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Abstract: Linoleic acid (LA) is required for neuronal development. We have previously demonstrated
sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming
a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At
this time, the impact of a high-maternal-LA diet on offspring brain development and the potential
for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed
low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal
day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring’s
brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet
increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0
DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate
in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction
effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet
increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal
and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid
(DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-
6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl
ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone.
HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a
development-specific and sex-specific manner.
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1. Introduction

Linoleic acid (LA) is an essential omega (n)-6 polyunsaturated fatty acid (PUFA) that
is required for normal cellular function and is thus critical for fetal health and develop-
ment [1]. LA overconsumption has been associated with an increased risk of obesity [2].
Furthermore, the overconsumption of n-6 PUFAs during pregnancy and lactation pre-
disposes the developing fetus and offspring to adverse programming outcomes [3]. We
have previously shown that a diet high in LA promotes maternal inflammation during
pregnancy in rats [4], as well as cardiovascular [5] and hepatic [6] changes in offspring
during adolescence, and hepatic changes in adulthood [7]. There are multiple proposed
mechanisms linking maternal overconsumption of n-6 PUFAs to adverse offspring out-
comes, including maternal inflammation [8], and we have previously demonstrated altered
accumulation of specific fatty acids in tissues such as the brain, or altered endocannabinoid
signaling. Similarly, the pathological outcomes seen in offspring prenatally exposed to
n-6 PUFAs may be due to programmed changes in circulating hormones or inflammatory
markers. In mice, elevated maternal inflammation during pregnancy negatively impacts
neurodevelopment [9]. To add to this, we have demonstrated sex-specific changes in behav-
ior in offspring exposed to a maternal high-LA diet during pregnancy and early life [10].
Others have shown that high maternal LA intake induces neurological dysfunction such as
ataxia and encephalomalacia [1]. The brain tissue is rich with diverse lipid populations [11].
Changes in lipid composition have been widely reported to be associated with neurological
defects such as Alzheimer’s disease [12,13], Zellweger syndrome [12,14], and Niemann–
Pick syndrome [12,15]. LA is also a precursor to oxidized products known as ‘oxidized
linoleic acid metabolites’ (OXLAMs) [1]. OXLAMs are lipid mediators in the brain and are
known to regulate pain [16] and inflammation [17].

Plasmalogen is a class of glycerophospholipid characterized by the presence of a
vinyl-ether bond at the C-1 position [17] and enriched PUFAs, including docosahexaenoic
acid (DHA; C22:6 n-3) or arachidonic acid (AA; C20:4 n-6), at C-2 of the glycerol moiety [18].
Imbalances in PUFA concentrations in the brain have the capacity to program fetal neuronal
development [19]. Plasmalogens are glycerophospholipids that are major components of
mammalian cellular membranes, particularly in the brain [20]. Plasmalogen synthesis
participates in key physiological processes including cholesterol hemostasis [21], scaveng-
ing reactive free radicals, signal transduction, ion transport, storage for PUFAs and lipid
mediators [12], and modulation of myelin sheath formation in the brain, particularly dur-
ing development [22]. Brites et al. [22] reported that plasmalogens prevent inflammatory
demyelination and axonopathy induced by long-chain fatty acids. Monounsaturated fatty
acids (MUFAs), PUFAs, and DHA are abundant in the brain [23]. Deficiency of plasmalogen
biosynthesis is associated with lipid storage diseases and neurological defects including
Gaucher diseases [24] and Alzheimer’s disease [18,23].

The endogenous cannabinoid (endocannabinoid) system is a lipid signaling sys-
tem [25] that consists of receptors located within both the brain and the peripheral ner-
vous system [26]. The two major endogenous cannabinoid receptor ligands, arachidonyl
ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG), are degraded by monoacyl-
glycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) to produce arachidonic
acid (AA) [27]. Metabolism of LA also produces AA, which can be catabolized into dif-
ferent metabolites through cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome
P450 (CYP-450) into pro-inflammatory prostaglandins [28]. The endocannabinoid sys-
tem is critical to fundamental synaptic processes, including long-term potentiation and
depression [29], implying a significant role in early brain and lifespan development, as
well as learning, memory, and general brain development [30]. Given their role as sec-
ondary messengers, endocannabinoids have been demonstrated to mediate the actions
of other neurotransmitter systems (e.g., dopamine, glucocorticoids, and serotonin) [31],
further reinforcing the fundamental importance of understanding endocannabinoid sig-
naling in healthy development. Other endocannabinoid-like compounds such as oleoyl
ethanolamide (OEA), palmitoyl ethanolamide (PEA), stearoyl ethanolamide (SEA), and
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linoleoyl ethanolamide (LEA) are also AA metabolites and are considered to be part of
the expanded endocannabinoid system, but they do not interact directly with cannabinoid
receptors [25].

A mother’s diet during pregnancy programs disease risk in her offspring in later
life [32]. An adverse maternal environment during pregnancy and lactation can sometimes
be reversed with modifications to the offspring’s diet and lifestyle during critical, postnatal
periods of development. For example, in a study by Raipuria et al., the adverse effects of
an obesogenic maternal diet on offspring’s metabolic health could be reversed by postnatal
exercise [33]. However, other studies have demonstrated that the impacts of adverse
prenatal diets are permanent and are unable to be reversed with dietary intervention in
offspring. Campodonico-Burnett et al. demonstrated that postnatal consumption of control
or low-fat diets did not reverse the adverse effects on metabolism in rats following exposure
to an obesogenic maternal environment in utero [34]. Furthermore, it is possible that
secondary exposure to a poor diet in postnatal life can exacerbate poor health outcomes [35].
The permanency of programmed changes to physiology following prenatal n-6 PUFA
exposure likely depends on the mechanism of action. It is possible that n-6 PUFA exposure
forever influences the fatty acid composition of the brain as it is being formed, but that
lipid turnover in the brain is limited in postnatal life such that postnatal lipid exposure
does not impact long-term outcomes to the same extent. Therefore, the potential for the
reversal or exacerbation of any adverse perturbations in offspring exposed to a poor uterine
environment should be investigated.

The effects of prolonged exposure to different levels of LA before pregnancy, during
gestation, and during lactation and/or after weaning on the fatty acid concentrations and
plasmalogen contents in offspring’s brains and the endocannabinoids in their plasma are
yet to be investigated. In this study, we aim to investigate the effects of maternal and
postnatal HLA diet intake on the fatty acid composition and plasmalogen concentrations in
the brain, and endocannabinoids in plasma, of adult rodent offspring.

2. Results
2.1. Maternal and Postnatal Consumption of HLA Diet Affects the Brain’s Saturated Fatty Acid,
Monounsaturated Fatty Acid, and Polyunsaturated Fatty Acid Composition in Adult Offspring in
a Sex-Dependent Manner

In the brains of male offspring, maternal HLA diet increased C18:0 dimethylacetal
(DMA) (p = 0.0022), C16:0 DM (p = 0.0001), linoleate (C18:2n6; p = 0.0017), and arachidonate
(AA; C20:4n6; p < 0.001) (Table 1, n = 6–8). In the brains of male offspring, maternal
HLA diet decreased lignocerate (C24:0; p = 0.0371), eicosenoate (C20:1n9; p = 0.0068), and
nervoniate (C24:1n9; p = 0.0324) (Table 1, n = 6–8). In the brains of male offspring, postnatal
HLA diet increased docosapentaenoate (DPA; C22:5n6; p < 0.0001) (Table 1, n = 6–8).

In the brains of male offspring, both maternal and postnatal HLA diets decreased
oleate (C18:1n9) (p = 0.0042 and p = 0.0008, respectively) and vaccenate (C18:1) (p = 0.001
and p = 0.0251, respectively) (Table 1, n = 6–8). There was an interaction effect for maternal
and postnatal HLA diets on myristate (C14:0; p = 0.0095), palmitoleate (C16:1n7; p = 0.0095),
and EPA C20:5n3 (p = 0.0095) in the brains of male offspring (Table 1, n = 6–8).

In the brains of female offspring, postnatal HLA diet increased stearate (C18:0; p = 0.0409)
and docosapentaenoate (DPA; C22:5n6; p < 0.0001) (Table 2, n = 6–8). In the brains of fe-
male offspring, maternal HLA diet increased eicosadienoate C20:2n6 (p = 0.0083) (Table 2,
n = 6–8). Both maternal and postnatal HLA diets had an interaction effect on the increased
oleate (C18:1n9; p = 0.0221) and arachidate (C20:0; p = 0.003) in the brains of female offspring
(Table 2, n = 6–8).
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Table 1. Effects of maternal and postnatal high-LA diets on fatty acid composition in the brains of
6-month-old male offspring.

LLA Maternal Diet HLA Maternal Diet Two-Way ANOVA

LLA PN Diet HLA PN Diet LLA PN Diet HLA PN Diet Pmaternal Ppostnatal Pint

C14:0 Myristate 0.077 ± 0.005 0.106 ± 0.010 0.121 ± 0.021 0.083 ± 0.005 ns ns 0.0095
C15:0

Pentadecanoate 0.023 ± 0.004 0.026 ± 0.005 0.032 ± 0.005 0.025 ± 0.003 ns ns ns

C16:0
Dimethylacetal 5.570 ± 0.507 5.468 ± 0.155 3.824 ± 0.110 4.478 ± 0.252 0.001 ns ns

C16:0 Palmitate 21.69 ± 0.927 23.18 ± 0.927 23.47 ± 0.217 23.63 ± 0.153 ns ns ns
C16:1n7

Palmitoleate 0.171 ± 0.007 0.209 ± 0.013 0.208 ± 0.013 0.184 ± 0.017 ns ns 0.0239

C17:0
Heptadecanoate 0.047 ± 0.005 0.060 ± 0.007 0.065 ± 0.009 0.056 ± 0.006 ns ns ns

C18:0
Dimethylacetal 7.840 ± 0.848 8.705 ± 1.238 4.611 ± 0.536 6.193 ± 0.318 0.0022 ns ns

C18:0 Stearate 20.51 ± 0.336 20.24 ± 0.323 20.72 ± 0.373 21.34 ± 0.282 ns ns ns
C18:1n9 Oleate 14.26 ± 0.443 12.57 ± 0.087 14.90 ± 0.170 14.02 ± 0.431 0.0042 0.0008 ns
C18:1 Vaccenate 3.169 ± 0.065 2.977 ± 0.046 3.447 ± 0.103 3.282 ± 0.093 0.001 0.0251 ns

C18:2n6 Linoleate 0.211 ± 0.013 0.254 ± 0.017 0.303 ± 0.034 0.330 ± 0.026 0.0017 ns ns
C20:0 Arachidate 0.078 ± 0.005 0.105 ± 0.015 0.105 ± 0.013 0.113 ± 0.014 ns ns ns
C18:3n6 Gamma

Linolenate 0.016 ± 0.005 0.016 ± 0.004 0.015 ± 0.002 0.013 ± 0.003 ns ns ns

C20:1n9
Eicosenoate 0.436 ± 0.018 0.408 ± 0.020 0.597 ± 0.056 0.472 ± 0.041 0.0068 ns ns

C20: 2n6
Eicosadienoate 0.046 ± 0.008 0.059 ± 0.005 0.069 ± 0.011 0.059 ± 0.006 ns ns ns

C22:0 Behenate 0.126 ± 0.028 0.074 ± 0.010 0.122 ± 0.011 0.109 ± 0.011 ns ns ns
C20:3

Homogamma
Linolenate

0.142 ± 0.009 0.157 ± 0.012 0.183 ± 0.016 0.165 ± 0.018 ns ns ns

C22:1 Erucate 0.053 ± 0.009 0.045 ± 0.003 0.069 ± 0.008 0.056 ± 0.010 ns ns ns
C20:4n6

Arachidonate 7.985 ± 0.079 8.063 ± 0.082 8.610 ± 0.177 8.883 ± 0.178 <0.0001 ns ns

C24:0 Lignocerate 0.193 ± 0.024 0.156 ± 0.010 0.242 ± 0.037 0.216 ± 0.018 0.0371 ns ns
C20:5n3

Eicosapentaenoate 0.010 ± 0.002 0.021 ± 0.007 0.019 ± 0.004 0.006 ± 0.001 ns ns 0.0095

C24:1n9
Nervoniate 0.094 ± 0.023 0.069 ± 0.008 0.139 ± 0.009 0.097 ± 0.017 0.0334 ns ns

C22:4n6 Adrenate 2.705 ± 0.063 2.877 ± 0.186 3.157 ± 0.317 2.988 ± 0.196 ns ns ns
C22:5n6 Docos-
apentaenoate 0.281 ± 0.022 0.650 ± 0.107 0.372 ± 0.025 0.687 ± 0.033 ns <0.0001 ns

C22:5n3 Docos-
apentaenoate 0.116 ± 0.012 0.165 ± 0.019 0.154 ± 0.023 0.164 ± 0.005 ns ns ns

C22:6n3
Docosahexaenoate 12.64 ± 0.807 12.99 ± 0.475 13.95 ± 0.284 12.62 ± 0.216 ns ns ns

Data are presented as the mean ± standard error of the mean (SEM). Two-way ANOVA was performed for
statistical analysis with maternal diet and postnatal diet as two factors; n = 6–8. LLA: low linoleic acid; HLA:
high linoleic acid; PN: postnatal; ns: not significant. P refers to the probability of a maternal, postnatal, or
interactive effect.

Table 2. Effects of maternal and postnatal high-LA diets on fatty acid composition in the brains of
6-month-old female offspring.

LLA Maternal Diet HLA Maternal Diet Two-Way ANOVA

LLA PN Diet HLA PN Diet LLA PN Diet HLA PN Diet Pmaternal Ppostnatal Pint

C14:0 Myristate 0.144 ± 0.022 0.114 ± 0.013 0.144 ± 0.008 0.123 ± 0.012 ns ns ns
C15:0

Pentadecanoate 0.034 ± 0.004 0.033 ± 0.005 0.041 ± 0.007 0.029 ± 0.005 ns ns ns
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Table 2. Cont.

LLA Maternal Diet HLA Maternal Diet Two-Way ANOVA

LLA PN Diet HLA PN Diet LLA PN Diet HLA PN Diet Pmaternal Ppostnatal Pint

C14:0 Myristate 0.144 ± 0.022 0.114 ± 0.013 0.144 ± 0.008 0.123 ± 0.012 ns ns ns
C15:0

Pentadecanoate 0.034 ± 0.004 0.033 ± 0.005 0.041 ± 0.007 0.029 ± 0.005 ns ns ns

C16:0
Dimethylacetal 3.668 ± 0.491 4.778 ± 0.233 3.993 ± 0.394 4.346 ± 0.338 ns ns ns

C16:0 Palmitate 22.91 ± 0.508 23.57 ± 0.710 23.57 ± 0.402 22.69 ± 0.311 ns ns ns
C16:1n7

Palmitoleate 0.247 ± 0.026 0.213 ± 0.013 0.231 ± 0.012 0.222 ± 0.012 ns ns ns

C17:0
Heptadecanoate 0.073 ± 0.008 0.071 ± 0.007 0.072 ± 0.005 0.064 ± 0.006 ns ns ns

C18:0
Dimethylacetal 4.494 ± 0.746 5.887 ± 0.697 4.956 ± 0.219 5.043 ± 0.463 ns ns ns

C18:0 Stearate 20.10 ± 0.467 20.78 ± 0.201 20.54 ± 0.252 21.19 ± 0.190 ns 0.0409 ns
C18:1n9 Oleate 15.65 ± 0.805 13.36 ± 0.661 14.02 ± 0.320 14.80 ± 0.158 ns ns 0.0221
C18:1 Vaccenate 3.479 ± 0.112 3.235 ± 0.099 3.319 ± 0.086 3.418 ± 0.051 ns ns ns

C18:2n6 Linoleate 0.295 ± 0.044 0.292 ± 0.009 0.264 ± 0.009 0.292 ± 0.014 ns ns ns
C20:0 Arachidate 0.138 ± 0.014 0.087 ± 0.005 0.103 ± 0.006 0.116 ± 0.007 ns ns 0.003
C18:3n6 Gamma

Linolenate 0.013 ± 0.002 0.013 ± 0.003 0.016 ± 0.003 0.009 ± 0.001 ns ns ns

C20:1n9
Eicosenoate 0.532 ± 0.043 0.506 ± 0.047 0.483 ± 0.050 0.592 ± 0.027 ns ns ns

C20: 2n6
Eicosadienoate 0.079 ± 0.013 0.064 ± 0.007 0.037 ± 0.005 0.056 ± 0.004 0.0083 ns ns

C22:0 Behenate 0.127 ± 0.013 0.114 ± 0.018 0.104 ± 0.012 0.119 ± 0.007 ns ns ns
C20:3

Homogamma
Linolenate

0.212 ± 0.024 0.218 ± 0.019 0.237 ± 0.016 0.199 ± 0.010 ns ns ns

C22:1 Erucate 0.072 ± 0.012 0.068 ± 0.007 0.062 ± 0.008 0.077 ± 0.010 ns ns ns
C20:4n6

Arachidonate 8.135 ± 0.185 8.150 ± 0.117 8.374 ± 0.281 8.378 ± 0.187 ns ns ns

C24:0 Lignocerate 0.221 ± 0.017 0.205 ± 0.012 0.216 ± 0.024 0.235 ± 0.017 ns ns ns
C20:5n3

Eicosapentaenoate 0.019 ± 0.005 0.012 ± 0.002 0.013 ± 0.002 0.014 ± 0.001 ns ns ns

C24:1n9
Nervoniate 0.127 ± 0.021 0.096 ± 0.008 0.117 ± 0.012 0.122 ± 0.009 ns ns ns

C22:4n6 Adrenate 3.047 ± 0.207 3.094 ± 0.126 3.287 ± 0.118 3.356 ± 0.156 ns ns ns
C22:5n6 Docos-
apentaenoate 0.349 ± 0.046 0.568 ± 0.017 0.299 ± 0.020 0.621 ± 0.055 ns <0.0001 ns

C22:5n3 Docos-
apentaenoate 0.146 ± 0.021 0.173 ± 0.027 0.199 ± 0.015 0.168 ± 0.021 ns ns ns

C22:6n3
Docosahexaenoate 14.20 ± 0.601 14.23 ± 0.669 16.22 ± 0.823 13.99 ± 0.375 ns ns ns

Data are presented as the mean ± standard error of the mean (SEM). Two-way ANOVA was performed for
statistical analysis with maternal diet and postnatal diet as two factors; n = 6–8. LLA: low linoleic acid; HLA:
high linoleic acid; PN: postnatal; ns: not significant. P refers to the probability of a maternal, postnatal, or
interactive effect.

2.2. Maternal and Postnatal Consumption of an HLA Diet Affects Brain AA/DHA, DHA/n-3
DPA, and DHA/n-6 DPA in a Sex-Dependent Manner

Postnatal HLA diet significantly increased AA/DHA (p = 0.0251) in male offspring
(Figure 1, n = 6–8). Both maternal and postnatal HLA diets had an interaction effect on the
increased AA/DHA (p = 0.0399) in male offspring (Figure 1). Postnatal HLA diet decreased
DHA/n-6 DPA (p < 0.0001) in both male and female adult offspring (Figure 1, n = 6–8).
Moreover, maternal and postnatal HLA diets had an interaction effect on the decreasing
DHA/n-6 DPA (p = 0.018) in female adult offspring (Figure 1, n = 6–8). There were no
differences in DHA/n-3 DPA among all groups in both sexes (Figure 1, n = 6–8).
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Figure 1. Effects of maternal and postnatal diets high in linoleic acid on arachidonic acid/docosahex-
aenoic acid (AA/DHA) (A,B), docosahexaenoic acid/n-3 docosapentaenoic acid (DHA/n-3 DPA) 
Figure 1. Effects of maternal and postnatal diets high in linoleic acid on arachidonic
acid/docosahexaenoic acid (AA/DHA) (A,B), docosahexaenoic acid/n-3 docosapentaenoic acid
(DHA/n-3 DPA) (C,D), and docosahexaenoic acid/n-6 docosapentaenoic acid (DHA/n-6 DPA)
(E,F) in the brains of male (A,C,E) and female (B,D,F) offspring. Two-way ANOVA was performed
with maternal diet and postnatal diet as two factors. LLA: low linoleic acid; HLA: high linoleic acid.
Data are expressed as the mean ± standard error of the mean (SEM); ns = not significant; n = 6–8,
* p < 0.05.

2.3. Maternal HLA Diet Increases Brain Plasmalogen (C16:0 DMA/C16:0 and C18:0 DMA/C18:0)
in Male Offspring

We further compared C16:0 or C18:0 to their respective DMA. Maternal HLA diet
increased both C16:0 DMA/C16:0 (p = 0.0023; Figure 2, n = 6–8) and C18:0 DMA/C18:0
(p = 0.0012) in adult male offspring (Figure 2, n = 6–8). There were no changes in brain
plasmalogen in female offspring (Figure 2, n = 6–8).
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Figure 2. Effects of maternal and postnatal diets high in linoleic acid on C16:0 dimethylacetal
(DMA)/C16:0 (A,B) and C18:0 dimethylacetal (DMA)/C18:0 (C,D) in the brains of male (A,C)
and female (B,D) offspring. Two-way ANOVA was performed with maternal diet and postnatal
diet as two factors. LLA: low linoleic acid; HLA: high linoleic acid. Data are expressed as the
mean ± standard error of the mean (SEM); ns = not significant, n = 6–8.

2.4. Maternal and Postnatal HLA Diets Alter Plasma Endocannabinoids in Adult Offspring, in a
Sex-Specific Manner

Plasma endocannabinoids (AEA and 2-AG) were altered by both maternal and postna-
tal diets (Figure 3, n = 6–8), irrespective of sex. For AEA, there was a significant effect of
postnatal diet (p = 0.031), with higher AEA in the HLA diet group. The interaction between
sex and postnatal diet did not reach significance (p = 0.083), and while plasma AEA seemed
higher in males overall compared to females, this was not significant (p = 0.072). For 2-AG,
there was a significant effect of sex (p = 0.043), postnatal diet (p < 0.001), and maternal
× postnatal diet (p = 0.003). Females had significantly higher plasma 2-AG compared to
males, and overall postnatal HLA diet resulted in higher 2-AG, but only when the maternal
diet was LLA.

AA was significantly higher in males compared to females (p = 0.042), as well as in
postnatal HLA compared to LLA diets (p = 0.002). There was also a significant sex ×
postnatal diet interaction for AA (p = 0.044), with significantly higher AA in males with an
HLA compared to an LLA postnatal diet (p = 0.002), but a smaller, non-significant increase
in AA in females fed a postnatal HLA rather than LLA diet (p = 0.382). No other effects for
AEA, AA, or 2-AG were significant (n = 6–8).
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Figure 3. Effects of maternal and postnatal diets high in linoleic acid on plasma arachidonoyl
ethanolamide (A,B), 2-arachidonoyl glycerol (C,D), and arachidonic acid (E,F) in male (A,C,E) and
female (B,D,F) offspring. Three-way ANOVA was performed with maternal diet, sex, and postnatal
diet as three factors. LLA: low linoleic acid; HLA: high linoleic acid. Data are expressed as the
mean ± standard error of the mean (SEM); ns = not significant; n = 6–8.

2.5. Effects of Maternal and Postnatal HLA Diets on Plasma N-acyl Ethanolamide in
Adult Offspring

Plasma N-acyl ethanolamides (OEA, PEA, SEA, LEA) were compared between mater-
nal and postnatal diets (Figure 4, n = 6–8) and were again found to differ as a function of
diet, but also as a function of sex in some cases. The only significant effect for OEA revealed
a sex × maternal × postnatal diet interaction (p = 0.007). This interaction effect suggested
that a postnatal HLA diet was only associated with increased plasma OEA in males that
had maternal LLA diets (p = 0.016). This interaction was not found in females (p = 0.351). A
similar effect was found for PEA, where the sex × maternal × postnatal diet interaction
was significant (p = 0.014), with increased plasma PEA in males fed HLA postnatal diets,
but only when they had maternal LLA diets. This test also found that PEA was higher
overall in males (p = 0.028), and the maternal × postnatal diet interaction was significant
(p = 0.009), though this was superseded by the three-way interaction that revealed that this
interaction occurred only in males (p = 0.011) but not in females (p = 0.865). No effects of
SEA were significant, including the sex × postnatal diet interaction, which trended towards,
but did not reach, significance (p = 0.053). Finally, plasma LEA was significantly higher
in the postnatal HLA group (p < 0.001), though this was not moderated by sex (p = 0.240),
and no other significant effects were observed.
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Figure 4. Effects of maternal and postnatal HLA diets on plasma oleoyl ethanolamide (A,B), palmitoyl
ethanolamide (C,D), stearoyl ethanolamide (E,F), and linoleoyl ethanolamide (G,H) in male (A,C,E,G)
and female (B,D,F,H) offspring. Three-way ANOVA was performed with maternal diet, sex, and
postnatal diet as three factors. LLA: low linoleic acid; HLA: high linoleic acid. Data are expressed as
the mean ± standard error of the mean (SEM); n = 6–8.

2.6. Effects of Maternal and Postnatal HLA Diets on Plasma Steroid Hormones in Adult Offspring

As n-6 PUFA exposure may mediate effects on offspring’s physiology through indirect
actions on their hormones, we measured corticosterone and testosterone concentrations.
While no effects were observed for corticosterone, there was a significant effect of LA diet on
plasma testosterone (Figure 5, n = 6–8). There was a significant main effect of testosterone
(p < 0.001), with males having higher testosterone than females. There were also significant
main effects of maternal diet (p = 0.040) and postnatal diet (p = 0.007), such that significantly
higher testosterone was observed in maternal and postnatal HLA diet conditions. Although
these effects did not occur in females with LLA postnatal diets, the three-way interaction
did not reach significance (Figure 5, interaction term p = 0.159, n = 6–8), and all other
interactions featuring the factor of sex in the ANOVA were non-significant.
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Figure 5. Effects of maternal and postnatal diets high in linoleic acid on plasma corticosterone
(A,B) and testosterone (C,D) in male (A,C) and female (B,D) offspring. Three-way ANOVA was
performed with maternal diet, sex, and postnatal diet as three factors. LLA: low linoleic acid; HLA:
high linoleic acid. Data are expressed as the mean ± standard error of the mean (SEM); ns = not
significant; n = 6–8.

3. Discussion

The brain is rich in lipids, and dietary fatty acids in the brain can impact brain function
and behavior [36]. A significant novel outcome from this study is that consumption of
a high-LA diet prior to and during pregnancy/weaning altered the brain’s fatty acid
concentrations in addition to C16:0 and C18:0 DMA concentrations in offspring. Changes in
plasmalogen concentrations only occurred in male offspring. To the best of our knowledge,
this is the first study to investigate the effects of maternal and postnatal HLA diets on
offspring brain fatty acid composition and brain plasmalogen. In this study, we provide
new evidence that brain plasmalogen is affected by a maternal diet high in LA, and not a
postnatal diet, in a sex-specific manner. Furthermore, the ratio of DHA/n-6 DPA is reduced
by postnatal high-LA diets in both sexes, with an interaction effect in females. There was
greater diversity in the concentration of fatty acids in the brains of males compared with
females, suggesting that the developing male brain is more susceptible to elevated LA
concentrations. Finally, we found evidence that high-LA diet affected endocannabinoids as
well as plasma testosterone, often in a sex-specific manner, with stronger effects in males
compared to females. These effects were most prominent with the postnatal diet, though
often only when the maternal diet was low in LA, suggesting a potential restorative effect
and an opportunity for postnatal treatment.

The consumption of LA has increased 20-fold in Western countries in recent decades
among people within reproductive age [37]. The increasing consumption of LA during
pregnancy is linked to adverse outcomes in offspring neurodevelopment [1]. The ratio of
specific fatty acids is an important indicator of neuronal dysfunction [37]. Mechanistically,
previous research has demonstrated that a high AA/DHA ratio induces triglyceride ac-
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cumulation, increases oxidative stress, and disrupts mitochondrial functions [38]. DPA
is metabolized by the enzymes fatty acid elongase 2 (ELOVL2) and fatty acid desaturase
1 (FADS1) [39]. The reduction in DHA/n-6 DPA ratio in response to an HLA diet was
likely due to the elevated n-6 DPA, which is similar to the findings of a previous study [40].
Interestingly, in the sera of pregnant women, the reduction in DHA/n-6 DPA has been
linked to depression [41]. Furthermore, in rodents, an increase in neuronal n-6 DPA leads
to deficits in learning and memory assessed through the Morris water maze task [42].
Mechanistically, this may be due to FADS1/2, with polymorphisms in FADS1/2 linked to
neurobehavioral disorders [43].

During pregnancy, the fetus depends on an adequate supply of maternal AA and DHA
for optimal brain growth, obtained from metabolism of LA and ALA, respectively [44]. We
have previously shown that there is a significant increase in the concentrations of AA and
LA in male offspring born to mothers fed with a diet high in LA [4], albeit at embryonic
day 20. In the current study, we did not observe significant effects of postnatal HLA on
brain AA, LA, and DHA composition in either of the sexes in adulthood (PN180). However,
maternal HLA diet significantly altered AA and LA concentrations in the brains of male
offspring, which may have been set up by the increased AA and LA in plasma at E20. As
AA promotes inflammation [45], this suggests that a maternal diet high in LA may impact
neurodevelopment in the male offspring.

The n-3 long-chain fatty acids are crucial in the development of neural tissues [46],
and they are metabolized to DHA via a series of biochemical pathways [47]. Several
studies have linked the supplementation of diet with n-3 fatty acids during pregnancy and
lactation with increased mental IQ in children later in life [44,48]. Mechanistically, DHA
and n-3 DPA concentrations in the diet have been associated with reduced cardiovascular
disease incidence compared to n-6 DPA [49]. Data from 41 studies in different countries
show that low DHA in maternal milk is associated with an increased risk of postpartum
depression [50,51]. Similarly, offspring born to mothers with low DHA in their breast milk
have an increased risk of depression [51]. Further studies have shown that prolonged
feeding with a diet low in n-3 PUFAs decreases DHA in the brains of either male or female
adult mice [52,53]. Despite no effect on DHA concentrations in this study, there was a
decrease in DHA/n-6 DPA in both sexes due to postnatal high-LA diet intake, along with
an interaction effect in female offspring. This suggests that there was a reduction in brain
DHA, which may negatively impact neurodevelopment and function.

In Western cultures, an elevated n-6 dietary intake is often associated with a high
dietary fat intake. Several reports have shown that the intake of a high-fat diet alters specific
SFA, MUFA, and PUFA profiles, including increased C18:0 DMA in the retina [54]. Similarly,
our results show significant alterations in SFA, MUFA, and PUFA concentrations in the
brains of offspring due to maternal consumption of an HLA diet, with more significant
changes observed in the male offspring. This suggests that, in part, the consumption of a
high-fat diet may alter SFA, MUFA, and PUFA concentrations due to LA.

The transmethylation of SFA C18:0 and C16:0 products (DMA 18:0 and DMA C16:0)
was increased in male adult offspring born to mothers fed with a diet high in LA. This may
indicate that there was altered brain lipid metabolism in male offspring. Plasmalogens are
a class of phospholipids that constitute about 18% of total phospholipids and are abundant
in neurons, as well as skeletal and cardiac muscles [24]. Plasmalogens play a crucial role
in protecting brain cells from reactive oxidative species damage and serve as a major
source of AA. DMA is currently used to reflect plasmalogen concentrations in central and
peripheral tissues [24]. Decreased plasmalogen concentrations are associated with several
pathologies, such as spingolipidoses and peroxisomal disorders [18,24]. In our study, we
observed that maternal HLA diet increased C16:0 DMA/C16:0 and C18:0 DMA/C18:0 in
the brains of male offspring. This may lead to neural damage in male offspring, which
may in part be due to an inflammatory assault contributed by AA mediators, including
n-6 DPA. Conversely, the female offspring showed no significant alterations in brain C16:0
DMA/C16:0 and C18:0 DMA/C18:0, even when exposed to postnatal diet high in LA,
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suggesting that the brain plasmalogen was not significantly affected in female offspring
exposed to an HLA diet. Sex differences exist due to the capacity of ovarian hormones, i.e.,
estrogen, to modulate neuronal lipid metabolism [55]. The reduction in plasmalogen in
males may indicate that estrogen buffers against the negative impact of a maternal high-LA
diet. Future research should focus on elucidating the molecular mechanisms involved in
plasmalogen’s modulation of neurofunction and the behavioral consequences in offspring
exposed to an elevated-LA diet.

Endocannabinoids are metabolite products of dietary essential PUFAs and are crucial
to early brain development [56]. The current study demonstrated that AEA, 2-AG, AA,
OEA, PEA, and LEA were significantly higher in postnatal high-LA diets compared to
postnatal low-LA diets. For 2-AG, OEA, and PEA, these effects were only significant when
the maternal diet was low in LA, suggesting a restorative effect and a potential avenue
for future treatments. However, for OEA and PEA, this only occurred in males, with no
changes in OEA or PEA in males with a postnatal HLA diet. Further reinforcing the sex
differences found in these data, AA increased as a function of postnatal LA diet, but only in
males, and AEA, 2-AG, and AA all showed evidence of overall sexual dimorphism in terms
of plasma concentrations. Sex differences in overall endocannabinoid tone have previously
been identified in blood, hair, and saliva samples [57], and the endocannabinoid system
shows stark evidence of sexual dimorphism in terms of endocannabinoid activity in health
and disease [58–61]. The underlying mechanisms for this may be in part due to the sexually
dimorphic expression of enzymes responsible for the metabolism of endocannabinoids,
namely, MAGL and FAAH, with females having a higher amygdala expression of MAGL
and FAAH in rats [62]. These findings were reinforced by the significant effects of LA
diet on testosterone in the current study. Specifically, higher testosterone was found in
males exposed to postnatal HLA diets. These findings should be further investigated in
future research, as they may hold important information as to why sexual differences in
endocannabinoid signaling occur.

4. Materials and Methods
4.1. Experimental Animal Model and Diet

Ethical approval was granted by the Griffith University Animal Ethics Committee
(NSC/01/17/AEC). Female Wistar Kyoto rats (8 weeks of age) were purchased from the
Australian Resource Centre (ARC, Perth, WA, Australia) and housed in accordance with
the Australian Code of Practice for Care and Use of Animals for Scientific Purpose.

Female rats consumed either a diet with low LA (LLA) or high LA (HLA) for 10 weeks.
Females were then mated with a control male (consuming standard rat chow). Following
mating, the female rat continued to consume the same diet as prior to pregnancy during
pregnancy and until weaning. Offspring were weaned at postnatal day (PN) 25 and fed with
either an LLA or HLA diet. This gave rise to 4 groups of offspring (LLA maternal–LLA PN;
LLA maternal–HLA PN, HLA maternal–LLA PN, and HLA maternal–HLA PN). At PN180,
the offspring were euthanatized by intraperitoneal injection with sodium pentobarbital
(60 mg/kg) [7]. Their brains were dissected and weighed, and then snap-frozen at −80 ◦C
until use. Only one male and one female from each litter were used for each analysis; n
values represent individual offspring from separate litters.

4.2. Rodent Brain Fatty Acid Analysis

Fatty acid composition was quantified by Cardinal Bioresearch as described previ-
ously [63]. Briefly, the brain fatty acid composition was analyzed by gas chromatography
(GC) with flame ionization detection. The tissue was transferred to a screw-cap glass vial
containing the methylation reagent (14% boron trifluoride, toluene, methanol; 35:30:35
v/v/v; Sigma-Aldrich, St. Louis, MO, USA). The tissue was sonicated for 5 min, and the
sample was vortexed and then incubated a hot bath at 100 ◦C for 45 min. Hexane (EMD
Chemicals, Gibbstown, NJ, USA) and HPLC-grade water were added following cooling,
and separate layers were generated through centrifugation. An aliquot of the hexane layer
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was transferred to a GC vial. GC was carried out using a GC-2030 Gas Chromatograph
(Shimadzu Corporation, Columbia, MD, USA) equipped with an SP-2560, 100 m fused
silica capillary column (0.25 mm internal diameter, 0.2 um film thickness; Restek, Bellefonte,
PA, USA). A standard mixture of fatty acids (NuCheck Prep, Elysian, MN, USA) was used
to identify individual fatty acids. Fatty acid composition was expressed as a percentage of
the total identified fatty acids.

4.3. Plasma Endocannabinoid Analysis

Endocannabinoid analysis was performed as previously described [64,65], with some
modifications. Briefly, we performed stable isotope dilution using liquid chromatogra-
phy paired with tandem mass spectrometry (LC-MS/MS). Isotopically labeled standards
d4-AEA, d5-2-AG, d4-OEA, d4-PEA, d4-hydrocortisone, d8-arachidonic acid, and d3-
testosterone were added to 200 µL of each rat plasma sample. Then, 1 mL of 50:50 cy-
clohexane/ethyl acetate extraction solution was added to each sample, after which the
samples were vortexed, centrifuged, and the resulting supernatant concentrated to a final
15 µL acetonitrile solution, of which 5 µL was injected into the LC-MS/MS system. The
LC-MS/MS system included a Nexera X2 UHPLC (Shimadzu, Sydney, Australia) binary
pump system coupled with a Sciex QTRAP 6500. (Sciex, Mt Waverley, Australia) Mobile
phase A consisted of 0.2 mM ammonium fluoride, and mobile phase B was 100% acetoni-
trile. Plasma AEA, 2-AG, OEA, PEA, SEA, LEA, AA, corticosterone, and testosterone were
calculated in Skyline-daily v21 by dividing the peak intensities of the native analytes by the
peak intensities of the labeled standards (d4-hydrocortisone was used as a labeled standard
for corticosterone) and multiplying by the inverse of the injection amount (in mL). All
analytes are expressed in pg/mL in plasma, except for corticosterone and AA, which are
expressed in ng/mL.

4.4. Statistical Methods

Fatty acid data were analyzed by two-way ANOVA using GraphPad Prism 8.3.1
(GraphPad software, San Diego, CA, USA), with maternal and postnatal diet as the factors,
and with data separated for males and females. Post hoc comparisons were conducted
with Tukey’s post hoc test. Serum concentrations of endocannabinoids were analyzed by
univariate ANOVA. Partial eta-squared (ηp2) effect sizes were calculated and reported,
with the alpha level of the tests set to 0.05. Bivariate correlations (Pearson’s coefficient
correlations) examined the correlations between the endocannabinoids. Data are presented
as the mean ± standard error of the mean (SEM). Significance was determined with
p-values < 0.05.

5. Conclusions

In conclusion, intake of a diet high in LA during pregnancy and lactation alters SFA,
MUFA, and PUFA composition in adult offspring’s brains, as well as endocannabinoids
and testosterone in plasma. A maternal HLA diet increases the inflammatory mediator
AA, and a postnatal HLA diet decreases the anti-inflammatory mediators DHA/n-6 DPA
in a sex-specific manner in offspring’s brains. Furthermore, a maternal diet high in LA
increases brain plasmalogen in male adult offspring, but not in female offspring. These
findings suggest that the brains of the male offspring might be modified early in life due to
the exposure to a diet high in LA. The exact mechanisms of this sex-specific variance, as
well as the behavioral consequences of these changes, warrant further investigation.
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