 10
Distance metric: Minkowski (cubic)
Distance weight: Equal

14 Decision tree
Maximum number of splits: 4
Split criterion: Gin’s diversity index
Surrogate decision splits: off

15 Kernel naive Bayes
Distribution name for numeric predictors: Kernel Distribution name for categorical predictors: 
MVMN
Kernel type: Gaussian

16 Cubic SVM
Kernel function: Cubic
Kernel scale: Automatic
Box constraint level: 1

17 Ensemble RUS boosted trees

Ensemble method: RUSBoost
Learner type: Decision tree
Maximum number of splits: 20
Number of learners: 100
Learning rate: 0.1

18 Fine KNN
Number of neighbors: 1
Distance metric: Euclidian
Distance weight: Equal

19 Ensemble boosted trees

Ensemble method: AdaBoost
Learner type: Decision tree
Maximum number of splits: 20
Number of learners: 100
Learning rate: 0.1

20 Cosine KNN
Number of neighbors: 10
Distance metric: Cosine
Distance weight: Equal

21 Fine Gaussian SVM
Kernel function Gaussian
Kernel scale: 1.5
Box constraint level: 1
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The classification results are evaluated against four metrics, which are accuracy, recall, precision, and F1-score 
over 22 classifier models. Table 5 shows the performance of classification models ranked in terms of classification 
accuracy in decreasing order.

Figure 3 shows a comparison among different evaluation metrics using the box plot. The purpose of the com-
parison is to statistically summarize the performance of classifier models among evaluation matrices. As shown 
classifiers show large variability across recall scores compared to other metrics, while the variability is minimal 
regarding the F1-score. This is because the F1-score takes the harmonic mean of recall and precision resulting 
in reducing the variability. The average score results among different metrics are 85.57%, 94.58%, 88.38%, and 
91.31%, for accuracy, recall, precision, and F1-score respectively.

Figures 4, 5, 6 and 7 visualize the results of Table 5 in terms of accuracy, recall, precision, and F1-score. As 
shown in Fig. 4, the EL-APMC algorithm achieved the best performance in terms of classification accuracy 
compared to the 21 Classifier models under comparison and logistic regression scored second and linear SVM 
scored third. Figure 5 shows the performance of classifiers ranked in descending order in terms of recall metric 
where fine Gaussian SVM ranks first followed by coarse Gaussian SVM ranks second and the EL-APMC algo-
rithm ranks third. It is obvious from the previous results that the variants of SVM classifiers work best for preci-
sion metric. Figure 6 shows the classifier models rank in descending order in terms of precision metric where 
ensemble RUS boosted trees rank first followed by decision tree ranks second, Kernel Naive Bayes ranks third 
and the EL-APMC algorithm ranks 8th place. It is clear from the previous results that the variants of decision 
tree classifiers work best for precision metric.

The F1 score measures the average values of recall and precision and it is considered a crucial metric in the 
case of an imbalanced dataset where the accuracy metric provides inaccurate results. Figure 7 shows the perfor-
mance of classifier models in terms of F1-score ranked in descending order. The EL-APMC algorithm ranks in 
first place followed by Linear SVM which ranks second and ensemble subspace discriminant ranks third place. 
In summary, the EL-APMC algorithm provides the best performance in terms of accuracy and F1 score since 
its structure combines two strategies that help in achieving these results.

First, the EL-APMC model uses the idea of ensemble learning in which instead of using a single classifier 
model, the EL-APMC model uses an ensemble of machine learning models that improves the classification per-
formance. Second, unlike popular ensemble learning methods that use the fixed fusion method. The EL-APMC 
model is an adaptive fusion method called Power Mean Combiner (PMC). During the training process of the 
EL-APMC algorithm, the PMC is trained to match the statistics of the base classifier outputs of the EL-APMC 
model. In comparison to the standard ensemble-learning algorithm, for example, the ensemble bagged trees 
used a fixed fusion method called the majority-voting rule. Using a fixed fusion method in ensemble learning 
limited their predicting ability, especially in the case of limited dataset size.

(11)Precision =
TP

TP + FP

(12)F1 =
2

recall−1 + precision−1
=

2TP

2TP + FP + FN

Table 3.  EL-APMC parameters.

Parameter Definition Range

Ensemble learning method Bootstrap bagging and random Subspace Defaults  setting36

Number of features ( Nof  ) Selected for Random Subspace ( mr) mr =
√
NoF 1 ≤ mr ≤ NoF

Percentage of InBag samples 0.5 0 < InBag < 1;
InBag = 1−OutBag

Percentage of OutBag samples 0.5 0 < OutBag < 1;
OutBag = 1− InBag

Base classifier Linear Discriminant Defaults  setting36

Number of base classifiers N = 100 1 ≤ N < ∞

Power mean combiner fα(k1, k2, . . . kN ) =

(

1
N

N
∑

i=1

kαi

)1/α

−∞ < α < ∞

Optimization method Surrogate optimization Defaults  setting36

Table 4.  Details of confusion matrix.

Predicted condition

Actual Condition
True positive (TP) False negative (FN)

False positive (FP) True negative (TN)
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To study the statistical significance of the results given in Table 5, we analyze the classification results (accu-
racy, recall, precision, and F1-score) in terms of a sample mean, sample standard deviation, and hypothesis tests. 
The purpose of the sample mean and the standard deviation is to evaluate the overall performance of machine 
learning algorithms. The results in Table 6 show the classification models achieved on average a good perfor-
mance on recall (94.44%) and F1-score (91.22%) metrics. There is a high standard deviation in the classification 
results in terms of recall (0.0355) and precision (0.027) compared to the accuracy and F1 score metric. In other 
words, classifier models exhibit high variability in performance in terms of recall and precision compared to 
other metrics. The purpose of hypothesis tests is to make sure that the differences in the classification results 
have statistical significance or not. For this purpose, we use the one-sample Kolmogorov–Smirnov test. The null 
hypothesis states that the classification results in terms of accuracy, recall, precision, and F1-score come from a 
specific distribution versus the alternative hypothesis that the samples do not come from such a distribution at 
a 5% significance level. The P-value shown in Table 6 shows small values for all metrics i.e. less than 5% which 
means rejecting the null hypnosis and differences in the classification results have statistical significance.

In terms of estimating the complexity of the EL-APMC compared to other algorithms. We use the notation 
O(n) , where n is the number of analyzing loops, recursive calls, and other control structures in the algorithm. In 
the training phase, EL-APMC used two main steps; training N base classifiers and running a surrogate algorithm. 
In comparison to other machine learning algorithms used in this work, we can estimate the time complexity of 

Table 5.  Performance of classifier models in terms of accuracy, recall, precision, and F1-score.

Classifier Accuracy (%) Recall (%) Precision (%) F1-Score (%)

1 EL-APMC 88.73 97.59 89.05 93.12

2 Logistic regression 87.59 95.00 90.09 92.48

3 Linear SVM 87.59 97.27 88.43 92.64

4 Ensemble bagged trees 87.59 94.09 90.79 92.41

5 Ensemble subspace discriminant 87.59 96.82 88.75 92.61

6 Linear discriminant 86.86 96.36 88.33 92.17

7 Medium Gaussian SVM 86.86 97.27 87.70 92.24

8 Quadratic SVM 86.50 96.36 87.97 91.97

9 Coarse Gaussian SVM 86.50 98.64 86.45 92.14

10 Weighted KNN 86.50 96.36 87.97 91.97

11 Gaussian naive Bayes 86.13 92.73 90.27 91.48

12 Ensemble subspace KNN 86.13 97.27 86.99 91.85

13 Medium KNN 85.40 96.36 86.89 91.38

14 Cubic KNN 85.04 97.27 85.94 91.26

15 Decision tree 84.67 88.64 91.98 90.28

16 Kernel naive Bayes 84.67 89.55 91.20 90.37

17 Cubic SVM 84.31 90.91 89.69 90.29

18 Ensemble RUS boosted trees 84.31 85.91 94.03 89.79

19 Fine KNN 83.94 91.82 88.60 90.18

20 Ensemble boosted trees 83.21 93.64 86.55 89.96

21 Cosine KNN 82.12 91.82 86.70 89.18

22 Fine Gaussian SVM 80.29 99.09 80.74 88.98

Figure 3.  Box plot for different evaluation metrics.
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Figure 4.  Ranking classifiers models according to their classification accuracy values.

Figure 5.  Ranking classifiers models according to their recall values.

Figure 6.  Ranking classifiers models according to their precision values.
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the EL-APMC as O(N +M) . Where N is the linear time required to train N base classifiers and M is the number 
of time iterations needed by the surrogate algorithm to find the optimal α . Another limitation of the EL-APMC 
is the fusion method used which offers limited search space. One possible solution is to use generalized f-mean 
which is considered as a general case of power mean combiner. Implementing generalized f-mean is expected 
to add more complexity since the searching space for the optional fusion method is expanded compared to the 
searching space of the power mean combiner.

Conclusion and future work
There is a noticed lack of data availability for patients with brain tumors that is resulting in small data size. 
Classification of small-size datasets faces many challenges such as overfitting or underfitting problems that put 
limits on the ability of machine learning algorithms for classification. In this work, we applied an automated 
machine-learning classification system for glioma grades based on a novel MRI feature extraction method. We 
used an effective ensemble learning method called EL-APMC and evaluated its ability to classify a limited-size 
MRI dataset. We compare the performance of EL-APMC against 21 machine-learning methods that represent 
state-of-the-art classification models. Results show the EL-APMC algorithm outperforms the al1 classification 
models in terms of accuracy and F1-score metric. This score is considered crucial in the case of an imbalanced 
dataset when the number of samples in one class overwhelms the number of samples in another class. We believe 
that the EL-APMC are effective classification method in case of small and imbalanced datasets. The next step in 
this research is to employ the generalized f-mean, which is seen as a broader form of the power mean combiner. 
Broadening the scope of searching for an optimal fusion method is expected to enhance classification outcomes.

The proposed machine-learning algorithm based on the novel MRI feature extraction offers significant aid 
to assist clinicians in clinical diagnosis and may further reduce efforts and unnecessary invasive procedures like 
biopsies through the confirmation process for the malignancy grade of a brain tumor. In addition, the proposed 
algorithm can be utilized in any application that is related to the fusion of multi-source information.

Data availability
The dataset used in this study is available at https:// www. smir. ch/ BRATS/ Start 2015.

Received: 12 January 2024; Accepted: 6 May 2024

Figure 7.  Ranking classifiers models according to their F1-score values.

Table 6.  Statistical analysis for results of classification models.

Metrics P-values Mean Standard deviation

Accuracy 1.4286e−12 0.8542 0.0194

Recall 4.5870e−13 0.9444 0.0355

Precision 1.3032e−12 0.8838 0.0270

F1-Score 2.4985e−13 0.9122 0.0118

https://www.smir.ch/BRATS/Start2015
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