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Abstract 

Convolutional Neural Networks (CNNs), particularly low-latency models like MobileNet, 

are widely applied in areas such as image classification, speech recognition, and language 

processing. Despite their efficiency and accuracy, these models remain vulnerable to ad-

versarial attacks, small, structured perturbations to input data that can lead to misclassifi-

cation without affecting human perception. Traditional adversarial training techniques, 

which aim to enhance model robustness, typically treat all data points equally. This uni-

form treatment does not account for the varying susceptibility of individual samples to 

adversarial perturbation. 

To address this limitation, we propose a Weighted Adversarial Reinforced Stackelberg 

Learning (WARS) framework, which formulates the training process as a Stackelberg 

game between a defender (the CNN model) and an adversary. In this setup, we assign 

greater training weight to data points more likely to be exploited by adversaries. The 

strategy allows the model to adapt its training focus based on the risk level associated 

with each input. To further enhance robustness, we integrate a reinforcement learning 

(RL) agent to fine-tune hyperparameters dynamically throughout training, reducing reli-

ance on manual configuration and improving convergence efficiency. 

Experimental results on the CIFAR-10 dataset show that the WARS model achieves a ro-

bustness of 66.18% after a single epoch of training, compared to 64.72% obtained 

through standard adversarial training. This indicates that the WARS approach can offer 

measurable improvements in resilience with minimal computational overhead. 

Beyond single-adversary settings, we extend our model to account for multiple attackers 

using a Bayesian Stackelberg game framework. This models the interaction between the 

classifier and a population of adversaries with different strategies, simulating more 
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realistic deployment conditions. The defender computes an optimal mixed strategy that 

considers the distribution of possible attacks. The resulting nested Bayesian Stackelberg 

formulation provides a scalable foundation for training models robust to varied and un-

predictable threats. 

Finally, we investigate quantum machine learning as an alternative defence strategy. By 

employing quantum support vector machines (QSVM) with ZZ feature maps, we project 

adversarial inputs into high-dimensional quantum spaces, allowing for enhanced separa-

bility between perturbed and unperturbed data. On adversarial perturbed MNIST and 

CIFAR-10 datasets, the QSVM achieved 70.6% classification accuracy, outperforming a 

classical SVM with an RBF kernel, which scored 51%. This demonstrates the potential of 

quantum kernels in defending against adversarial threats, particularly in complex, non-

linear domains. 

This thesis addresses three key challenges in adversarial machine learning: (1) the inabil-

ity of traditional adversarial training to adapt to sample-specific vulnerabilities, (2) the in-

efficiency of static hyperparameter tuning in dynamic adversarial settings, and (3) the 

limitations of classical models in handling complex, non-linear adversarial perturbations. 

To overcome these challenges, we propose a Weighted Adversarial Reinforced Stackel-

berg Learning (WARS) framework that combines sample-weighted adversarial training 

with reinforcement-based hyperparameter optimization. We extend this to a Bayesian 

Stackelberg game to model interactions with multiple attackers and improve scalability in 

real-world threat environments. Finally, we explore quantum-enhanced classification us-

ing Quantum Support Vector Machines (QSVMs), demonstrating superior resilience to 

adversarial perturbations through high-dimensional feature mapping. Collectively, this 

work presents an integrated defence strategy that enhances the robustness of modern ma-

chine learning models against evolving adversarial threats. 
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Chapter 1 

 

Introduction 

 

1.1 Background 
 

With the rapid advancement of deep learning and artificial intelligence, ensuring the ro-

bustness of machine learning classifiers against adversarial attacks has become a critical 

research priority. The susceptibility of machine learning (ML) models to adversarial per-

turbations has drawn increasing attention from both the machine learning and cybersecurity 

communities. As ML algorithms are integrated into real-world applications, ranging from 

autonomous systems to medical diagnostics and financial decision-making, there is grow-

ing concern about the security risks posed by these vulnerabilities [1] [2] [3] 

Recent conventional ML models are built on the assumption that both training and testing 

data are independently and identically distributed (i.i.d.). This assumption, while conven-

ient for theoretical analysis, fails to account for adversarial manipulation. Attackers exploit 

this gap by generating inputs that are close to legitimate samples in feature space but are 

purposefully designed to cause misclassification [4] [5] [6] [7] [8] [9] [10]. These inputs, 

often called adversarial examples, introduce subtle perturbations to images or other input 

data. Though imperceptible to the human eye, these changes can cause the model to confi-

dently predict an incorrect class (Goodfellow et al., 2014). As a result, adversarial examples 

degrade the reliability of ML models and expose them to potential exploitation [11] [12] 

[13] [14] [15] [16]. 

Addressing these vulnerabilities requires a shift in the way models are trained and evalu-

ated. Traditional ML algorithms are not inherently designed to account for adversarial in-

terference. In adversarial learning, the training process is adapted to account for the pres-

ence of an attacker who perturbs the input distribution [17] [18] [19] [20].These 
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perturbations can shift the model’s latent space, resulting in learned representations that 

are biased toward adversarial distributions. If not corrected, the model becomes overfitted 

to either benign data or to a narrow range of adversarial patterns, reducing its generalization 

capability. [21] [22] [23] [24] [25] [26] [27] [28] [29]. 

To build classifiers that are truly robust, it is essential to incorporate diverse adversarial 

threat models into the training framework. This includes accounting for variations in the 

attacker's knowledge, capabilities, and goals. For example, white-box attackers may have 

full access to the model architecture and gradients, while black-box attackers operate with 

limited information. Similarly, attacks may differ in their perturbation norms (e.g., ℓ₀, ℓ₂, 

ℓ∞) and their target objectives (targeted vs. untargeted misclassification) [30] [31] [25]. 

Robust adversarial learning must therefore be formulated as a strategic interaction between 

the learner and a range of potential adversaries. This requires not only training on adver-

sarial samples but also designing learning algorithms that can generalize across unseen 

attack types. Incorporating prior knowledge about likely attack strategies, perturbation 

bounds, or distributions of adversaries can improve the learner’s ability to resist attacks. 

Furthermore, integrating adversarial training with techniques such as regularization, uncer-

tainty modeling, or game-theoretic optimization can further enhance model robustness [32] 

[33]. 

Hence, developing secure and resilient machine learning systems involves understanding 

the behaviour and distributional impact of adversarial attacks, as well as designing models 

that adapt to diverse and evolving threat scenarios. As ML continues to expand into critical 

and high-stakes domains, adversarial robustness is not just a technical challenge, but a 

foundational requirement for trustworthy AI systems [29]. 

Common adversarial defence techniques include adversarial training, where neural net-

works are trained on perturbed input samples to improve their resilience to attacks. The 

effectiveness of this method relies heavily on the ability to generate strong and diverse 

adversarial examples. Without high-quality adversarial samples, the network may overfit 

to specific perturbations and fail to generalize under real-world adversarial conditions. 
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Therefore, an effective adversarial training pipeline requires a reliable and strategic 

method for crafting adversarial data [34] [35] [36]. 

Furthermore, the interaction between a machine learning classifier and an adversary can 

be modelled as a two-player game, where each player's move prompts a counter-response 

from the other. In such strategic settings, no single strategy is universally optimal against 

all possible adversary behaviours. Instead, each agent must observe or anticipate the 

other’s actions and respond with a strategy that maximizes their own payoff or minimizes 

potential losses. The large number of possible strategy combinations quickly becomes 

complex, especially as the models and attacks increase in sophistication. Game theory of-

fers a mathematical framework for navigating this complexity, providing tools to identify 

equilibrium strategies that balance the objectives of competing agents [26] [29] [37] [35]. 

In adversarial learning, this framework helps formalize the interaction between a classi-

fier (the defender) and an attacker. Each party aims to either optimize model performance 

or degrade it, depending on their role. The attacker may seek to find the smallest pertur-

bation that causes misclassification, while the defender aims to preserve accuracy under 

such transformations. Classical game theory assumes players behave rationally and make 

decisions based on their knowledge of the opponent's incentives and constraints. In adver-

sarial learning, this translates to selecting model parameters or defence strategies that ei-

ther anticipate or adapt to the attacker's moves [34] [35] [36]. 

Adversarial training, while effective in increasing model robustness, often leads to re-

duced accuracy on clean (unperturbed) samples. For example, Zhang et al. (2019) devel-

oped an advanced adversarial training algorithm that improved robustness but resulted in 

a CNN with 89% accuracy on the CIFAR-10 dataset, lower than the 96% accuracy 

achieved through standard training on the same dataset [38].Since adversarial attacks do 

not occur continuously in deployment, it may not be optimal to commit to a pure defence 

strategy that prioritizes robustness at the expense of baseline performance. Instead, when 

the defender possesses prior knowledge about the likelihood or nature of attacks, it be-

comes beneficial to adopt a mixed strategy, distributing responses across multiple models 

or defences according to a probability distribution [39] [40]. 
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In object classification tasks, defenders often have access to a set of pretrained convolu-

tional neural networks (CNNs), each optimized to minimize classification loss under 

standard conditions. Meanwhile, attackers may choose among multiple strategies for opti-

mizing perturbation vectors that transform the input during an attack. A rational defender, 

armed with probabilistic knowledge of the attacker's behaviour, can leverage this infor-

mation to mix strategies and maximize expected payoff. This avoids the trade-off be-

tween robustness and accuracy associated with committing to a single defensive model 

[41] [42]. 

Many existing game-theoretic approaches in adversarial learning focus on the adversary-

classifier interaction but often assume idealized or simplified conditions. These models 

frequently overlook uncertainties and the dynamic nature of real-world deployment envi-

ronments. Game theory, particularly in its Bayesian or Stackelberg forms, allows for 

more realistic modeling by incorporating partial information, asymmetric knowledge, and 

sequential decision-making. Optimization in these frameworks is typically formulated as 

a non-linear, non-convex quadratic programming problem with constraints that include 

classification accuracy, misclassification error, and regularization terms. These elements 

are weighted by probability distributions over the strategy space, enabling the formulation 

of defences that adapt over time and across varying threat levels [37]. 

Therefore, applying game theory to adversarial machine learning provides a robust and 

flexible foundation for modeling the strategic interplay between attackers and defenders. 

It supports the design of learning algorithms that balance accuracy and robustness, adapt 

to varying adversarial conditions, and optimize outcomes in uncertain, multi-agent envi-

ronments. 

Adversarial samples are designed to exploit weaknesses in a machine learning classifier 

by selecting inputs that are likely to cause misclassification. These attacks often use 

knowledge of the defender's strategy to increase their effectiveness. To build robust clas-

sifiers capable of withstanding such threats, it is essential to incorporate insights about 

potential adversarial behaviours into the training phase. A game-theoretic model provides 

a structured mathematical framework for representing this interaction. Through iterative 
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adversarial training, the model minimizes loss on adversarial samples, rather than relying 

solely on the natural data distribution. This iterative process mimics the actions of intelli-

gent and adaptive adversaries, offering a more realistic and practical defense mechanism 

for deployed systems. 

Moreover, adversarial examples have demonstrated transferability across different ma-

chine learning models. An input that causes one classifier to misclassify can often mis-

lead another, even if the models differ in architecture or training data [43] [44] [45]. This 

phenomenon underscores the importance of general robustness in machine learning sys-

tems. Many existing game-theory-based approaches model only single-round interactions 

between the learner and the adversary [46]. In contrast, our proposed framework incorpo-

rates historical interactions, allowing the defender to learn from past adversarial behav-

iour and make more informed decisions about selecting appropriate classifiers or de-

fences. 

Consequently, we conduct a literature review to investigate the relationship between ad-

versarial attacks and the robustness of machine learning algorithms within game-theoretic 

contexts. Our review explores how adversarial perturbations lead to nonlinear and com-

plex data representations, disrupting the classifier’s ability to generalize. We examine 

current methods used to improve robustness, assess the impact of adversarial samples on 

learning systems, and highlight key challenges in defending against such attacks. 

Furthermore, we explore the integration of game theory, reinforcement learning, and 

quantum computing into adversarial training frameworks [47] [22] [34]. These emerging 

approaches offer promising directions for improving model resilience, particularly in 

high-stakes or real-time applications. Reinforcement learning enables adaptive learning 

strategies in dynamic environments, while quantum machine learning introduces power-

ful tools for modelling complex, high-dimensional input spaces [48]. 

In this work, we propose a game-theoretic framework,the Decomposed Optimal Bayesian 

Stackelberg Solver (DOBSS),to model the interaction between a single defender and mul-

tiple adversaries. This framework enables the defender, who lacks certainty about the ad-

versary’s type, to use prior knowledge over adversary distributions to compute a high-
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rewarding mixed strategy. Unlike traditional adversarial training methods that primarily 

defend against a fixed adversarial strategy, our approach integrates multiple adversarial 

behaviors, attack strengths, strategy variations, and prior information into the learning 

process. 

In conclusion, our focus is on developing robust machine learning classifiers through ad-

versarial learning enhanced with quantum kernels, reinforcement learning, and game-the-

oretic optimization. By combining these methodologies, we aim to advance the develop-

ment of resilient AI systems capable of maintaining accuracy and security in adversarial 

settings. 

 

1.2 Thesis Contribution 

This research introduces a set of novel methodologies that significantly advance the ro-

bustness of machine learning models against adversarial attacks, particularly within the 

context of image classification using Convolutional Neural Networks (CNNs) and Quan-

tum Support Vector Machines (QSVMs). The core contribution lies in the development 

and implementation of game-theoretic frameworks, specifically leader follower game 

models, to design adversarial training strategies tailored for modern neural network archi-

tecture. The research also expands into the integration of reinforcement learning and 

quantum computing paradigms to enhance adversarial defense mechanisms. 

The first major contribution is the design of an adversarial training methodology based on 

the Weighted Adversarial Stackelberg game. In this formulation, the training process of a 

MobileNet CNN model is conceptualized as a leader-follower dynamic, where the model 

(defender) anticipates and responds to actions of adversarial agents (attackers). This 

game-theoretic model introduces asymmetric weighting schemes that emphasize adver-

sarial data points during testing, thereby guiding the model to focus more on potential 

vulnerabilities in the input space. By solving for the Stackelberg equilibrium, we derive a 

pure strategy model that optimizes the learning parameters of MobileNet. This 
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equilibrium effectively reduces misclassification errors and enhances the generalization 

ability of the model, enabling it to perform robustly in adversarial settings. 

To further augment the effectiveness of the Stackelberg formulation, the study incorpo-

rates the SARSA (State-Action-Reward-State-Action) reinforcement learning algorithm 

into the MobileNet architecture. SARSA functions as an adaptive tuning mechanism that 

adjusts the model's decision-making in response to dynamically changing adversarial in-

puts. The integration of SARSA not only strengthens MobileNet's resilience but also en-

hances its ability to learn defensive policies in an online, iterative manner. Empirical 

evaluations demonstrate that the SARSA-augmented Stackelberg-trained MobileNet con-

sistently outperforms conventional adversarial training methods in terms of accuracy and 

robustness across multiple benchmark datasets. 

In addition to focusing on a pure strategy model, the research presents a Bayesian 

Stackelberg game framework designed to handle scenarios involving multiple intelligent 

adversaries. In this model, the defender lacks precise knowledge about the types of adver-

saries it may face but possesses prior distributions representing this uncertainty. The de-

fender, acting as a learner, computes an optimal mixed strategy by solving the expected 

payoff matrices that encapsulate both defender and adversary strategies. The Bayesian 

Stackelberg equilibrium derived from this interaction provides a probabilistic defense 

strategy that can flexibly adapt to varying adversarial behaviors. 

This Bayesian game formulation extends beyond MobileNet and is applied to other CNN 

architectures, showing generalized improvements in adversarial robustness. The mixed 

strategy approach proves particularly effective when adversaries employ varied and so-

phisticated perturbation techniques. Our empirical results validate that the Bayesian 

Stackelberg-trained models yield significantly lower classification errors under high-per-

turbation attacks compared to traditionally trained models. 

Complementing the game-theoretic methods, this thesis explores the application of Quan-

tum Support Vector Machines (QSVMs) in adversarial defense. A key contribution is the 

comparative evaluation between QSVMs and adversarially trained classical SVMs 
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(advSVMs) under increasing levels of adversarial perturbations using the MNIST and 

CIFAR-10 datasets. The study demonstrates that QSVMs maintain superior classification 

accuracy even as the strength of the adversarial attacks intensifies. This robustness is at-

tributed to the ability of QSVMs to operate in high-dimensional Hilbert spaces, where ad-

versarial perturbations become less effective at distorting decision boundaries. 

Further analysis models the adversarial interaction between a defender deploying either 

QSVM or advSVM, and an attacker aiming to exploit model vulnerabilities. In this two-

strategy game, the defender evaluates potential payoffs and selects between quantum and 

classical models. The results consistently indicate that the QSVM strategy yields higher 

payoffs, affirming the advantage of quantum-enhanced machine learning models in ad-

versarial environments. 

By integrating these methodologies, this thesis establishes a multi-faceted defense frame-

work combining game theory, reinforcement learning, and quantum computing. Each 

component contributes to a holistic approach for developing resilient classifiers capable 

of withstanding a wide spectrum of adversarial threats. The contributions span theoretical 

modeling, algorithm design, and empirical validation, laying the groundwork for future 

research in adversarially robust machine learning. 

In summary, the key contributions of this thesis are as follows: 

1. Development of a Weighted Adversarial Stackelberg training methodology for 

MobileNet CNNs. 

2. Integration of SARSA reinforcement learning for adaptive adversarial defense. 

3. Formulation and application of Bayesian Stackelberg games to derive optimal 

mixed defense strategies against multiple intelligent adversaries. 

4. Empirical validation of enhanced robustness across different CNN architectures. 

5. Comparative analysis demonstrating the superiority of QSVMs over classical 

advSVMs under adversarial conditions. 
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6. Game-theoretic modeling of QSVM and advSVM deployment strategies, high-

lighting the practical benefits of quantum models. 

These contributions collectively underscore the importance of strategic, adaptive, and 

quantum-empowered learning systems in countering the ever-evolving landscape of ad-

versarial machine learning threats. 

1.3 Significance of Research  

There are multiple ways a machine learning classifier can be attacked, and no general de-

fense guarantees robustness against all attack types. For example, a spam detector system: 

such systems are frequently targeted by malware designed to evade detection. A machine 

learning-based spam detector and the malware it targets have opposing goals. Malware 

developers modify malicious content to appear benign, exploiting the detector’s assump-

tions, such as the expectation that training and test data are independently and identically 

distributed. This mismatch causes the detector to fail. If an attacker can manipulate the 

training data, the classifier may begin to misclassify inputs. 

This interaction between attacker and defender can be modeled as a two-player game, 

where each party seeks to optimize its own outcome. In security scenarios, it is unrealistic 

for any player to maintain a dominant strategy that guarantees consistent success. Instead, 

a range of strategies must be considered. Game theory provides a mathematical frame-

work for identifying equilibrium strategies when players interact strategically. 

This thesis proposes a set of adversarial learning algorithms designed to mitigate vulnera-

bilities in machine learning classifiers when faced with strategic adversaries. These algo-

rithms can be applied to a range of applications, including computational systems, data 

analytics, mobile networks, recommender systems, image classification, and medical or 

biological image processing data analysis. 

ML algorithms have become foundational in tasks such as image classification, speech 

processing, and malicious code detection. Despite their strong predictive capabilities, 

these models are highly susceptible to adversarial perturbations, small, carefully con-

structed modifications to input data that can lead to incorrect classifications with high 
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confidence. These perturbations are often imperceptible to the human eye, allowing them 

to pass unnoticed during normal usage. When integrated into systems deployed in safety-

critical or privacy-sensitive environments, the consequences of such vulnerabilities can 

be severe. 

Adversarial examples exploit the underlying structure of DNNs by subtly altering fea-

tures in ways that shift model predictions across decision boundaries. Although some at-

tacks are designed with specific classifiers in mind, many adversarial perturbations gener-

alize across different models. This transferability makes them a broader threat, raising 

concerns about the reliability of machine learning systems in real-world applications. For 

example, in autonomous vehicles, a misclassification of traffic signs,such as interpreting 

a stop sign as a speed limit sign,could result in dangerous behavior on the road. In bio-

metric systems, adversarial tampering with facial images may allow unauthorized access 

or block legitimate users, thereby compromising system integrity and user privacy. 

The development of adversarial examples is not only a method for attack but also a valua-

ble tool for evaluating model robustness. By studying how and why models fail under 

such conditions, researchers can better understand the limitations of existing architectures 

and develop more effective defensive strategies. This includes exploring how DNNs 

make decisions, how they represent data internally, and what vulnerabilities exist at dif-

ferent layers of abstraction. 

The rise of big data and artificial intelligence has accelerated the deployment of DNNs in 

autonomous systems, especially in transportation. Among the various modules in an au-

tonomous driving system, traffic sign recognition is particularly vulnerable. Even small 

patches or stickers placed on physical road signs can manipulate the visual input in a way 

that misleads the recognition system. Studies have shown that printed adversarial 

patches,designed digitally and then transferred to the physical world,can fool camera-

based classifiers in real-time driving scenarios. This introduces a new class of risks, 

where digital manipulation can result in physical-world failures, highlighting the urgent 

need for resilient models capable of detecting or resisting adversarial inputs. 
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In summary, adversarial attacks expose fundamental weaknesses in how deep neural net-

works process information. Addressing these challenges requires not only stronger de-

fense mechanisms but also a deeper understanding of model behavior under adversarial 

conditions. This understanding is essential for building trustworthy AI systems, espe-

cially as they continue to be integrated into critical domains such as healthcare, finance, 

security, and autonomous transportation. 

Generating adversarial samples plays a central role in assessing and improving the robust-

ness of deep neural network (DNN) classifiers. These samples are deliberately modified 

inputs designed to expose weaknesses in machine learning models. By incorporating ad-

versarial examples into training processes, models can be conditioned to recognize and 

resist inputs that would otherwise lead to misclassification. This process has become a 

fundamental step in building classifiers that maintain accuracy under adversarial condi-

tions. 

To develop effective defenses, it is necessary to understand how adversarial examples are 

generated. The core idea is to identify how an input sample can be perturbed in a way that 

causes the model to misclassify it, while the changes remain imperceptible to human ob-

servers. The perturbation must be large enough to push the input across the decision 

boundary of the model, yet small enough to maintain its apparent integrity. If the pertur-

bation is excessive, it becomes detectable and loses its effectiveness. If it is too subtle, the 

model may classify it correctly and the intended effect is not achieved. 

The key challenge lies in computing the optimal level of perturbation. Biggio et al. ad-

dressed this by applying gradient descent techniques to the cost function of the classifier, 

integrating the model’s behavior with the input distribution to locate sensitive regions. 

Szegedy et al. introduced a method using the sign of the gradient vector to generate per-

turbations, which reliably fooled a variety of classifiers. Their work also demonstrated 

that retraining models using adversarial inputs could act as a regularizer, thereby improv-

ing general robustness. These early methods laid the foundation for many of the adversar-

ial training techniques used today. 
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While much of the research on adversarial attacks has focused on digital environments, 

real-world implications are becoming increasingly evident. Kurakin et al. showed that ad-

versarial patches, once printed and photographed, could still deceive trained classifiers 

like Inception v3. Evtimov and colleagues applied altered patterns to road signs, success-

fully misleading vision systems used in autonomous vehicles. These results confirmed 

that adversarial attacks are not confined to simulated settings and can be transferred into 

physical scenarios with tangible consequences. 

The emergence of physical-world adversarial attacks highlights critical concerns about 

the reliability and safety of AI-driven systems. As attack techniques become more adapta-

ble, transferable, and harder to detect, defending against them becomes more complex. 

Understanding the mechanisms and behavior of these attacks is essential for designing 

classifiers that can withstand a broader range of threats. This is particularly relevant in 

domains where the margin for error is minimal, such as autonomous driving and bio-

metric authentication. 

Moreover, advancements in AI and big data have accelerated the adoption of convolu-

tional neural networks (CNNs) in driverless technologies. Among various modules in 

such systems, traffic sign recognition is notably exposed to adversarial interference. Even 

small, well-placed patches on a road sign can cause a CNN-based system to misidentify 

critical information, such as mistaking a stop sign for a speed limit sign. These vulnera-

bilities translate into real safety risks and emphasize the need for models that can general-

ize under both normal and adversarial input conditions. 

Building robust CNN models requires an understanding of the adversary’s behavior and 

constraints. However, a persistent challenge is the uncertainty surrounding the type and 

capability of attackers the system may face at deployment. Even when a model is trained 

on diverse, high-quality data, it may still be vulnerable to unknown adversarial strategies. 

In such cases, it becomes important to formulate defense strategies that account for this 

uncertainty. Game-theoretic approaches, such as Bayesian modeling or Stackelberg 

games, offer potential frameworks for choosing optimal strategies under uncertain adver-

sarial conditions. 
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In conclusion, improving CNN resilience requires a combination of techniques that go 

beyond conventional training. It involves adversarial data generation, targeted retraining, 

physical-world testing, and uncertainty modeling. These elements are essential to develop 

classifiers that are not only accurate under standard conditions but also capable of with-

standing adversarial manipulation in real-world systems with critical safety and security 

implications. 

 

Justification For Perturbation (PGD) Attack 

The PGD (Projected Gradient Descent) attack method is widely recognized as one of the 

strongest first-order adversarial attack algorithms due to its ability to repeatedly refine 

perturbations through multiple gradient steps while ensuring the adversarial sample re-

mains within a bounded ε-ball. Although its per-sample processing time is higher than 

simpler methods like Fast Gradient Sign Method (FGSM), the increased accuracy and 

success rate of the attack justify its use, particularly in security-critical evaluations. Un-

like single-step methods, PGD explores the local loss surface more effectively, making it 

less prone to gradient masking effects. 

When implemented on the Mini ImageNet dataset, PGD demonstrates an attack success 

rate comparable to or exceeding that of I-FGSM. For example, PGD-JND achieved an at-

tack success rate of 98.2% versus 97.5% for I-FGSM-JND. While the average time to 

generate adversarial samples using PGD is approximately 1.25 seconds, higher than I-

FGSM’s 0.7 seconds, it consistently produces adversarial examples that are closer to the 

decision boundary and more robust under model defences or transformations. 

Evaluations on CIFAR and MNIST datasets show that across all distance metrics (ℓ₀, ℓ₁, 

ℓ_∞), PGD finds adversarial samples with high success rates and better alignment with 

perturbation constraints. Unlike some attack methods that may fail to converge in high-

dimensional spaces, PGD maintains strong attack performance across models and input 

dimensions. For instance, under ℓ_∞ constraints, PGD reliably generates imperceptible 

yet highly effective perturbations on ImageNet-class images, often requiring only minor 
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pixel-level changes. It has been shown that PGD retains a 100% attack success rate under 

controlled ε-balls while also remaining resistant to common defence techniques. 

PGD is particularly effective against robust models due to its iterative refinement process 

and is often used as a benchmark attack in adversarial training. It is also less sensitive to 

initialization, as each iteration projects the perturbed input back into the valid ε-ball, en-

suring stability and repeatability of the attack process. As learning tasks and model com-

plexity increase, PGD remains effective and scalable, unlike some second-order or opti-

mization-heavy methods that degrade in performance or efficiency. For example, PGD 

consistently finds stronger ℓ₀ and ℓ₂ adversarial examples with lower perceptual distor-

tion, especially in scenarios where previous methods underperform due to gradient obfus-

cation. 

Overall, PGD stands out as a rigorous and adaptable method for generating adversarial 

images. It balances attack strength and perceptual quality effectively and remains a stand-

ard for evaluating model robustness. When combined with perceptual tuning approaches 

such as JND (Just Noticeable Difference), PGD further improves visual fidelity while re-

taining high attack effectiveness, making it a reliable choice for adversarial robustness 

studies and training. 

Goodfellow et al. introduced the fast gradient method to generate adversarial perturba-

tions by exploiting the direction of the cost function gradient. This approach emphasized 

the efficiency and relevance of the gradient’s direction in crafting effective perturbations. 

Subsequent work proposed targeting classes with the lowest prediction confidence or per-

turbing features most influential to the model’s output based on forward gradients. These 

methods aim to fine-tune the adversarial input generation process to exploit vulnerabili-

ties in the classifier more effectively. In both cases, the attacker is modelled as the leader 

who samples strategies stochastically, while the classifier (follower) responds by search-

ing for a strategy that leads to equilibrium based on the available knowledge. 

1.4 Thesis Structure 

This report is structured into six chapters. Chapter 1 provides the introduction and out-

lines the motivation and objectives of the study. Chapter 2 presents a literature review, 
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examining existing research in adversarial learning and defence mechanisms. Chapter 3 

offers a detailed survey of the robustness of deep neural networks, covering various at-

tack types, defence strategies, and safety concerns. Chapter 4 introduces the concept of 

robust machine learning in the presence of multiple adversaries. Chapter 5 explores ad-

versarial learning using a Bayesian Stackelberg game framework to model interactions 

between a learner and multiple intelligent attackers. Chapter 6 discusses the application 

of quantum machine learning, specifically quantum SVM algorithms, as a defence against 

gradient-based adversarial attacks. Finally, the report concludes with a summary of find-

ings and suggestions for future research directions. 

  
Chapter 1 

Introduction 

Chapter 2 

Background 

Chapter 3 

Algorithms 

Chapter 4 

Solution to Challenge 1 

Chapter 5 

Solution to Challenge 2 

Chapter 7 

Futurework 

Chapter 5 

Solution 2 Challenge 3 

Fig 1.1 Thesis Structure 
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Chapter 2 

 

Background and Literature Review 

This section covers existing adversarial learning algorithms, attack strategies, and defence 

mechanisms aimed at improving classifier robustness. It also summarizes current devel-

opments in quantum algorithms and quantum machine learning within the context of cy-

bersecurity. 

 

2.1 Game theory framework 
 

Previous research demonstrates that conventional neural-network training methods often 

fail to ensure robustness in convolutional neural networks (CNNs). Azulay et al. (2018) 

showed that simple regularization and data-augmentation techniques only partially mitigate 

misclassification and do not address underlying model fragility. Likewise, Mathew et al. 

(2021) mathematically proved that vanilla neural-network training remains inherently un-

stable or inaccurate for classification tasks [54–57, 51]. These works collectively suggest 

that accuracy improvements achieved through standard optimization are not synonymous 

with resilience. Ali Shafahi et al. (2020) further demonstrated empirically that the dimen-

sionality and visual complexity of inputs strongly affect a classifier’s real-world vulnera-

bility, reinforcing that structural properties of the data not merely training heuristics deter-

mine robustness. Consequently, adversarial learning becomes a necessary paradigm for de-

veloping CNNs resistant to practical attack methods [58]. Building on this insight, our re-

search employs adversarial training within a Stackelberg-game formulation to seek a 

mixed-strategy equilibrium that jointly optimizes accuracy and robustness for fixed-dimen-

sion CNNs [51, 59–61]. 
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Game-theoretic modeling has been widely used to formalize the interaction between a clas-

sifier and an adversary. Gauthier et al. (2021) applied the minimax theorem to derive equi-

librium conditions for non-convex, non-concave games, revealing that deterministic pure 

Nash equilibria often fail to capture the stochastic nature of adversarial learning [37, 47]. 

Ya-Ping et al. introduced a two-player algorithmic framework capable of efficiently com-

puting mixed Nash equilibria [62], while Avishek et al. (2021) formulated a max-min ad-

versarial game to clarify the fundamental trade-off between accuracy and robustness in 

neural networks. However, several of these models assume idealized rational behavior or 

convergence that is rarely attainable in practice. Chivukula A.S. et al. (2021) extended this 

work using a Stackelberg formulation with variational adversaries but did not prove equi-

librium existence [2]. Tanner Flez and Chi Jin (2020) further examined local optimality in 

sequential games [63], yet their analyses remain largely theoretical. These studies collec-

tively highlight that most adversarial-learning games treat the classifier–attacker dynamic 

as non-cooperative but leave open how equilibrium can be achieved under realistic con-

straints. By contrast, Jie Ren et al. (2021) explored cooperative-game defenses [24], offer-

ing conceptual breadth but less relevance to hostile environments. Our work focuses instead 

on non-cooperative Stackelberg interactions, where an adaptive attacker continuously per-

turbs inputs to increase misclassification, requiring the defender to anticipate and counter 

probabilistic strategies. 

A prerequisite for designing resilient learners is a precise understanding of how adversarial 

data are generated [64]. The essence of adversarial example creation lies in crafting pertur-

bations that remain imperceptible to humans yet push the input across the classifier’s deci-

sion boundary [65]. If the perturbation is excessive, the sample becomes visibly distorted 

and trivial to detect; if it is too small, the model’s prediction remains unchanged [66, 5, 7]. 

This delicate balance underpins both attack realism and defense evaluation. 

Seminal works established the foundation for modern adversarial training. Szegedy et al. 

(2014) first demonstrated that adding a small perturbation vector aligned with the sign of 

the loss gradient reliably induces misclassification across diverse models [67]. Their find-

ings introduced the principle that training with worst-case adversarial perturbations acts as 

a regularizer, improving generalization under attack. Goodfellow et al. (2014) formalized 
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this idea through the Fast Gradient Sign Method (FGSM), emphasizing the critical role of 

gradient direction in generating effective perturbations [51]. Madry et al. (2018) advanced 

this approach via Projected Gradient Descent (PGD), recasting adversarial robustness as a 

min-max optimization problem that better approximates constrained, iterative attack sce-

narios [3, 5, 66]. Despite these advances, existing methods remain computationally inten-

sive and often trade off clean accuracy for robustness gaps that motivate our Stackelberg-

based framework for achieving a balanced, theoretically grounded equilibrium between the 

two. 

To develop optimal defensive strategies, adversarial attack models must be explicitly de-

fined, since no single learning approach can universally defend against all threat types. 

Existing neural-network defenses often overfit to specific attacks, leaving models vulnera-

ble to unseen perturbation schemes. Several studies highlight a persistent trade-off between 

accuracy and robustness, where improving one tends to degrade the other [68, 38]. More-

over, the diversity of adversarial settings defined by norms such as 𝐿0, 𝐿1, 𝐿2,and 𝐿∞ com-

plicates the generalization of defenses, as varying perturbation magnitudes yield different 

sensitivities and adversarial accuracies [69–71]. These limitations underscore the urgent 

need for algorithms that generalize across multiple attack classes without sacrificing base-

line accuracy or stability. 

Huang et al. (2011) conceptualized machine learning as a dynamic interaction between a 

learner and an adversary, where the learner aims to classify inputs correctly while the ad-

versary perturbs data to induce misclassification [72]. Their model positioned adversarial 

learning as an inherent cybersecurity threat in domains such as email filtering, autonomous 

vehicle vision, and medical imaging. Building on this, Kantarcioglu et al. (2011) used a 

Stackelberg equilibrium with a simulated annealing algorithm to identify optimal feature 

subsets for classification [73]. Similarly, Liu et al. [74] relaxed the common assumption of 

mutual knowledge between players’ payoff functions, proving that knowing only the ad-

versary’s payoff can still yield optimal strategies. Both studies treated the adversary as the 

leader and the classifier as the follower, reflecting asymmetric knowledge and initiative in 

real-world attacks. 
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Madry et al. (2018) extended this framework through min-max robust optimization, for-

mally defining adversarial training as a constrained optimization problem [75, 76]. This 

theoretical foundation remains one of the most influential contributions to adversarial de-

fense, although it assumes ideal convergence and significant computational resources. Sub-

sequent works introduced refinements to improve robustness and efficiency. Huimin Zeng 

et al. (2021), for example, incorporated a learnable weighted minimax function into the 

loss objective, improving balanced performance under both uniform and non-uniform at-

tacks [77]. Other studies explored non-zero-sum Stackelberg formulations, computing op-

timal learner actions against worst-case linear attacks [63]. Hardt et al. (2016) modelled 

adversarial interaction as a sequential game in which the attacker perturbs inputs based on 

shared logits, demonstrating that classifier parameter secrecy can be crucial for sustained 

generalization [78]. Dritsoula et al. (2017) further applied a non-zero-sum framework 

where defenders distinguished malicious from benign interactions [47, 79, 80]. Their find-

ings emphasized that equilibrium existence depends heavily on loss design, regularization, 

and penalty structure. Bruckner et al. subsequently derived necessary conditions for the 

existence of unique Nash equilibria in such adversarial classifications [81, 5, 9, 82–88], 

establishing theoretical underpinnings but offering limited practical scalability. 

Game-theoretic frameworks remain appealing because they are algorithm-agnostic appli-

cable to models ranging from Support Vector Machines (SVMs) to deep neural networks 

provided that payoff functions for the learner and adversary are well-defined. However, 

achieving practical equilibrium requires careful modeling of the attack space. Zhou et al. 

(2016) formulated an adversarial SVM problem as a single-leader, multi-follower Stackel-

berg game, countering multiple attacker types using the DOBSS (Decomposed Optimal 

Bayesian Stackelberg Solver) method [89]. Chengzi et al. (2019) applied a Bayesian 

Stackelberg game to infrastructure defense, again using DOBSS to manage heterogeneous 

adversaries and enhance protection in real time [90]. Despite these advances, most prior 

research continues to treat adversarial learning as a simultaneous game with convex prob-

ability strategy spaces, limiting the applicability of equilibrium results in non-convex deep-

learning landscapes. 
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Our study addresses this limitation by formulating adversarial learning as a Stackelberg 

game under DOBSS, proving that a Stackelberg equilibrium can exist for CNNs of fixed 

structure and that this equilibrium yields the highest adversarial accuracy and optimal de-

fense strategy among comparable models [91, 92]. While adversarial training has tradition-

ally been posed as an optimization problem, it can equivalently be interpreted as a hierar-

chical Stackelberg interaction in which the classifier acts as the leader. In our Bayesian 

Stackelberg formulation, the learner selects an optimal mixed strategy under uncertainty, 

while followers (adversaries) vary in type and intent. The classifier does not know the spe-

cific adversary it faces but can infer its distribution or type through prior observations. 

Comparable work, such as that of [93], modeled a single-leader, single-follower Bayesian 

Stackelberg game to represent interactions between a security agency and an unknown-

type criminal. Their model solved the equilibrium through linear programming, where the 

defender first commits to a strategy and the adversary responds optimally after observation. 

Extending this reasoning, our approach constructs a generalizable defense mechanism ca-

pable of adapting to multiple attack distributions by probabilistically selecting optimal 

strategies that maximize robustness without explicit prior knowledge of the attacker’s exact 

type. 

 

2.2 Adversarial Interaction  

2.2.1 Non-Cooperative Game 

Adversarial learning can be modeled as a 2 player non cooperative game. A non-coopera-

tive game can be defined as an interaction between 2 or more players over a utility to be 

shared by the players. The normal form representation of the game is expressed as 

(𝑁, 𝐴, 𝑈), where N is set players in the game, 𝐴 = {𝐴𝑖} where 𝐴𝑖 is the set of actions for 

each player 𝑖 and 𝑈 = {𝑈𝑖}, for 𝑈(𝑎𝑖, 𝑎−1) is a valued outcome receivable by each player 

𝑖 𝜖{1, …  𝑁} when it chooses a strategy 𝑎 𝜖𝐴𝑖 and other players jointly select strategy 

𝑎−𝑖 𝜖𝐴−𝑖, the utility gained for each player determines its preference over the different 

possible outcomes of the game that result from the joint actions of other players. Player 
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𝑖′𝑠 action set given as 𝑆𝑖 = {𝑝(𝐴𝑖): 𝑝(𝐴𝑖) ≥ 0 ∀𝑖, ∑ 𝑝(𝐴𝑖)𝐴𝑖
= 1} shows the probability 

distributions for it actions. A technique used to evaluate best response by players in a 

game is the Nash equilibrium. A strategy profile 𝑆 = (𝑠1… . . , 𝑠𝑁) is a Nash equilibrium 

if a strategy 𝑠𝑖 played by player 𝑖 is the best response for all possible strategies 𝑆−1  that 

is  𝑠𝑖𝜖 𝐵𝑅(𝑠−1), ∀𝑖.  Thus, , the best response 𝑅𝑖 of player 𝑖  to other players playing 

𝑠−𝑖 is 𝑅𝑖(𝑠−1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑖(𝑠𝑖, 𝑠−1)  given that 𝜋𝑖  is the payoff to player 𝑖 when other 

players play 𝑠−1Actions since adversarial learning is a 2-player game between a learner 

and adversary NE solution techniques [49] can be used to determine the both players 

strategy. 

Bruckner et al. studied prediction games where both players acted simultaneously, each 

committing to a strategy without prior knowledge of the other’s move. In such settings, 

an optimal strategy cannot be explicitly defined in advance. However, assuming both 

players are rational and seek to maximize their own utility, it is expected that each would 

adopt a strategy corresponding to a Nash Equilibrium. The authors modelled this interac-

tion as a static two-player game, where both players know their respective action spaces 

and cost functions, and aim to maximize utility while minimizing cost. Bruckner et al. 

also provided sufficient conditions for the existence of a Nash Equilibrium in these set-

tings. 

2.2.2 Zero sum and Sequential games 

Adversarial learning problems can be modelled as a zero-sum game between a learner 

and an adversary where one player’s gain is another player’s loss which can typically be 

expressed as a minimax strategy. In the this case the learner chooses the best strategy as-

suming the adversary is responding to maximize the learners loss𝑚𝑖𝑛𝜔∗𝑚𝑎𝑥𝛿∗  𝐿(𝑓, 𝑥, 𝛿), 

where 𝜔 ∗ 𝑎𝑛𝑑 𝛿∗ are the optimal learning parameters of the classifier and the optimal 

distortioned that can generated by the adversary tand applied 𝑥 go maximize the learners 

loss function 𝐿. In a sequential game where both players are trying to minimize their cost, 

the players follow a sequential action. A player (the leader) commits to a strategy first, 

while the other player (the follower) observes the first player’s actions and plays to max-

imize their loss. For instance, the leader commits to a classifier f by learning the 
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parameter𝜔 the the follower, who is the adversary after observing 𝜔 chosses 𝛿 to mini-

mize his own cost but maximizes the loss L of the leader as shown by the following 

𝑚𝑖𝑛𝜔∗𝑚𝑎𝑥𝛿∗  𝐿𝑙(𝑓, 𝑥, 𝛿)  s.t 𝛿∗𝜖 𝑎𝑟𝑔𝑚𝑖𝑛𝐿𝑓(𝜔, 𝑥, 𝛿), 

given that 𝐿𝑙  𝑎𝑛𝑑 𝐿𝑓   are the loss functions of the learner and adversary respectively 

An interaction between players in which the total payoff is a constant or sums up to zero 

can be modelled as a zero-sum game. In such interaction, one player’s loss is the other 

players gain, adversarial learning problems can be modeled as zero-sum games where the 

adversary’s objective is to maximize the loss of machine learning classifier and following 

a minimax strategy. Suppose a set of data {(𝑥𝑖 , 𝑦𝑖)𝜖(𝑋, 𝑌)} 𝑖=1
𝑛 , where 𝑦𝑖𝜖{−1,1} is the 

target, 𝑋 ⊆ ℝ𝑑 , d is dimensional feature space and n is the total number of examples. 

The adversary aims to move the malicious data In any direction by addition some pertur-

bation vector 𝛿𝑖 to 𝑥𝑖|𝑦𝑖=1. `The adversary needs to balance between the risk of exposure 

and potential profit from the attack, a common strategy its Suppose Madry et al (2018) 

investigated the adversarial robustness of neural networks with the use of robust optimi-

zation [49]. The authors defined security attacks using a min-max formulation in a theo-

retical framework, which captured the importance of using adversarial training and exist-

ing methods for attacking neural networks. 

In sequential games, players are typically aware of each other’s moves. The leader makes 

the first move, and the follower selects a response based on the observed strategy. This 

type of interaction is modelled as a sequential game and is referred to as a Stackelberg 

game (SE). Kantarcıoğlu et al. solved an SE using a genetic algorithm to identify an opti-

mal set of attributes. Liu et al. addressed a similar problem but assumed only the fol-

lower’s payoff function was known. In both cases, the attacker is modelled as the leader 

who samples strategies stochastically, while the classifier (follower) responds by search-

ing for a strategy that leads to equilibrium based on the available knowledge [50] [51] 

[52] [53] [54] [55]. 
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2.2.3 Stackelberg Game 

A Stackelberg game models a setting where one player, the leader, commits to a strategy 

first, and other players, the followers, observe this choice before selecting their own strat-

egies. The leader must commit to the chosen strategy and cannot switch during gameplay. 

The strategy can be either pure or mixed. A Stackelberg game can be described as a tuple 

(N, A, H, Z, χ, ρ, σ, μ), where N is the set of players, A is the set of possible actions, H is 

the set of nonterminal nodes, χ defines the available actions at each node, ρ indicates the 

active player at a node, Z is the set of terminal nodes, σ is the successor function deter-

mining the next node based on the current action, and μ represents the utility functions for 

the players. To define a Stackelberg equilibrium, a best response function maps a leader’s 

strategy to the follower’s optimal response. This function f: S₁ → S₂ satisfies the condi-

tion u₂(s₁, f(s₁)) ≥ u₂(s₁, s₂) for all s₂ ∈ S₂. The expected utility from a mixed strategy is the 

weighted sum of utilities from pure strategies. A strategy profile (s₁, f(s₁)) is a Stackelberg 

equilibrium if the follower’s strategy is a best response to the leader’s strategy under the 

utility function. 

2.2.3.1 Bayesian Stackelberg Game 

Adversarial learning problem can be defined as an input space 𝑋 ∈ ℝ𝒹 where 𝒹 is the 

number of attributes in the vector space. For a learning model classifier 𝔣  with an input 

𝓍 𝜖 𝑋 and a corresponding output give as 𝓎 𝜖 {+1,−1}, there is an adversary able to cor-

rupt the model at test time by an amount 𝛿 such that a malicious instance 𝑥 will be mis-

classified as benign given by 𝑓(𝑥) ≠ 𝑓(𝑥 + 𝛿). Thus adversarial machine learning fo-

cuses to obtain a robust algorithm such that the probability of the algorithm misclassify-

ing even under attack is as small as possible 𝑃(𝑓(𝑥) ≠ 𝑓(𝑥 + 𝛿)) < 𝜀 𝑓𝑜𝑟 𝜀 > 0. 

If we have input samples𝑥𝑖|𝑖=1,…𝑛 𝜖𝜒 and want to estimate target label 𝑦𝑖𝜖Υ where Υ =

{+1,−1} to be classified by a learner function 𝑔: 𝜒 → ℝ with a feature vector 𝜙(𝑥𝜖𝑋 ) ∈

ℝ𝒹 The predicted value 𝑦̂ = 𝑔(𝑤, 𝑥𝑖)|𝑤𝜖ℝ𝑁 is obtained by optimizing a loss function L. 

The learner’s loss function with a regularization is given as L=∑ ℓ(𝑦𝑖̂
𝑛
𝑖=1 , 𝑦𝑖) + 𝜆||𝜔||

2 

where 𝜆 is a regularization parameter that penalizes weights 𝜔 of the classifier. A cost 
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vector 𝑐 is included in the loss function to reflect the weights of individual input data, and 

the learner now optimizes the equation: 

argmin
𝜔

𝐿 = argmin
𝜔

∑ 𝑐𝑖. ℓ(𝑦𝑖̂, 𝑦𝑖) + 𝜆||𝜔||
2𝑛

𝑖=1 . 

The loss function can be extended to an adversarial learning problem. If an adversary 

wishes to influence the learner by modifying the input data, then the learner’s classifica-

tion task to obtain 𝑦̂ on the transformed data becomes 𝑦̂ = 𝜔𝑇 . 𝜙(𝑓𝑡(𝑥𝑖 , 𝜔)) where 𝑓𝑡 is 

the function used by the adversary to transform the data: 

𝑓𝑡(𝑥𝑖, 𝜔) = 𝑥𝑖 + 𝛿𝑥(𝑥𝑖, 𝜔), 

 𝛿𝑥 is the displacement vector that determines the level of perturbation of original input 

𝑥𝑖, hence the adversarial learning can be defined as argmin
𝜔

argmax
𝛿𝑥

𝐿(𝜔, 𝑥, 𝛿𝑥). 

The machine learning classifier and adversarial follower play a Stackelberg game. The 

learner chooses the best model ℊ from a set of fitted models 𝒢: argmin
ℊ𝜖𝒢

ℓ(ℊ), that is the 

optimal prediction function based on the data transformation by the adversary. The 

learner plays the optimal mixed strategy preassigned to the models ℊ𝜖𝒢 , allowing the 

learner to randomize over available strategies with a probability distribution. 

 2.2.3.2 Single Leader Follower Stackelberg Game 

A set of learning models 𝒢 can be modelled as a non-zero sum and sequential two player 

game between the learner and the adversary, where the learner commits first to a move 

observable by the adversary follower who now plays an optimal strategy to minimize the 

learners’ payoffs while maximizing his. The leader’s loss is the misclassification error 

given as 

𝐿ℓ
ℊ
=  ∑ 𝑐𝑖. ℓℓ(𝑦𝑖̂, 𝑦𝑖) + 𝜆ℓ||𝜔||

2𝑛
𝑖=1 , 

While the follower’s loss comprising of the cost exposure to the learner due to misclassi-

fication and also the cost of data transformation 

𝐿𝑓 = ∑ 𝑐𝑓,𝑖. ℓℓ(𝑦𝑖̂, 𝑦𝑖) + 𝜆𝑓 ∑ ||𝜙(𝑥𝑖) − 𝜙(𝑓𝑡(𝑥𝑖, 𝜔))||
2𝑛

𝑖=1
𝑛
𝑖=1 . 
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Where 𝜆𝑙 , 𝜆𝑓 and 𝑐ℓ, 𝑐𝑓 are the weights of the penalty terms and cost of data transfor-

mation for the leader and follower. The adversarial learning model can be found by solv-

ing the optimization problem: min
𝜔∗
max
𝛿𝑥
∗
𝐿ℓ(𝜔, 𝑥, 𝛿𝑥) such that 𝛿𝑥

∗𝜖 argmin
𝛿𝑥

𝐿𝑓(𝜔, 𝑥, 𝛿𝑥). 

 

2.3 Multiple Agent Interaction 

Interaction between multiple agents aiming to optimize their strategies often depends on 

equilibrium analysis, especially when a leader-follower structure is involved. This can be 

effectively modelled using a Stackelberg game framework. In this model, the leader com-

mits to a strategy first, anticipating the best possible reaction from the follower. A key de-

fines strategy is to derive a Stackelberg equilibrium that maximizes the defender's ex-

pected payoff, considering that the attacker may or may not choose to launch an attack. 

The defender’s approach depends on what triggers strategy selection and the nature of the 

player’s reasoning process. This includes whether players act deterministically or sto-

chastically, and whether they rely on prior knowledge, observed behaviour, or inferred 

beliefs about the opponent’s actions. The sophistication of each agent reflected in their 

strategic assumptions, learning capabilities, and payoff estimation affects the dynamics 

and outcome of the game. an SE using a genetic algorithm to identify an optimal set of 

attributes. Liu et al. addressed a similar problem but assumed only the follower's payoff 

function was known. In both cases, the attacker is modelled as the leader who samples 

strategies stochastically, while the classifier (follower) responds by searching for a strat-

egy that leads to equilibrium based on the available knowledge. 

The learner commits to a set of learning models ℊ𝜖𝒢 and 𝒢 = {ℊ𝑠, ℊ𝑓1 … . } . The learning 

function ℊ𝑠 is the Stackelberg equilibrium solution ℊ𝑠(𝜔𝑠, 𝑥) = 𝜔𝑠
𝑇 . 𝜙(𝑥), given that 𝜔𝑠 

is the Stackelberg solution for the leader, the other functions ℊ𝑓is depends on the follow-

ers solution of the Stackelberg equilibrium (SE), which is obtained from the optimal data 

transformation 𝛿𝑥(𝜔𝑠). ℊ𝑓is not a robust solution to the adversary’s response since the 

adversary can easily defeat the model ℊ𝑓 by transforming the data, however if the adver-

sary transforms 𝑥 using 𝛿𝑥 then ℊ𝑓 will perform better than the Stackelberg solution 
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learning function ℊ𝑠 in terms of classification error. A set of ℊ𝑓 can be trained by varying 

the impact of data transformation on the follower’s loss function. When the penalty term 

𝜆𝑓 is large, the adversary’s best strategy is to reduce the disparity between the original 

data and the transformed data or simply do not transform data at all, conversely when 𝜆𝑓 

is relatively small, the adversary has more leeway to perform data transformation, how-

ever the adversary cannot transform data arbitrarily because of the increase in the cost of 

misclassification that follows. Therefore, a spectrum of adversary types can be specified 

from that range from least aggressive to most aggressive. 

Reinforcement learning (RL) extends the idea that an agent tends to adopt strategies that 

have yielded better payoffs in past interactions. In traditional RL settings, neither the de-

fender nor the adversary maintains a formal model of the other’s behaviour. Instead, deci-

sions are guided by observed rewards or penalties in response to selected actions. Adver-

sarial reinforcement learning builds on this by integrating an adversarial training environ-

ment into the learning loop. This allows an agent to improve its response strategies in the 

presence of varying and potentially disruptive inputs. 

Studies introduced a model where the training environment evolves in tandem with the 

learning process. The environment adjusts its reward responses based on the classifier’s 

performance over perturbed data, simulating adversarial conditions. This feedback struc-

ture enhances the classifier’s capacity to generalize and adapt. The reinforcement learning 

model does not require complete information about the adversary but instead learns effec-

tive policies through interaction and reward shaping [56]. 

ML algorithms were investigated for their behaviour under significant perturbations and 

implemented a reward-based adversarial training system for reinforcement learning 

agents. They reformulated the adversarial risk function to find a balance between model 

robustness and accuracy. Their training approach led to policies that withstand stronger 

attacks and performed more reliably than conventional methods. The adversarial setting 

forced the learning agent to refine its strategy over time, improving its effectiveness in 

environments where adversarial actions are expected. to identify an optimal set of attrib-

utes. Liu et al. addressed a similar problem but assumed only the follower's payoff 
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function was known. In both cases, the attacker is modelled as the leader who samples 

strategies stochastically, while the classifier (follower) responds by searching for a strat-

egy that leads to equilibrium based on the available knowledge [57]. 

Reinforcement learning algorithm was integrated with the training environment of a clas-

sifier such that the model generates new adversarial sample by randomly extracting data 

from training set while generating rewards based on the accuracy of the classifier’s pre-

dictions. This presentation of adversarial reinforcement learning resulted in increased fi-

nal performance for intrusion detection [58]. 

The defender minimizes the loss on perturbed datasets, observes the payoff and fine-tunes 

the learning environment based on a positive or negative reward, in this case the accuracy 

on perturbed dataset. The primary objective of the reinforcement of learning algorithms is 

to increase the total sum of rewards during adversarial training. The reward ensures that 

the accuracy of the present state is higher than the previous state. The Q-value estimate 

gives the total discounted reward when the defender selects strategy 𝑎 in state 𝑠. this 

serves as an updating procedure by which the adversarial training process starts with arbi-

trary training hyperparameters with initial values of 𝑄(𝑠, 𝑎) and updates the Q-values us-

ing the function. 

2.4 Adversarial Algorithms for robust machine learning 

2.4.1 Adversarial Data Generation 

To improve the resilience of machine learning models against adversarial attacks, it is im-

portant to understand how adversarial samples are generated. The goal of adversarial data 

generation is to identify mechanisms by which an adversary can create perturbed inputs. 

The adversary aims to modify a valid input sample in a way that is imperceptible to hu-

mans but causes the machine learning model to misclassify the input. This is typically 

achieved by introducing just enough perturbation to move the input across the decision 

boundary of the classifier. If the perturbation is too large, the sample becomes visibly dis-

torted. If it is too small, it remains within the classifier’s correct classification zone and 

has no impact. 
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The key objective is to determine the optimal level of perturbation that causes misclassifi-

cation without altering the perceptual integrity of the input. Biggio et al. used a gradient 

descent method that incorporates the gradient of the model’s cost function with the data 

distribution to compute this optimal perturbation. Szegedy et al. proposed adding a small 

vector to an input based on the sign of the gradient of the model's cost function, which 

was found to reliably mislead various classifiers. They showed that training the model 

with adversarial examples instead of the original input acts as a regularization method 

and improves robustness. 

Goodfellow et al. introduced the fast gradient method to generate adversarial perturba-

tions by exploiting the direction of the cost function gradient [59]. This approach empha-

sized the efficiency and relevance of the gradient’s direction in crafting effective pertur-

bations. Subsequent work proposed targeting classes with the lowest prediction confi-

dence or perturbing features most influential to the model’s output based on forward gra-

dients. These methods aim to fine-tune the adversarial input generation process to exploit 

vulnerabilities in the classifier more effectively. In both cases, the attacker is modelled as 

the leader who samples strategies stochastically, while the classifier (follower) responds 

by searching for a strategy that leads to equilibrium based on the available knowledge. 

2.4.2 Machine Learning Attack Models 

There are numerous ways a machine learning based system can be attacked, a broad clas-

sification attack type can be such that the adversary has a freedom to attack the feature set 

of a particular data, conversely an adversary can also be restrained by the range of pertur-

bation than can impose on the data. Generally, an adversary will be reluctant to move 

data too far away from its original position since greater distortions usually incur more 

cost and loss of malicious utility. In the free-range attack the adversary is familiar with 

the range in feature set of the data. If 𝑥.𝑗
𝑚𝑎𝑥  𝑎𝑛𝑑 𝑥.𝑗

𝑚𝑖𝑛 be the upper and lower bound val-

ues of the 𝑗𝑡ℎ feature of a data point 𝑥𝑖 , a free-range attack is defined such that the at-

tacked data appear legitimate in the given domain [60]. 

𝐶𝑓(𝑥.𝑗
𝑚𝑖𝑛 − 𝑥𝑖𝑗) ≤ 𝛿𝑖𝑗 ≤ 𝐶𝑓(𝑥.𝑗

𝑚𝑎𝑥 − 𝑥𝑖𝑗), ∀𝑗 𝜖 [1, 𝑑], 
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Given 𝐶𝑓𝜖[0,1] controls the impact of the attacks.  

Conversely an attack method that penalizes excessive data corruption can be modelled. if 

𝑥𝑖 is a malicious data point from data 𝑋 and 𝑥𝑖
𝑡 is target benign point the adversary would 

like to distort 𝑥𝑖 to. Choosing benign 𝑥𝑖
𝑡 is unidirectional because it must be in a good be-

nign class, therefore choosing this point will involve a high level of knowledge on the 

path of the attacker. Practically, however, the attacker may not be able to modify 𝑥𝑖 di-

rectly to 𝑥𝑖 as desired because the malicious point 𝑥𝑖 may lose much of its malicious fea-

tures. Hence for each feature 𝑗 in the dimensional feature space, and assuming the adver-

sary perturbs 𝑥𝑖𝑗 by𝛿𝑖𝑗 

|𝛿𝑖𝑗| ≤ |𝑥𝑖𝑗
𝑡 − 𝑥𝑖𝑗|, ∀𝑗𝜖𝑑, 

 

and 𝛿𝑖𝑗 is further bounded as shown as: 

0 ≤ (𝑥𝑖𝑗
𝑡 − 𝑥𝑖𝑗)𝛿𝑖𝑗 ≤ 𝜑(𝑥𝑖𝑗

𝑡 − 𝑥𝑖𝑗)
2 

𝜑 = (1 − 𝐶𝛿
|𝑥𝑖𝑗
𝑡 − 𝑥𝑖𝑗|

|𝑥𝑖𝑗| + ⌈𝑥𝑖𝑗
𝑡 ⌉
). 

where 𝐶𝛿𝜖[0,1] is a constant that regulates the loss of malicious utility because of the dis-

tortion on 𝑥𝑖𝑗. The model regulates how much the attacker can force 𝑥𝑖𝑗 towards 𝑥𝑖𝑗
𝑡  

based on how far they are apart. The parameter 𝜑 is the ratio of |𝑥𝑖𝑗
𝑡 − 𝑥𝑖𝑗| that is the 

maximum value which 𝛿𝑖𝑗 can be. When 𝐶𝛿 is held constant the closer 𝑥𝑖𝑗is to the target 

𝑥𝑖𝑗
𝑡  the larger the range for which 𝑥𝑖𝑗 can move towards the target data point 𝑥𝑖𝑗

𝑡  

.(𝑥𝑖𝑗
𝑡 − 𝑥𝑖𝑗)𝛿𝑖𝑗 ≥ 0 ensures 𝛿𝑖𝑗 is in the same direction as the as the target 𝑥𝑖𝑗

𝑡 . 𝐶𝛿 deter-

mines how much malicious utility the attacker is willing to risk for crossing the decision 

boundary, a larger  𝐶𝛿 means that they will be a smaller loss of malicious utility with the 

𝛿𝑖𝑗 value selected, while a smaller  𝐶𝛿 means they will be more loss of malicious utility 

and a more aggressive attack [60]. 
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2.4.3 Adversarial Attack Methods for Deriving Perturbation  

The aim of training a dataset with a classifier image is to correctly label all input images 

to target label set. A classifier model can correctly classify a sample x to a it correspond-

ing label y expressed as 

argmax𝑃(𝑦𝑖| 𝑥) = 𝑦𝑡𝑟𝑢𝑒. 

Given that  𝑦 𝜖 𝑌 = {𝑦1, 𝑦2,…,𝑦𝑘} is an output label class with k unique classes.  𝑃(𝑦𝑖|𝑥) 

shows the confidence value of model in predicting a sample x to 𝑦𝑖 . Hence the adversar-

ial attack aims to generate adversarial sample such as small perturbation δ added to 𝑥 will 

lead the classifier model to predict another label other that the correct label 𝑦𝑡𝑟𝑢𝑒 

argmax𝑃(𝑦𝑖| 𝑥′) ≠ 𝑦𝑡𝑟𝑢𝑒 , 𝑥 = 𝑥 + 𝛿. 

2.4.3.1 Fast Gradient Sign Method (FGSM) 

 The method generates adversarial samples by adding perturbations in the direction of the 

loss function that is the positive direction of the slope gradient, a normal input image x, 

FGSM calculates a similar adversarial example x’ to fool the classifier. 𝑥′ is derived by 

optimizing the loss function, defined as the cost of classifying 𝑥′as a label lx with mini-

mum possible perturbation 

𝑥′ = 𝑥 + 𝜀. 𝑠𝑖𝑔𝑛(▽𝑥 𝐿𝑜𝑠𝑠(𝑥, 𝑙𝑥)). 

2.4.3.2 IFGSM 

This is an extension of FGSM but computes perturbations in iterations rather than in a 

single shot, achieving samples of better image quality than FGSM. The FGSM algorithm 

is simply applied multiple times with miniature perturbations rather than a single large 

one. After the completion of each iteration the pixels are cropped such that the perturba-

tion remains as close as possible to the input image 𝑥. 

𝑥𝑖 = 𝑐𝑙𝑖𝑝𝑥,𝜖(𝑥(𝑖−1) + 𝜖. 𝑠𝑖𝑔𝑛 (▽ 𝑥(𝑖−1)𝐿𝑜𝑠𝑠(𝑥(𝑖−1), 𝑦))). 
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Where 𝐿𝑜𝑠𝑠(𝑥, 𝑙𝑥) shows the cost function given 𝑥 as an input image, 𝑙𝑥 as the corre-

sponding true output label and ε the parameter that determines the magnitude of perturba-

tion for 𝑥. 

2.4.3.3 Deepfool  

The Deepfool algorithm is a non-targeted obtains adversarial samples by evaluating the 

minimum perturbations near the classifier model decision boundary and then minimally 

modifies the input image to reach the bound to result in a classification error. Deepfool 

has a more consistent success rate than its FGSM counter since the magnitude of pertur-

bation is generally small, and the samples are more difficult to detect [61] [25] [20] [62]. 

2.4.3.4 Carlini and Wagner (I-FGSM ) 

The algorithm is calculated using the L norm methods. The algorithm achieves higher 

success rates with minimal perturbations compared to other methods. I-FGSM  algorithm 

with the 𝐿2 norm has the best performance which is a form of optimization attack that 

solves the generates adversarial samples by optimizing the expression 

||𝑥 − 𝑥′||2 + 𝜆max (−𝑘, 𝑍(𝑥
′)𝑘 −max {𝑍(𝑥

′)𝑘′: 𝑘 ≠
′ 𝑘}). 

Given that 𝑘 can be adjusted to control the confidence at which misclassification occurs 

that is the confidence gap between the real and sample category [18]. 

 

2.4.4 Adversarial Defense Methods for Individual and Ensemble Neural 

Networks 

NeuralNets are unique for their efficiency in mobile and edge devices primarily due to 

their depthwise separable convolutions, which reduce computation in the first few layers. 

However, studies have revealed that MobileNets are prone to adversarial attacks that can 

significantly impair their performance in image classification tasks. Even slight perturba-

tions on images can cause substantial declines in classification accuracy. To counter these 

vulnerabilities, adversarial training methods have been proposed, aiming to bolster the re-

silience of deep neural networks against such attacks. Adversarial training methods were 
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initially proposed to enhance the resilience of deep neural networks against adversarial 

attacks. Over time, this approach has proven to be highly adaptable, finding applications 

in various domains of machine learning. The core idea revolves around the generation of 

adversarial examples during the training process, which forces the model to adjust and re-

fine its decision boundaries. Prominent methodologies utilised include the Fast Gradient 

Sign Method , Projected Gradient Descent (PGD) and adversarial training employing 

generative models. 

Research indicates that models trained with single-step adversarial training methods may 

overfit, reducing their effectiveness against adversaries. However, integrating dropout 

scheduling into single-step adversarial training can result in more robust models. A hy-

perparameter introduced to control overfitting enables these models to defend not only 

against single-step but also multi-step attacks. For instance, Feature-Level Adversarial 

Training (FLAT) is designed to ensure consistent predictions for both original and adver-

sarial example pairs, and utilizing variational word masks further guides the model to fo-

cus on datapoints that enhances accuracy and robustness against adversarial attacks. 

Numerous studies have also modelled adversarial training as a simultaneous game be-

tween a classifier and an adversary. In such games, the adversary perturbs data using 

point-wise perturbations to transform the training data, with the goal of increasing mis-

classification errors for the classifier while avoiding detection. The problem is formulated 

as a worst-case min-max game, where both the classifier and the adversary aim to mini-

mize the adversarial loss. Strong perturbation attacks are achieved through Projected Gra-

dient Descent (PGD) to train robust learning models in a single-step min-max interaction. 

Additionally, results from PGD-based attacks can be emulated using Fast Gradient Sign 

Method (FGSM) by reducing the curvature along the perturbed direction projected by 

FGSM. This is accomplished by regularizing the curvature of the attack and restraining 

the projection to align with those generated by PGD attacks [63] [64] [65]. An introduced 

hyperparameter controls the curvature along the attack direction and regularizes the 

model. A game theory framework proposed by Ambar et al. explores attacks and de-

fenses, leading to equilibrium in a simultaneous game setting. 
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In the context of adversarial attacks on reinforcement learning algorithms, these attacks 

are presented as generated noises that result in the misclassification of the learning algo-

rithm. Rajeswaran et al. investigate an ensemble of models for robust reinforcement 

learning, combining deep neural networks with reinforcement learning to create a robust 

agent. The interaction between the adversary and the reinforcement learning agent is akin 

to a min-max game theory formulation. Adversarial training in reinforcement learning en-

hances robustness against attacks that mislead the reinforcement learning agent into be-

lieving it is in a worst-performing trajectory state, leading to sub-optimal actions. While 

adversarial training based on mini-max formulation is often overly pessimistic and may 

not generalize well over test distributions, a more practical approach involves sequential 

interactions between classifiers and adversaries. In this scenario, the defender initially se-

lects a model while knowing the existence of an optimal adversary. The adversary then 

chooses a strategy while considering the defender’s choice. This hierarchical nature of 

Stackelberg games provides the defender with a first-mover advantage, constraining the 

adversary’s choices to optimize their own payoff. For example, a game can be modelled 

as an optimization problem between a data generator and a learner within a Stackelberg 

game framework. Gao et al. demonstrated the existence of Stackelberg equilibrium that 

converges to an optimal robust classifier in interactions between Deep Neural Networks 

(DNNs) and adversaries. Adversaries not only focus on perturbing data but can also ma-

nipulate the dataset distribution to maximize classification errors during test time. Tradi-

tional adversarial defense mechanisms train models on uniform training data distribution, 

which may not generalize well to unseen adversarial data distributions at test time. The 

Adversarial Risk Importance method is effective in generalizing well under both uniform 

and non-uniform attacks. Furthermore, Distributionally Robust Optimization (DRO) has 

been combined with adversarial training to produce more robust models. The goal of ad-

versarial training is to reduce classification loss during test time, which necessitates a hi-

erarchical interaction occurring sequentially between classifiers and adversaries [66] [67] 

[68] [69] [70] [71] [72] [73]. 

Combining both Stackelberg game and weighted adversarial learning methods provides 

an effective defense mechanism that generalizes well across test distributions for a 
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defender. While several works have independently explored game theory frameworks, re-

inforcement learning and distribution-based robust optimization, this paper introduces a 

novel approach by combining both Stackelberg games and reinforced weighted adversar-

ial training [74] [75] [76] [77] [78]. The objective is to obtain a classifier that effectively 

generalizes to both perturbation and targeted attacks particularly those deployed against 

mobile and edge devices using a deep neural networks defence mechanisms. 

2.4.4.1 Friendly Adversarial training (FAT) 

Given a dataset 𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 𝑥𝑖 ∈ 𝒳 , 𝑦𝑖 ∈  𝒴  and 𝐵𝜖[𝑥]  is a closed ball of 

radius 𝜖 > 0 at 𝑥 in 𝒳. The objective function of standard adversarial training (Madry et 

al,2018) is. 

min
𝑓∈ℱ

1

𝑛
∑ { max

𝑥̃∈𝐵𝜖[𝑥𝑖]
ℓ(𝑓(𝑥̃), 𝑦𝑖)}

𝑛
𝑖=1 . 

FAT defines a margin 𝜌 > 0 such that an adversarial data is classified with a certain 

amount of confidence. 𝑥̃𝑖 is generated using the inner minimization problem rather than 

the usual maximization solution as shown. 

𝑥̃𝑖 = 𝑎𝑟𝑔 min
𝑥̃∈𝐵𝜖[𝑥𝑖]

ℓ(𝑓(𝑥̃), 𝑦𝑖) 

𝑠. 𝑡 ℓ(𝑓(𝑥̃), 𝑦𝑖) − min
𝑦𝜖𝒴

ℓ(𝑓(𝑥̃), 𝑦 ) ≥ 𝜌. 

The constraints ensure 𝑦𝑖 ≠ 𝑎𝑟𝑔min
 
ℓ(𝑓(𝑥̃), 𝑦𝑖) or 𝑥̃𝑖 is misclassified, and also ensures 

that for the adversary  𝑥̃𝑖 the  wrong prediction is better than the desired prediction 𝑦𝑖 by 

at least p in terms of loss value. From all x satisfying the constraint, the one minimizing 

ℓ(𝑓(𝑥̃), 𝑦𝑖) is selected. Hence, the adversarial loss is minimized given that some confi-

dent adversarial data has been obtained. The adversarial data 𝑥̃𝑖 is referred to as a ‘friend’ 

among the adversaries, hence the term friendly adversarial data. Consequently, an upper 

bound was also derived for the adversarial risk. Given any classifier 𝑓 any loss function 

ℓ that upper bounds the classifer and any probability distribution 𝒟,  we have the adver-

sarial risk defined as 
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ℛ𝑟𝑜𝑏(𝑓) ≤ 𝔼(𝑋,𝑌)~𝒟ℓ(𝑓(𝑋), 𝑌)⏟            
𝐹𝑜𝑟 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑡𝑒𝑠𝑡 𝑎𝑐𝑢𝑟𝑟𝑎𝑐𝑦

+ 𝔼(𝑋,𝑌)~𝒟,𝑋′∈ 𝐵𝜖[𝑋,𝜖]ℓ
∗(𝑓(𝑋), 𝑌)⏟                  

𝐹𝑜𝑟 𝑟𝑜𝑏𝑢𝑠𝑡 𝑡𝑒𝑠𝑡 𝑎𝑐𝑢𝑟𝑟𝑎𝑐𝑦

 

 

 ℓ∗ = { 
maxℓ(𝑓(𝑋′),𝑌),         𝑖𝑓 𝑓(𝑋′)=𝑌 .

min
 
ℓ(𝑓(𝑋′),𝑌)+𝜌,    𝑖𝑓 𝑓(𝑋′)≠𝑌,

 

 

 

𝜌 is the small margin that the friendly adversarial data would be classified with some 

amount of confidence. Equation above shows that the upper bound is tighter than those of 

standard adversarial training such as TRADES (Zhang et al,2019b), where the loss is 

maximized regardless of the model prediction ℓ∗ = max
 
ℓ(𝑓(𝑋′), 𝑌). On the other hand, 

the FAT bound takes the model prediction into account in that when the model makes a 

correct prediction on the adversarial data the loss is still maximized but when the model 

makes a wrong prediction on adversarial data 𝑋′ the inner loss minimized through a small 

constant 𝜌. 

2.4.4.2 Weighted Minimax Risk Models 

Standard methods of adversarial training solve a minimax problem between a classifier 

minimizing the loss over an update on input perturbations and seeking a convergence to 

equilibrium [49]. The inner loop generates the strongest perturbation 𝛿𝑖 within the radius 

𝜖 of each input example 𝑥𝑖, and the model minimizes the expectation of adversarial loss 

function (𝑓(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖) according to the equation  

min
𝜃
𝔼(𝑥𝑖,𝑦𝑖)~𝒟 [ max𝛿𝑖:‖𝛿𝑖‖<𝜖

ℓ(𝑓𝜃(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖)]. 

Hence the model parameters adjust to the generated perturbations added to the training 

data to combat potential adversaries at test time. A potential problem to the method is that 

all generated adversarial examples despite their distances to the decision boundary an var-

ying risk of being misclassified are treated equally when empirically estimating the ad-

versarial loss. Furthermore, due to the adversarial nature of attacks, the adversarial sam-

ples at test time 𝑥𝑡𝑒𝑠𝑡
′  may not have the same distribution as the adversarial examples gen-

erated at training time. Thus, it is likely that the distribution of adversarial risk is not the 

same as the i.i.d of clean data points. 
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 To tackle the problem the weighted minimax risk approach defines a margin such that 

for a data point (𝑥𝑖, 𝑦𝑖), the margin is the difference between the classifiers confidence in 

predicting the correct model 𝑦𝑖 and the maximal probability of an incorrect label 𝑡. The 

Adaptive margin aware minimax risk uses an exponential family parameterized by the 

margin of the adversarial examples in training 

min
𝜃
∑ max

𝛿𝑖:‖𝛿𝑖‖<𝜖
𝑒−𝛼 𝑚𝑎𝑟𝑔𝑖𝑛(𝑓𝜃(𝑥𝑖+𝛿𝑖),𝑦𝑖)𝑚

𝑖=1 ℓ(𝑓𝜃(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖). 

Where 𝛼 > 0 is a hyperparameter of the exponential weight kernel. The impact of this is 

that there is a positive correlation between the weight kernel and individual loss, that is a 

larger individual loss will induce a larger weight and vice versa. Also, the distribution of 

the attack 𝒟′ deployed may deviate from the empirical distribution 𝒟 represented by the 

training examples. The true distribution is often intractable; however, it is assumed that 

the divergence between the empirical distribution and the attack distribution is bounded 

by a threshold divergence (Namkoong and Duchi 2016). Hence, a risk estimator for each 

data point to express the distribution of the adversarial examples and learn it via training 

is beneficial. A distributionally robust optimization will only require evaluation an im-

portance weight at each minibatch of training data (𝑥𝑖
 , 𝑦𝑖 )𝑖=1

𝑁 . and can improve distribu-

tional robustness against adversarial perturbations (𝑥𝑖
′, 𝑦𝑖  )𝑖=1

𝑁 . An importance weight 

𝑠(𝑓𝜃, 𝑥𝑖
′, 𝑦𝑖

 
) which is a ratio of the adversarial examples distribution and clean data points 

is evaluated at training as 

𝑠(𝑓𝜃, 𝑥𝑖
′, 𝑦𝑖

 
) =

𝒟′(𝑥𝑖
′, 𝑦𝑖)

𝒟(𝑥𝑖, 𝑦𝑖)
. 

Therefore, the re-weighting strategy – adaptive margin-aware risk trains the object func-

tion considering a full batch gradient decent as follows 

ℒ̃(𝜃) =
1

𝑁
∑𝑠(𝑓𝜃, 𝑥𝑖

′, 𝑦𝑖
 
)ℓ(𝑓𝜃(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖)

𝑁

𝑖=1

 

≈ 𝔼(𝑥,𝑦)~𝒟[𝑠(𝑓𝜃, 𝑥 
′, 𝑦 

 )ℓ(𝑓𝜃(𝑥
′), 𝑦 )] 

≈ 𝔼(𝑥′,𝑦)~𝒟′[ℓ(𝑓𝜃(𝑥
′), 𝑦 )]. 
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Since the weighting factor is learnable, the objective of this method can be thought of as 

learning the adversarial example distribution conditioned on a model  𝜃 through learning 

of the importance weight using the loss ℒ̃(𝜃). 

2.4.4.3 Single Step Adversarial Training with Dropout Scheduling 

Method 

Models trained using sing-step adversarial training method prevent the generation of sin-

gle-step adversaries due to overfitting of the model during training. A single-step adver-

sarial training with dropout scheduling learns a more robust model. Typical setting of 

adding drop out layer with fixed probability does not help the single-step trained model in 

gaining robustness. Considering the empirical training objective formulated as a minimax 

optimization problem 

min
𝜃
𝔼(𝑥𝑖,𝑦𝑖)~𝒟 [ max𝛿𝑖:‖𝛿𝑖‖<𝜖

ℓ(𝑓𝜃(𝑥𝑖 + 𝛿𝑖), 𝑦𝑖)] 

𝑅𝜖 =
𝑙𝑜𝑠𝑠𝑎𝑑𝑣

𝑙𝑜𝑠𝑠𝑐𝑙𝑒𝑎𝑛
. 

𝑅𝜖 can be interpreted as that if 𝑅𝜖 > 1 which is the same as 𝑙𝑜𝑠𝑠𝑎𝑑𝑣 being greater than 

𝑙𝑜𝑠𝑠𝑐𝑙𝑒𝑎𝑛 then there is an adversarial perturbation. Conversely, if 𝑅𝜖 < 1 meaning 

𝑙𝑜𝑠𝑠𝑎𝑑𝑣 is less than 𝑙𝑜𝑠𝑠𝑐𝑙𝑒𝑎𝑛 the generated perturbation is not an adversarial perturbation, 

and the attack method fails to generate adversarial perturbations for the model. The sin-

gle-step training method introduces a dropout layer after each non-linear layer of the 

model to be trained. The dropout layers are initialized with a high dropout probability 𝑃𝑑 . 

Then during the training 𝑃𝑑is linearly decayed for all dropout layer and controlled by the 

hyper-parameter 𝑟𝑑. The hyperparameter 𝑟𝑑 is expresses in terms of maximum training 

iterations meaning that the dropout probability reaches zero when the current training it-

eration reaches half of the maximum training iterations. This training method learn to pre-

vent the generation of adversaries due to over-fitting during training and the resultant 

model achieves robustness not only in single-step attacks but also against multiple step 

attacks.  
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2.4.4.4 Regularized FGSM (FGSMR) for Adversarial Training 

Tianjin H. et al (2020) increased the similarity between vanilla FGSM and Projected Gra-

dient Descent (PGD) attack by reducing the curvature along the perturbed direction pro-

jected by FGSM. This was achieved by regularizing the curvature of the FGSM and re-

straining the projection to make the perturbed direction close to those generated by PGD-

inf attacks. Restraining the gradient direction along the FGSM, which is the second direc-

tion derivative, gives a perturbed direction that can be expressed as   

∇𝑥𝑔
2 𝐿𝜃(𝑥) = lim

ℎ→0

∇𝑥𝐿𝜃(𝑥+ℎ𝑔)−∇𝑥𝐿𝜃(𝑥)

ℎ
, 

also given a curvature regularization term 𝑅𝜃 then the adversarial training optimization 

objective is to minimize the expression:min
𝜃
𝐿(𝑥 + 𝜖𝑔) + 𝜆𝑅𝜃. The hyperparameter 𝜆 is 

penalizing factor for controlling the curvature along the FGSM direction. Robust models 

trained by adv.FGSMR had higher perturbed data accuracy than adv.PGD for PGD-infinity 

and FGSM attacks, also adv.FGSMR models achieved state of the art accuracy on clean 

MNIST datasets. For further comparison, the times spent on training 50 epochs with 

adv.FGSMR for ResNet-18/34 models was considerable lower that adv.PGD since the later 

takes k (usually k is set to 20) iterations of forward and backward process to find an opti-

mum perturb vector in the 𝑙∞ ball while adv.FGSM takes only 1 iteration for the forward 

and backward process to find a perturbed vector and 2 times forward and backward process 

for the curvatures regularization. 

 

2.4.4.5 Feature - Level Adversarial Training (FLAT) 

FLAT seeks to increase model resilience by ensuring that a model consistently predicts 

original or adversarial examples pairs. To do this, FLAT uses variational word masks to 

choose the appropriate words from an original/adversarial example pair so that the model 

can predict them. Variational word masks act as a bottleneck in the training process, edu-

cating the model to base predictions on key words to guarantee the accuracy of the model's 

predictions. Throughout training, they learn the global word significance. Also, FLAT nor-

malizes the global relevance of the terms that were changed in an original example and 
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their replacements in the adversarial counterpart so that the model would perceive the re-

lated phrases as having the same importance. 

Using original/adversarial example pairs, FLAT aims to build a robust model with con-

sistent prediction behaviors. 

min
𝜃,𝜙

ℒ𝑝𝑟𝑒𝑑 + 𝛾ℒ𝑖𝑚𝑝 

ℒ𝑝𝑟𝑒𝑑 = 𝔼(𝑥,𝑦)~𝒟[ℒ(𝑓𝜃(𝑔𝜃(𝑥
 )), 𝑦 )]+ 𝔼(𝑥,𝑦)~𝒟[𝐿(𝑓𝜃(𝑔𝜃(𝑥

′ )), 𝑦  )] 

ℒ𝑖𝑚𝑝 = 𝔼(𝑥,𝑦)~𝒟∪𝒟′ [∑ |𝜙𝑥𝑖 − 𝜙𝑥𝑖
′
 |𝑖,𝑥𝑖≠𝑥𝑖

′ ]. 

where cross entropy loss is indicated by ℒ(. , . ) is a teachable vector with the same dimen-

sion as the specified text vocabulary, where 𝜃𝑥𝑖 ∈ (0,1) denotes the word 𝑥𝑖 overall im-

portance.  𝛾 ∈ ℝ+ is a coefficient. By bringing 𝜃𝑥𝑖and 𝜃𝑥2′ close together, ℒ𝑖𝑚𝑝 normalizes 

the global importance scores of the replaced words {𝑥𝑖
 } and their replacements {𝑥𝑖

′} in an 

original/adversarial example pair (𝑥𝑖;  𝑥𝑖
′). The related word pair (𝑥𝑖;  𝑥𝑖

′) would be selected 

by 𝑔𝜙(⋅) based on similar relevance score. Based on the crucial phrases 𝑔𝜃(𝑥) and 𝑔𝜃(𝑥 
′ ), 

respectively,ℒ𝑝𝑟𝑒𝑑 encourages the model to produce the same and accurate predictions on 

the original and adversarial examples. By maximizing the objective, the model develops a 

consistent pattern of behavior when predicting comparable texts, increasing its robustness 

to adversarial assaults (Hanjie et al, 2022). 

2.4.4.6 Ensemble models 

Suppose 𝒦 base networks make up the ensemble model ℱ represented by the notation 

𝐹(𝑥; 𝜃𝑘) for 𝑘 = 1, 2, …, K. A strategy for modelling ℱ is obtaining the average over each 

predictor i.e., 𝑦̂ℱ =
1

𝐾
∑ 𝐹(𝑥; 𝜃𝑘)
𝐾
𝑘=1 . In simultaneous training and for each training itera-

tion all classifiers are trained on the same mini batch of data. Traditionally, the objective 

function is only the sum of the individual CE losses plus the ensemble cross-entropy (ECE) 

loss ℒ𝐸𝐶𝐸 = ∑ ℒ𝐶𝐸(𝑦̂𝑘, 𝑦)
𝐾
𝑘=1 ,  where 𝑦̂𝑘 = 𝐹(𝑥; 𝜃𝑘) contains the predictive score of the 

𝑘-th network and 𝑦 is a one-hot encoding of the true label for 𝑥 . 
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The method is based on diversified learning on the feature level for simultaneous training 

and involves two regularization schemes. First, the Priority Diversified Dropouts (PDD) 

that aims to encourage each member to learn diversified feature representations of the input 

and the Dispersed Ensemble Gradients is amended to the ECE loss as a penalty term for 

gradient descents of classifiers 

 in similar directions of the learning space. The two parts work to enhance each other. Con-

sequently, members in the ensemble can have more dispersed gradients when learning more 

diversified features, and vice versa. To enforce diverse learning of deep feature represen-

tations among the ensemble networks, the technique additionally involves creating an ad-

justable dropout in simultaneous training. Each base network may be thought of as choos-

ing this as a feature. Given that the dropout creates sparsity in feature representation by 

ignoring certain high-level information, resulting in different activation patterns between 

networks. The ensemble range of activation strength is divided into m intervals and the 

number of neurons 𝑘 base networks that fall in the intervals 𝐺𝑖=1,2,..,𝑚 is counted. The in-

terval with the largest counts are considered as having the priority for activation their neu-

rons. Hence, let the 𝑘-th network have 𝑁𝑚
(𝑘)

neurons in the 𝑚-th interval 𝐺𝑚, then the total 

number of neurons in the 𝑘-th network is 𝐶𝑘 = ∑ 𝑁𝑚
(𝑘)𝑀

𝑚 . Given that 𝑘-th network has an 

activation priority within the interval 𝐺-th 𝑡1 ≠ 𝑡2 ≠ 𝑡𝑘 then the keep rate for the 𝑘-th net-

work with activation length in the interval 𝐺𝑚 is given as 

 

𝑝𝑚
(𝑘)
= {

𝛼, 𝑚 = 𝑡𝑘

𝛽(1 − 𝑁𝑚
(𝑘)

𝐶𝑘⁄ ), 𝑚 ≠ 𝑡𝑘
. 

Where 𝛼 and 𝛽 are coefficient parameters that range between [0,1]. Lastly, since the goal 

is to make adversarial examples on one network less transferable to the other network the 

Dispersed Ensemble gradient (DEG) is used to obtain a gradient regularization. The con-

ventional CE losses ℒ𝐶𝐸(𝑦̂𝑘, 𝑦) are calculated as usual as well as their corresponding 𝑔𝑘 =

𝜕ℒ𝐶𝐸(𝑦̂𝑘, 𝑦) 𝜕𝑥⁄  for 𝑘=1, 2,…, 𝐾 and the penalty term for the dispersed gradient is given  

ℒ𝑔 = ∑
(𝑔𝑖,𝑔𝑗)

‖𝑔𝑖‖‖𝑔𝑗‖
1≤𝑖<𝑗≤𝐾 . 
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Where ℒ𝑔is effectively the sum of cosine values for the pairwise input gradients. The gra-

dient dispersion is affected by including the regularization term to the CE loss ℒ𝐸𝐶𝐸: 

ℒ𝐷𝑆𝑇 = ℒ𝐸𝐶𝐸 + 𝜆ℒ𝑔. 

2.4.4.7 Collaboratively Promoting and Demoting Adversarial Robust-

ness 

This ensemble method considers a model f with the aim of making f robust over a consistent 

prediction over a ball ℬ(𝑥, 𝜖) ≔ {𝑥′ : ‖𝑥′ − 𝑥‖ ≤ 𝜖} around an adversarial data example 

𝑥𝑎
′
 
 in the dataset 𝒟 and a distortion boundary 𝜖.  

ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓, 𝜖) ≔ {𝑥′ ∈  ℬ(𝑥, 𝜖) ∶  𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑓𝑖(𝑥
′) = 𝑦} , 

ℬ𝑖𝑛𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓, 𝜖) ≔ {𝑥′ ∈  ℬ(𝑥, 𝜖) ∶  𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑓𝑖(𝑥
′) ≠ 𝑦}, 

based on the definition of secure and insecure sets an adversary example can be expressed 

in four subsets 𝑆11 = ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓¹, 𝜖) ⋂ ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓
2, 𝜖), where the 𝑥𝑎 is predicted 

correctly by both models. The subset 𝑆10 , 𝑆01 are the intersection of a secure set of 𝑓1 

model and an insecure set of 𝑓2. Lastly, the 𝑆00 is equivalent to 𝑆11 =

ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓¹, 𝜖) ⋂ ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓
2, 𝜖),e) i.e. both models wrongly predicts the true la-

bel 𝑦. Hence, the insecure region of the ensemble should be related to the union 

𝑆10 ⋃ 𝑆01 ⋃ 𝑆00 . The method encourages adversarial samples 𝑥𝑎
′   inside  𝑆00 to transfer to 

𝑆10 , 𝑆01 while the model is trained, and those of 𝑆10 , 𝑆01  to move to the subset 𝑆11 . The 

transfer flow is implemented via promoting and demoting adversarial robustness to lever-

age the information of an adversarial example from improving the robustness of the model. 

To promote the adversarial robustness of a given adversarial example 𝑥𝑎 w.r.t the model , 

empirical adversarial training (Madry et al., 2018) by minimizing the cross-entropy loss 

𝑙(𝑓(𝑥𝑎
′ ), 𝑦) and 𝑥𝑎

′  is transformed to the secure set ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓, 𝜖). On the other hand, 

to demote 𝑥𝑎
′  w.r.t the model by max 𝐻(𝑓(𝑥𝑎

′ )) where 𝐻 is the entropy. 

The collaboration strategy that allows an ensemble of multiple individual members. Thus, 

given an ensemble of 𝑁 members 𝑓𝑒𝑛 (. ) =  
1

𝑁
∑ 𝑓𝑛(. ) 𝑁
𝑛=1 parameterized by 𝜃𝑛, the loss 

function for a model 𝑓𝑛, 𝑛 ∊ [1, 𝑁]: 
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ℒ𝑛 (𝑥, 𝑦, 𝜃𝑛) =  𝒞 (𝑓
𝑛(𝑥), 𝑦) +  𝒞(𝑓𝑛(𝑥𝑎 

𝑛 ), 𝑦)

+ 
1

𝑁 − 1
∑(𝜆𝑝𝑚𝑓𝑦

𝑛(𝑥𝑎
𝑖 )𝒞(𝑓𝑛(𝑥𝑎

𝑖 ), 𝑦)𝜆𝑑𝑚(1 − 𝑓𝑦
𝑛(𝑥𝑎

𝑖 ))𝐻 (𝑓𝑛(𝑥𝑎
𝑖 )))

𝐼≠𝑛

. 

ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓, 𝜖) is the set of elements in ℬ(𝑥, 𝜖) for which the classifier 𝑓 makes the 

correct prediction 𝑦. Also, the insecure ℬ𝑠𝑒𝑐𝑢𝑟𝑒(𝑥, 𝑦, 𝑓, 𝜖) is the set of elements in t ℬ(𝑥, 𝜖) 

for which 𝑓 wrongly predicts the true label 𝑦. 

For a given loss we can see the strength of an adversary that can be derived. That can guide 

the selection of a loss to settle for, that will in turn be robust.  

 

2.4.5 Data Privacy and Security in Adversarial Learning 

Evasion attacks target the decision boundary of a trained classifier by introducing small 

perturbations to input samples at test time. Biggio et al. highlighted the risks posed by such 

attacks during both training and deployment of machine learning models. In their work, 

they evaluated classifiers across different adversarial scenarios in malware detection appli-

cations. To improve robustness, they proposed a classifier that uses gradient descent opti-

mization applied to the discriminant function. In this context, the adversary seeks to mini-

mize the classifier's discriminant score, generating data samples likely to cross the model’s 

decision boundary and lead to incorrect classifications. 

To counter this, the classifier can incorporate prior knowledge specific to the domain and 

the adversarial context. This includes understanding the adversary’s strategy, attack prob-

abilities, classification priorities, and payoff functions. By modelling these elements, a 

more informed and strategic defence can be developed, allowing the classifier to anticipate 

and resist targeted evasion attempts more effectively. 

Poisoning attacks manipulate the training data by introducing carefully crafted adversarial 

samples that shift the learned decision boundary. This undermines model accuracy and 

generalization. A key challenge lies in the assumption that training data may not fully rep-

resent the true data distribution. Attackers exploit this by injecting data points that increase 

misclassifications. Poisoning can be particularly damaging to models like Support Vector 
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Machines (SVMs), which are sensitive to outliers and rely on representative training sam-

ples. 

To analyse and defend against poisoning, adversarial perturbations are introduced into the 

training set to assess model robustness. Training SVMs using kernels such as polynomial 

or radial basis function (RBF) kernels helps capture complex relationships in the data. In 

this context, gradient descent is used to identify adversarial samples that degrade model 

performance. The optimization process seeks samples that are likely to shift the margin or 

decision boundary of the classifier. 

By simulating these attacks, researchers can better understand how model accuracy deteri-

orates and develop countermeasures such as data sanitization, robust optimization, or re-

weighting of training points. These insights contribute to the development of classifiers 

that are better equipped to detect, adapt to, and recover from adversarial data poisoning 

while preserving overall performance. 

2.5 Quantum Adversarial Machine Learning 

Quantum Machine Learning (QML) is a rapidly evolving field at the intersection of quan-

tum computing and classical machine learning. It explores how quantum algorithms can 

be used to enhance traditional machine learning tasks like classification, clustering, and 

regression. With the rapid progress in quantum hardware and software in recent years, 

quantum versions of many standard machine learning algorithms have been proposed. 

These innovations have sparked excitement over QML’s potential to be among the first 

areas to demonstrate quantum advantage, where quantum systems outperform classical 

ones in meaningful ways. 

QML leverages uniquely quantum phenomena such as superposition, entanglement, and 

quantum interference to process data in richer, high dimensional Hilbert spaces. This ca-

pability offers new opportunities not just for improved speed, but also for novel forms of 

data representation and analysis. For instance, variational quantum circuits, which are 

trainable quantum models analogous to neural networks, have become a central frame-

work in many QML applications. These circuits typically operate by encoding classical 
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data into quantum states using feature maps, then manipulating those states with parame-

terized gates, and finally measuring them to yield a prediction. 

Early QML research focused heavily on algorithmic speedups, a compelling new direc-

tion is the quest for robustness, particularly in adversarial contexts. The field of Quantum 

Adversarial Machine Learning (QAML) has emerged to examine whether quantum mod-

els can defend against adversarial attacks, where small but maliciously designed input 

perturbations cause misclassifications. Although classical models like convolutional neu-

ral networks are known to be vulnerable to such attacks, QAML explores the potential for 

quantum models to offer improved defences. 

The geometry of quantum Hilbert spaces introduces both risks and opportunities in this 

domain. Early studies have highlighted a counterintuitive effect known as the concentra-

tion of measure phenomenon. This property implies that in high dimensional Hilbert 

spaces, the majority of quantum states cluster close to a median value. This clustering of 

the state space can make variational quantum classifiers especially vulnerable to adver-

sarial attacks, independent of the classifier’s design. In other words, adversarial perturba-

tions can push input states outside the model’s generalization boundary due to the narrow 

concentration of valid state space. 

Moreover, existing theoretical frameworks for generalization bounds in QML, while 

promising for evaluating training performance, fall short in adversarial contexts because 

adversarial examples are intentionally crafted and not drawn from the natural data distri-

bution. This makes defending against them fundamentally different from traditional over-

fitting scenarios. 

Despite this vulnerability, the unique properties of quantum information processing may 

also provide novel mechanisms for adversarial defence. For example, quantum noise, en-

tanglement, and probabilistic measurement outcomes could be harnessed to create models 

that are harder to exploit. Several recent studies have demonstrated that quantum en-

hanced classifiers can outperform classical ones in adversarial settings when trained with 

appropriately designed defences. 
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QML is not only a platform for achieving computational speedups but also a promising 

research area for tackling the growing challenge of adversarial robustness. As both attack 

strategies and defensive techniques evolve within QAML, the interplay between quantum 

geometry and model learning continues to offer important theoretical and practical in-

sights into the future of secure and reliable machine learning. 

2.5.1 Perturbation Attacks on Quantum ML algorithms 

Quantum Machine Learning (QML) integrates quantum computing with machine learn-

ing methods. While offering computational benefits, quantum classifiers exhibit suscepti-

bility to adversarial attacks. These vulnerabilities result from structural properties of 

quantum systems, especially the geometry of high-dimensional Hilbert spaces, and the 

way data is encoded. This section outlines the foundational reasons for these vulnerabili-

ties and presents empirical and hardware-based evidence that supports their existence. 

A key reason for vulnerability in quantum classifiers arises from the concentration of 

measure phenomenon (COMP). In high-dimensional Hilbert spaces, most data points are 

near decision boundaries of quantum classifiers. As a result, small changes to inputs can 

shift them across boundaries, causing misclassifications. Mathematically, the average dis-

tance between a random point and its nearest adversarial variant scales as 𝑂(2−𝑛), where 

𝑛 is the number of qubits. This means quantum classifiers using even modest qubit counts 

can be impacted by adversarial examples. 

Another issue is the existence of universal adversarial examples, which are inputs de-

signed to affect multiple classifiers simultaneously. The required perturbation for such 

examples scales as 𝑂(log(𝑘) . 2−𝑛), where 𝑘 is the number of models. These examples 

compromise ensemble methods and increase risk in multi-model systems.  

The form of input encoding plays a role in determining adversarial susceptibility. In prac-

tice, quantum classifiers do not operate on all of Hilbert space, but on subspaces formed 

by encoded classical data. For example, in phase encoding, where 𝑥 →⊗𝑖=1
𝑛 (cos𝑥𝑖|0⟩ +

sin𝑥𝑖|1⟩), perturbations scale as 𝑂(1 √𝑛)⁄ . While this scale is less severe than in full-

space models, it still demonstrates a measurable risk. 
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The choice of encoding affects classifier behaviour. Encoding strategies should be evalu-

ated not only for computational or expressive efficiency but also for robustness. Empiri-

cal testing is necessary to validate these risks on realistic data distributions and quantum 

encodings. 

A study by Lu et al. tested quantum variational classifiers (QVCs) against adversarial in-

puts using both classical and quantum datasets. Attacks adapted from classical methods 

such as FGSM, PGD, and Carlini-Wagner were applied. These methods successfully de-

graded performance on QVCs trained on clean data, even when images remained visually 

similar. The models failed to retain accuracy when exposed to crafted perturbations, indi-

cating real risks even on simple tasks like MNIST binary classification. 

The role of the quantum states being classified is central to vulnerability. This factor, 

combined with the encoding method, directly affects whether classifiers are stable under 

perturbation. Studies show that the data subset used in classification may or may not fol-

low COMP behaviour, further complicating generalizations about robustness. 

Although simulations have identified vulnerability patterns, validation requires tests on 

actual quantum systems. In a recent experiment, Ren et al. trained and attacked QVCs on 

classical and quantum data using real quantum hardware. The classifiers were success-

fully deceived using adversarial samples that closely resembled original inputs. The re-

sults confirm that adversarial issues are not limited to theory or simulation but exist in 

current noisy quantum devices. 

These experiments highlight that QML is not inherently protected against manipulation. 

The structure of Hilbert space, design of encoding circuits, and limitations of NISQ hard-

ware contribute to the system’s weaknesses. Models that generalize well on clean data 

can still be exposed when faced with crafted adversarial samples. 

In conclusion, quantum classifiers are vulnerable to attack due to both theoretical princi-

ples and practical constraints. Hilbert space geometry, encoding strategy, and model de-

sign all influence robustness. Theoretical models predict weaknesses, and empirical work 

confirms their presence on simulated and actual hardware. Defending quantum models 

must be a priority for QML research, alongside improving efficiency or achieving 
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quantum advantage. Efforts should focus on developing quantum-aware defence ap-

proaches, including data encoding techniques, optimization modifications, and circuit-

based mitigation. The study of adversarial robustness in QML remains essential for build-

ing dependable and secure quantum learning systems. 

 

2.5.2 FGSM and PGD Justification 
 

The Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) were se-

lected as representative adversarial attacks because they define the lower and upper 

bounds of attack strength. FGSM performs a single linear perturbation step, providing ef-

ficiency and interpretability for baseline evaluation. PGD extends FGSM into iterative 

updates with projection onto an ε-ball, producing stronger, more adaptive perturbations 

that test model resilience under worst-case conditions. 

Alternative attacks such as the Momentum Iterative Method (MIM), Carlini–Wagner 

(CW), and DeepFool can achieve high attack success rates but incur heavier computa-

tional cost and less analytical transparency. FGSM and PGD thus offer a balanced bench-

mark suite for evaluating robustness while maintaining reproducibility. Future work can 

incorporate MIM to analyse momentum-based perturbation accumulation and adaptive 

adversaries. 

 

2.5.2 Defending Quantum Classifiers 

 

Defending quantum classifiers against adversarial attacks has emerged as a critical re-

search focus in quantum machine learning. A leading strategy replicates classical adver-

sarial training. A quantum classifier is trained using attack-aware loss functions. This 

technique adapts adversarial inputs during training, promoting resilience to bounded-

norm perturbations. Their information-theoretic analysis shows that the generalization 

gap due to adversarial training decreases with the square root of the sample size and 
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vanishes in high-dimensional input spaces [27]. This provides theoretical support for ad-

versarial training, especially for models employing rotation-based data encoding. 

2.5.2.1 Adversarial Training in Quantum Classifiers 

Adversarial training is a prominent defence strategy adapted from classical machine 

learning to the quantum setting. The method involves training quantum classifiers on ad-

versarial examples to enhance their robustness. Georgiou et al. [27] proposed adversarial 

training methods tailored for quantum variational classifiers (QVCs), showing that when 

adversarial perturbations are incorporated during training, the resulting models demon-

strate improved stability against input manipulations. Their analysis provides generaliza-

tion bounds for adversarial trained quantum models, especially under rotation-based en-

coding. While effective, adversarial training demands significant computational overhead 

and can be challenging on near-term quantum hardware (NISQ) due to gate fidelity and 

circuit depth constraints. 

2.5.2.2 Quantum Noise as a Defensive Mechanism 

Quantum noise, traditionally seen as a barrier to reliable computation, has recently been 

explored as a potential defence mechanism. Du et al. [3] showed that incorporating depo-

larization noise into quantum circuits can mitigate adversarial effects by acting similarly 

to differential privacy mechanisms in classical systems. This approach reduces the sensi-

tivity of the classifier to small input perturbations. Further, Huang et al. [9] introduced a 

robustness certification method using randomized noise injections during the training and 

inference phases. Their work demonstrated that added noise could bound the classifier's 

response to adversarial perturbations while preserving prediction fidelity. These findings 

suggest that quantum noise, when controlled and well-characterized, can be strategically 

employed to improve robustness. 

2.5.2.3 Randomized Encoding and Benchmarking 

Randomization in quantum encoding schemes has also proven effective. Huang et al. [16] 

proposed a randomized data encoding strategy using random quantum rotations, which 

obfuscate gradient directions necessary for constructing adversarial examples. This makes 



  

49 
 

gradient-based attack methods ineffective, improving classifier resilience. Additionally, 

West et al. [8] conducted benchmarking of multiple quantum classifiers under various 

classical attack methods, such as Fast Gradient Sign Method (FGSM) and Projected Gra-

dient Descent (PGD), on both quantum and classical datasets. Their findings indicate that 

quantum classifiers exhibit unique robustness patterns not always mirrored in classical 

counterparts, although they remain vulnerable to certain carefully crafted perturbations. 

2.5.3 Challenge and Opportunities  

2.5.3.1 Adversarial Attacks 
Quantum classifiers face vulnerability due to the structure of the Hilbert space into which classi-

cal inputs are embedded. The concentration of measure phenomenon (COMP) causes most quan-

tum states to cluster near decision boundaries, making small perturbations highly effective. The 

expected distance to the nearest adversarial example decreases exponentially with the number of 

qubits, scaling as 𝑂(2−𝑛 [1]. 

As in classical machine learning, transferability also appears in quantum settings. Adversarial ex-

amples crafted for one model often deceive others, as many models tend to learn the same non-

robust features from training data [2]. In classical systems, adversarial training helps models iden-

tify more robust features, leading to more semantically meaningful perturbations [3]. 

Quantum adversarial machine learning (QAML) introduces additional complexity. Studies show 

that quantum-generated perturbations may target robust features by default, even without adver-

sarial training [4]. These structured perturbations can deceive classical models, enabling quan-

tum-to-classical transferability. However, the full mechanism behind this is still unclear and re-

mains a research gap. 

Interestingly, the feature-targeting nature of adversarial attacks may also offer advantages to 

QML. Quantum models may learn data features that are classically inaccessible, simply due to 

their distinct encoding and transformation processes [5]. As a result, adversarial examples gener-

ated by attacking a classical model may fail to transfer to a quantum model. Even if quantum-dis-

covered features do not improve clean-data accuracy, their uniqueness may confer additional ro-

bustness. Initial studies confirm that QAML networks exhibit such behaviour [4]. 

Conversely, the extent to which quantum-generated adversarial examples transfer across quantum 

models or from quantum to classical systems is still an open question. If QML systems prove 



  

50 
 

resistant to attacks from classical adversaries, those without access to quantum computers, this 

could provide an early strategic advantage to QML adopters in critical applications. 

2.5.3.2 Data Encoding 

Data encoding plays a central role in quantum machine learning (QML) and quantum ad-

versarial machine learning (QAML). It affects the classifier’s ability to represent data, 

generalize patterns, and resist adversarial attacks. In current quantum systems, encoding 

classical data into quantum states remains a major limitation due to hardware constraints. 

Two common encoding methods are amplitude encoding and phase encoding. Amplitude 

encoding uses the amplitudes of quantum states to represent data, requiring fewer qubits 

but needing deep quantum circuits. Phase encoding maps input values to qubit rotations. 

It uses simpler circuits but demands more qubits, which limits its application in current 

devices. 

An alternative is interleaved encoding, which combines encoding layers with trainable 

quantum gates. This setup improves model expressiveness without significantly increas-

ing circuit depth. 

Encoding also affects the robustness of quantum models. Studies have linked specific en-

coding schemes to model behaviour under noise. Although standard noise and adversarial 

noise differ, encoding influences how well models tolerate both. Some strategies confine 

data to structured regions of the Hilbert space, improving resistance to adversarial pertur-

bations compared to methods like amplitude encoding that explore wider spaces. 

The encoding method also shapes how data distributes in Hilbert space. Due to the con-

centration of measure effect, data can cluster near decision boundaries, making models 

more prone to adversarial perturbations. Choosing an encoding that spreads data more 

evenly may help reduce this vulnerability. 

Encoding influences how adversarial examples transfer between models. Quantum mod-

els that capture features not accessible to classical models may resist classical attacks. 

Conversely, some encodings may expose shared weaknesses. 
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Current hardware limitations often require compact encodings like amplitude encoding. 

But as quantum systems improve, more encoding options will become viable. This shift 

will make encoding a key design factor in QAML, affecting performance and security. 

In short, encoding is a structural component that shapes resource use, model performance, 

and robustness. As hardware advances, careful encoding selection will be critical for 

building effective and secure quantum models. 

2.5.3.3 Quantum Noise 

Quantum noise is a fundamental feature of current quantum computing systems, particu-

larly in the Noisy Intermediate-Scale Quantum (NISQ) era. It introduces significant chal-

lenges in quantum machine learning (QML) and quantum adversarial machine learning 

(QAML) by affecting model performance through decoherence, gate errors, and readout 

inaccuracies. However, quantum noise may also disrupt adversarial attacks, providing a 

potential defence mechanism. 

In QAML, noise introduces variability during model training and evaluation. This varia-

bility interferes with the gradient-based optimization processes typically used to generate 

adversarial examples, reducing their effectiveness. Unlike classical attacks, which rely on 

deterministic behaviour, quantum models affected by noise are less predictable, making 

attacks harder to craft and apply consistently. 

Quantum noise can also serve as a form of regularization. In variational quantum circuits, 

repeated evaluations under noisy conditions can prevent overfitting to narrow regions of 

the data space, including adversarial zones. Some approaches deliberately introduce noise 

during training to make models more robust. This is similar to classical techniques like 

dropout or noise injection. 

Despite these potential advantages, too much noise leads to poor model fidelity and un-

stable outputs. A balance must be found between using noise to improve robustness and 

maintaining accuracy. Strategies such as noise-aware training and error mitigation tech-

niques are required to make use of noise without degrading model quality. 
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Recent studies have demonstrated these effects in practical settings. Ren et al. conducted 

experiments on quantum hardware, showing that while adversarial attacks could still af-

fect quantum variational classifiers, the presence of hardware-induced noise weakened 

their impact and reduced consistency across trials. This illustrates the role of noise in 

shaping model robustness. 

However, hardware limitations remain. Current devices have a limited number of qubits 

and relatively high noise levels. While small-scale QML and QAML demonstrations ex-

ist, more complex and reliable implementations will need improvements in quantum 

hardware. Short-term progress may come from quantum error mitigation techniques, but 

long-term scalability requires fault-tolerant systems. 

Fault tolerance aims to suppress errors below a critical threshold using error correction 

codes. One method is the surface code, which encodes logical qubits across many physi-

cal qubits to detect and correct errors. Surface codes are among the most studied schemes 

for building reliable quantum operations. Some early demonstrations of surface code ap-

plications show that quantum hardware is approaching the capability needed for small-

scale, error-corrected computation. 

Quantum noise presents both a problem and a possible solution in QAML. While it limits 

the depth and reliability of current models, it can also resist adversarial strategies by dis-

rupting their optimization process. Achieving effective and robust QAML will require 

careful use of noise, supported by error mitigation, and future adoption of fault-tolerant 

architectures. 

 

 

 

 

 

 



  

53 
 

Chapter 3 

Quantum and Classical Machine Learning 

Algorithms and Datasets 

This chapter introduces the quantum and classical machine learning algorithms, along with 

the datasets used in this thesis. It covers quantum models and traditional approaches that 

form the basis for later chapters. These methods support the analysis of how quantum com-

puting can be applied to machine learning tasks. The chapter outlines the core concepts, 

implementations, and relevance of each algorithm in relation to the datasets. We begin with 

quantum machine learning algorithms, followed by classical machine learning and deep 

learning methods, and end with a description of the datasets used. 

 

3.1 Classical Learning Algorithms 

In the context of adversarial training, this section outlines the core machine learning algo-

rithms used throughout the thesis. These algorithms serve as the baseline models for eval-

uating the impact of adversarial examples and the effectiveness of defence mechanisms. 

The selection includes widely used classifiers such as support vector machines, decision 

trees, and neural networks, chosen for their relevance in adversarial robustness research. 

Each algorithm is introduced with a focus on its vulnerability to adversarial attacks, com-

putational efficiency, and role within the adversarial training framework. This foundation 

sets the stage for later chapters, where these models are trained and evaluated under adver-

sarial settings to assess their resilience and performance. 

3.1.1 Reinforcement Learning 

Reinforcement Learning (RL) is a learning paradigm in which an agent interacts with an 

environment to learn optimal behaviours by maximizing cumulative rewards over time. It 

differs from supervised learning in that it does not rely on labelled input/output pairs but 

instead learns from trial and error. The RL framework is often modelled as a Markov 
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Decision Process (MDP), defined by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) where 𝑆 represents states, 𝐴 

actions, 𝑃 the transition probability, 𝑅 the reward function, and 𝛾 the discount factor [57] 

[56] [79] [80]. 

𝐺𝑡 = 𝔼[∑𝛾𝑘𝑅𝑡+𝑘+1

∞

𝑘=0

] . 

The agent's goal is to learn a policy 𝜋(𝑎|𝑠), which defines the probability of taking action 

𝑎 in state 𝑠, in order to maximize the expected return: 

Common RL methods include value-based approaches like Q-learning and policy-based 

methods like policy gradients. In Q-learning, the agent updates an action-value function 

𝑄(𝑠, 𝑎) that estimates the expected return of taking action 𝑎 in state 𝑠 and acting optimally 

thereafter. Deep Q-Networks (DQN) extend this to high-dimensional spaces using deep 

neural networks. 

In adversarial training contexts, RL plays a dual role. First, RL agents can be targets of 

adversarial attacks, where small perturbations in state observations lead to suboptimal de-

cisions. This has been demonstrated in environments like Atari games, where imperceptible 

noise misleads agents into making poor actions [79, 56, 57] . Second, RL can be used as a 

tool for adversarial defence, where agents are trained under adversarial conditions to be-

come more robust. This typically involves adversarial perturbed states being included dur-

ing training, following a min-max formulation where the agent learns a policy that performs 

well even under worst-case inputs. 

Adversarial training in RL can also improve safety and reliability in real-world applications 

such as autonomous vehicles, robotics, and cybersecurity. For example, robust RL has been 

applied to train agents that maintain performance even when attackers manipulate sensor 

data or inject malicious behaviour into the environment. 

Recent advances such as Proximal Policy Optimization (PPO) and robust adversarial RL 

frameworks have made it easier to incorporate adversarial resilience into RL models [80]. 

While challenges remain in sample efficiency and convergence stability, RL continues to 

be a promising approach for building adaptable and secure AI systems. 
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3.1.2 Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are widely used for image classification and 

recognition. They learn spatial features through convolutional layers, activation functions, 

and pooling operations. The core operation in a CNN is the convolution: 

𝒵𝑖,𝑗
𝑙 =∑∑𝑥𝑖+𝑚,𝑗+𝑛

𝑙−1

𝑛

. 𝑤𝑚,𝑛
(𝑙)
+ 𝑏(𝑙)

𝑚

 . 

Here, 𝑥(𝑙−1) is the input feature map, 𝑤(𝑙) is the kernel, 𝑏(𝑙) is the bias, and 𝑧(𝑙) is the out-

put of layer 𝑙. After convolution, a non-linear function and pooling may be applied. 

Several CNN architectures have become standard in the field. VGGNet [81] employs 

deep stacks of small 3×3 convolutions. ResNet [82] introduces residual connections that 

address the degradation problem in deeper networks, using the identity mapping formula: 

𝑦 = ℱ(𝑥, {𝑊𝑖}) + 𝑋, 

where ℱ is a residual function. 

MobileNet focuses on computational efficiency, using depthwise separable convolutions 

to reduce the number of parameters and operations [83]. These architectures are com-

monly trained on large datasets such as ImageNet [84], which serves as a benchmark for 

evaluating image recognition models. 

Although CNNs perform well in various tasks, they are vulnerable to adversarial exam-

ples. These are inputs that have been intentionally perturbed in subtle ways that are often 

imperceptible to humans but can cause a model to make incorrect predictions. The Fast 

Gradient Sign Method (FGSM) is a common technique for generating such inputs and is 

defined by the following equation: 

𝑥𝑧𝑑𝑣 = 𝑥 + 𝜀. 𝑠𝑖𝑔𝑛(∇𝑥𝐽(𝜃, 𝑥, 𝑦)). 

 

Where 𝑥 is the original input, 𝜀 is a small scalar controlling the perturbation size, 𝐽  is the 

model's loss function, and ∇𝑥𝐽 is the gradient of the loss with respect to the input. 
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Projected Gradient Descent [49] extends this method by applying iterative updates while 

keeping the perturbed input within a specified norm ball around the original input. 

To improve robustness against these attacks, adversarial training modifies the learning 

process by including adversarial examples during training. The training objective be-

comes a minimax optimization problem [85] [84] [49]. The formulation forces the model 

to learn parameters that perform well even under worst-case perturbations. Variants of 

ResNet and MobileNet have been successfully trained using this method, resulting in im-

proved robustness, although often at the cost of increased computational requirements 

and reduced accuracy on clean data. 

In addition to adversarial training, other strategies such as architectural modifications, in-

put transformations, and ensemble models have been explored to reduce CNN sensitivity 

to adversarial inputs. These efforts aim to enhance model reliability in environments 

where adversarial manipulation may be present[185][189][199]. 

CNNs remain essential in visual recognition, but their susceptibility to adversarial attacks 

highlights the need for robust design and training techniques. Ongoing research continues 

to address these challenges to improve the security and generalizability of CNN-based 

models[200]. 

3.1.3 Support Vector Machine 

Support Vector Machines (SVMs) are supervised learning models used for classification 

and regression. SVMs aim to find a decision boundary that maximizes the margin be-

tween different classes in the feature space. Given a set of labelled training examples 

(𝑥𝑖, 𝑦𝑖) where 𝑥𝑖 ∈  ℝ
𝑛 and 𝑦𝑖  ∈ {−1, 1}, the optimal decision boundary is obtained by 

solving the following optimization problem: 

𝑚𝑖𝑛
1

2
‖𝑤‖2 subject to 𝑦𝑖(𝑊

𝑇𝑥𝑖 + 𝑏) ≥ 1 . 

Where 𝑤 defines the orientation of the hyperplane, and 𝑏 is the bias term. For non-line-

arly separable data, kernel functions such as radial basis function (RBF) or polynomial 

kernels are used to project data into higher-dimensional spaces. 
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SVMs are known for their generalization capability in high-dimensional spaces, but they 

are not immune to adversarial attacks. Like neural networks, SVMs can be deceived by 

small perturbations crafted to move an input across the decision boundary. These attacks 

exploit the geometry of the margin and the model’s reliance on boundary decisions. 

Recent studies have shown that even simple linear SVMs can be manipulated through 

carefully generated adversarial examples. Zhang et al. (2020) demonstrated that adversar-

ial perturbations can be constructed using gradient-based methods, and these attacks 

transfer across different kernel types and datasets. The vulnerability persists even when 

SVMs are trained with regularization or input preprocessing [86]. 

To address this, several defence strategies have been proposed. One approach is robust 

optimization, which modifies the SVM objective to account for worst-case perturbations 

within an allowable region around each input. This results in a formulation similar to: 

min
𝑤,𝑏

max
‖𝑑𝑖‖≤𝜖

1

2
‖𝑤‖2 + 𝐶∑max(0,1 − 𝑦𝑖(𝑤

𝑇(𝑥𝑖 + 𝛿𝑖) + 𝑏))

𝑖

 

. This formulation trains the SVM to classify correctly even under input perturbations of 

bounded size ϵ\epsilonϵ. Biggio et al.  proposed gradient masking and feature squeezing 

as preprocessing techniques to make adversarial manipulation more difficult. However, 

these methods may reduce model accuracy on clean data or be bypassed by adaptive at-

tacks. 

A more recent direction involves integrating adversarial training with SVMs by including 

adversarial examples during training to improve robustness. Liang et al. showed that this 

approach improves classification margins under perturbations while maintaining perfor-

mance on original data [87]. Other efforts focus on using SVMs as part of ensemble de-

fences, combining their stable decision boundaries with deep learning classifiers to miti-

gate attack transferability. 

Although SVMs are less commonly used in large-scale image classification, they remain 

relevant in structured data tasks and as components of hybrid systems. Their decision 
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margins and convex optimization framework provide a basis for analysing and improving 

robustness to adversarial inputs [86] [35] [88]. 

3.2  Principal Component Analysis 

Principal Component Analysis (PCA) is a linear dimensionality reduction technique used 

to project data onto a lower-dimensional subspace that captures the directions of maxi-

mum variance. Given a dataset 𝑋 ∈ ℝ𝑛×𝑑 where 𝑛 is the number of samples and 𝑑 the 

number of features, PCA computes a set of orthogonal basis vectors (principal compo-

nents) by solving the eigenvalue decomposition of the covariance matrix: 

∑=
1

𝑛
𝑋𝑇𝑋 𝑎𝑛𝑑 ∑𝑣𝑖 = 𝜆𝑖𝑣𝑖  . 

The eigenvectors 𝑣𝑖 represent the directions of maximum variance, and the corresponding 

eigenvalues 𝜆𝑖 indicate their importance. The data can then be projected onto the top 

𝑘 components: 

𝑋𝑃𝐶𝐴 = 𝑋𝑉𝑘 , 

where 𝑉𝑘𝜖ℝ
𝑑×𝑘 contains the top 𝑘 eigenvectors. 

In adversarial settings, PCA has been explored both as a defensive preprocessing step and 

as an analysis tool for understanding model vulnerability. By reducing the input dimen-

sionality, PCA can remove noise or irrelevant features that adversarial perturbations may 

exploit. Xu et al. (2018) showed that applying PCA before feeding data into classifiers 

such as SVMs or neural networks can reduce the effectiveness of certain adversarial at-

tacks, particularly those that rely on high-dimensional noise. 

However, PCA is not inherently robust to adversarial manipulation. Researchers have 

found that adversarial examples can still be crafted in the reduced feature space or that 

perturbations can be projected to align with principal components to maintain their im-

pact after transformation. Jagielski et al. demonstrated that attackers can adaptively gen-

erate perturbations that survive dimensionality reduction, especially when the defence 

mechanism is known [89] [90] [91] [71]. 
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Robust PCA variants have been proposed to improve resistance to outliers and adversarial 

points. These methods attempt to decompose the data into a low-rank structure and a 

sparse error matrix, isolating adversarial noise. However, these approaches typically in-

troduce additional computational cost and are sensitive to hyperparameters. 

In practical applications, PCA is often used in combination with other defences such as 

adversarial training or feature denoising. While it can reduce attack surface by eliminat-

ing redundant input dimensions, PCA alone is insufficient for ensuring robustness. It is 

better suited as a complementary component in a layered defence strategy [179-181]. 

3.3  Quantum-Classical Hybrid Models 

Quantum-classical hybrid models describe machine learning systems that combine classi-

cal data with quantum computational components. These models belong to the CQ cate-

gory in the quantum machine learning classification proposed by Schuld and Petruccione, 

which considers the nature of the data (classical or quantum) and the platform used for 

learning (classical or quantum). In CQ models, classical input data is processed by quan-

tum circuits as part of the learning process, while optimization is generally performed us-

ing classical algorithms [92] [93]. 

This thesis focuses exclusively on CQ quantum machine learning: learning models that 

operate on classical data and use quantum computing for model evaluation. Within this 

category, there are multiple architectural possibilities. Some approaches aim to use quan-

tum computing for both model evaluation and optimization [65]. Although these tech-

niques show theoretical promise in accelerating classical, they often rely on hardware ca-

pabilities that are not yet available on current quantum devices. Therefore, this thesis 

does not explore those methods [93] [47] [94]. 
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Table 3. 1 Quantum Machine Learning grouped with respect to nature of Model and 
data used 

 Classical  

Algorithm 

Quantum  

Algorithm 

 

Classical  

Data 

  

 

Quantum  

Data 

  

 

Instead, this work focuses on CQ models that are compatible with noisy intermediate-

scale quantum (NISQ) devices. These models use quantum circuits to evaluate input data, 

while training is performed using classical optimization routines. Given an input 𝑥 ∈ ℝ𝑛 

the data is encoded into a quantum state |𝜓(𝑥)⟩. A parameterized quantum circuit 𝑈(𝜃) is 

then applied, and an observable 𝑂̂ is measured to compute the output: 

𝑓(𝑥; 𝜃) = ⟨𝜓(𝑥)|𝑈†(𝜃)𝑂̂𝑈|𝜓(𝑥)⟩. 

The goal is to find parameters 𝜃 that minimize a classical loss function, typically using 

gradient-based or heuristic optimization methods. 

 

 

CQ quantum machine learning includes several model types which includes: 

CC CQ 

QC QQ 
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3.3.1 Quantum Support Vector Machines (QSVMs) 

These models adapt classical SVMs by using quantum kernels that map classical inputs 

into a space of quantum states. The model operates entirely on classical data but relies on 

a quantum computer to compute inner products in the quantum feature space. 

3.3.2 Quantum Neural Networks (QNNs) 

 These models are built entirely from quantum circuits and are inspired by the structure of 

classical neural networks. They use layers of parameterized quantum gates to represent 

learnable transformations. 

3.3.3 Hybrid Networks 

 These models combine quantum components with classical architectures, such as con-

necting a quantum neural network to a classical dense layer. Hybrid networks aim to bal-

ance the expressive power of quantum circuits with the stability and maturity of classical 

models. 

These models are evaluated in this thesis with a particular focus on their behaviour under 

adversarial attack. Classical adversarial methods are adapted to test the robustness of 

quantum classifiers and hybrid networks, examining whether quantum-based architec-

tures provide advantages in adversarial settings [93]. 

The QQ category, where both the data and processing are quantum, represents a promis-

ing future direction. In QQ models, quantum states may be input directly into quantum 

circuits without intermediate measurement [95] [96] [97]. However, such models require 

hardware and quantum memory capabilities that exceed the scope of this thesis and cur-

rent technology. As such, they are excluded from the present analysis. 

 

3.4 Feature maps 

In machine learning, a feature map refers to a transformation that projects input data from 

its original space into a new feature space, often of higher dimension. This transformation 
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enables models to capture patterns or relationships in the data that may not be linearly 

separable in the original space. In quantum machine learning, feature maps serve a simi-

lar purpose but operate through the preparation of quantum states that encode classical in-

put data. 

A quantum feature map is typically defined by a parameterized quantum circuit that de-

pends on the input data. This circuit acts as a data embedding mechanism, it takes a clas-

sical input vector 𝑥 ∈  ℝ𝑛 and prepares a corresponding quantum state |𝜙(𝑥)⟩. The struc-

ture and parameters of the circuit determine how the data is represented in Hilbert space. 

Mathematically, a feature map in quantum machine learning is expressed as a unitary 

transformation 𝑈(𝑥) such that: 

|𝜙(𝑥)⟩ = 𝑈(𝑥)|0⟩⊗𝑛. 

Where |0⟩⊗𝑛 is the initial state of the quantum system, and 𝑈(𝑥) encodes the data 𝑥 into 

a quantum state using parameterized gates. The expressivity and usefulness of a quantum 

model heavily depend on the design of this feature map, as it defines the geometry of the 

feature space in which quantum learning models operate. 

3.4.1 Angle Encoding 

Angle encoding is one of the most used quantum feature maps due to its simplicity and 

compatibility with near-term quantum hardware. It encodes classical data into quantum 

states by interpreting each input value as a rotation angle applied to a qubit. 

In an 𝑛 qubit system, angle encoding can embed up to 𝑛 real-valued input features. The 

encoding is implemented by applying a rotation gate to each qubit, where the rotation an-

gle corresponds to the input value. Typically, the rotation gate 𝑅𝑦(. ) 𝑜𝑟 𝑅𝑧(. ) is used. For 

example, if x= (𝑥1, 𝑥2, … , 𝑥𝑛)  is the input vector, then each qubit 𝑞𝑖 undergoes a transfor-

mation: 

|𝜓(𝑥)⟩ =⊗𝑖=1
𝑛 𝑅𝑦(𝑥𝑖)|0⟩

⊗𝑛
. 

This operation results in a product state where the quantum state of each qubit depends 

directly on the corresponding input feature. 
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However, the choice of rotation gate matters. If the circuit uses only 𝑅𝑦 gates applied to 

the computational basis state, |0⟩ the resulting state lies entirely in the 𝑦 − 𝑧 plane of the 

Bloch sphere. If instead, 𝑅𝑧 gates are used on |0⟩, no transformation occurs, since 

𝑅𝑧(𝜃)|0⟩ =  |0⟩, Therefore, to make the encoding effective when using 𝑅𝑧 gates, a layer 

of Hadamard gates is commonly applied before the rotations. The Hadamard gate trans-

forms |0⟩ into a superposition state, enabling the subsequent rotations to affect the state 

meaningfully. 

Normalization of input data plays a crucial role in angle encoding. Input features should 

be rescaled to lie within a specific interval, such as [0, 𝜋] 𝑜𝑟 [−𝜋, 𝜋] depending on the de-

sired spread of encoded quantum states. For example, if data is normalized within 

[0, 𝜋] then values near 0 and 𝜋 are mapped to similar quantum states due to the periodic-

ity of the trigonometric functions involved in rotation gates. In fact, since rotation gates 

operate modulo 2𝜋, 0 and 2𝜋 represent the same angle, leading to ambiguity if the nor-

malization range wraps around this boundary. 

This trade-off affects how the feature space is explored. A wider normalization interval 

allows for broader distribution of states in the Hilbert space, which can improve class 

separability. However, it may also cause overlap between inputs at opposite ends of the 

data range. The choice of normalization range must balance the need for spread in the 

feature space with the need to preserve distinctions between extreme values. 

In this thesis, angle encoding is used as the primary feature map in the quantum support 

vector machine (QSVM). Its structure is hardware-efficient, easy to implement, and al-

lows for clear interpretation of how classical inputs are embedded into quantum states. 

Moreover, its sensitivity to input values makes it an important component when studying 

adversarial perturbations, as small changes in input can induce noticeable shifts in the en-

coded quantum state, potentially affecting classification decisions. 
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3.4.2 ZZ Feature Maps 

The ZZ feature map is a quantum feature encoding method that introduces nonlinearity 

and entanglement into the data embedding process, making it suitable for quantum mod-

els that aim to exploit quantum advantage in classification tasks. Unlike simpler methods 

such as angle encoding, the ZZ feature map uses both single-qubit rotations and entan-

gling gates to map classical input data into quantum Hilbert space in a way that captures 

pairwise interactions between features. 

Given an input vector 𝑥 ∈  ℝ𝑛 the ZZ feature map operates on an 𝑛 qubit system, where 

each input feature 𝑥𝑖  is used to parameterize a rotation gate on qubit 𝑖. The circuit typi-

cally applies a Hadamard gate to each qubit, followed by a rotation around the Z-axis 

𝑅𝑧(𝑥𝑖), and then introduces entanglement through controlled-ZZ interactions between 

qubit pairs (𝑖, 𝑗), parameterized by the product 𝑥𝑖. 𝑥𝑗 . The unitary transformation for the 

ZZ feature map is given by: 

𝑈𝑧𝑧(𝑥) = [ ∏ exp(𝑖𝛾𝑥𝑖𝑥𝑗𝑍𝑖𝑍𝑗)
(𝑖,𝑗)∈𝐸

] . [⊗𝑘=1
𝑛 𝑅𝑧(𝑥𝑘)𝐻𝑘] , 

 

where: 

• 𝐻𝑘is the Hadamard gate on qubit 𝑘, 

• 𝑅𝑧(𝑥𝑘)is the Z-rotation gate parameterized by input 𝑥𝑘, 

• exp(𝑖𝛾𝑥𝑖𝑥𝑗𝑍𝑖𝑍𝑗) is the ZZ interaction between qubits iii and jjj, 

•  𝛾 is a tunable hyperparameter that controls the entanglement strength, 

• E is the set of qubit pairs over which the ZZ interaction is applied. 

The key property of the ZZ feature map is that it captures second-order feature corre-

lations by encoding the product terms 𝑥𝑖𝑥𝑗  directly into quantum phase relationships. 
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This makes it particularly powerful in cases where feature interactions are relevant to 

the decision boundary, such as in non-linear classification problems. 

The resulting quantum state |𝜙(𝑥)⟩ =  𝑈𝑧𝑧(𝑥)|0⟩
⊗𝑛

 is used in quantum kernel methods, 

including the Quantum Support Vector Machine implemented in this thesis. The model 

relies on computing inner products between these states to form the quantum kernel ma-

trix: 

𝐾(𝑥, 𝑥′) = |⟨𝜙(𝑥)|𝜙(𝑥′)⟩|2. 

The structure of the ZZ feature map allows for highly expressive embeddings while re-

maining implementable on current noisy intermediate-scale quantum devices. In this 

work, the ZZ feature map is used in conjunction with classical optimization techniques to 

train a QSVM for classification tasks. The entanglement introduced by the feature map is 

expected to improve class separation in the quantum feature space. 

In adversarial settings, the sensitivity of the ZZ map to feature correlations makes it an 

important point of analysis. Perturbations in the input not only affect the individual rota-

tions but also alter the interaction terms 𝑥𝑖𝑥𝑗  potentially resulting in large shifts in the en-

coded quantum state. This thesis evaluates how such perturbations affect the decision 

boundaries of the QSVM trained using the ZZ feature map, and whether the encoding 

provides any resilience or unique vulnerabilities under adversarial attack. 

3.4.3 Amplitude Encoding 

Amplitude encoding is a quantum data encoding strategy where classical input data is 

embedded into the amplitudes of a quantum state. Unlike methods that encode each fea-

ture into individual gate parameters or circuit structures, amplitude encoding represents 

the entire input vector globally within the quantum state. This approach leverages the su-

perposition principle of quantum mechanics to encode 𝑁 data points using only log
2
𝑁 

qubits, providing an exponentially compact representation. 
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Given a classical input vector 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑁−1)  ∈  ℝ
𝑁, it is first normalized such 

‖𝑥‖2 = ∑ |𝑥𝑖|
2 = 1𝑁−1

𝑖=0 . The amplitude encoding maps this vector to a quantum state 

|𝜓(𝑥)⟩ over log
2
𝑁 qubits: 

|𝜓(𝑥)⟩ = ∑|𝑖⟩ .

𝑁−1

𝑖=0

 

Each component 𝑥𝑖  becomes the amplitude of the computational basis state |𝑖⟩. The en-

coded state contains the full structure of the classical input and can support inner product 

evaluations and quantum linear algebra subroutines. 

This encoding is particularly relevant for quantum algorithms that rely on linear algebra 

operations, such as the Harrow-Hassidim-Lloyd (HHL) algorithm for solving linear sys-

tems, quantum principal component analysis, and quantum kernel methods. It enables 

quantum models to operate on data in high-dimensional spaces without requiring a pro-

portional number of physical qubits. 

However, state preparation is the main bottleneck of amplitude encoding. Constructing 

arbitrary quantum states with specific amplitudes typically requires circuits with depth 

and complexity that scale poorly with input size. Efficient loading of classical data into 

amplitude-encoded quantum states often assumes access to quantum random access 

memory (QRAM), which is currently not available on most NISQ devices. For this rea-

son, amplitude encoding is often studied theoretically or in simulations but rarely imple-

mented in real quantum hardware workflows today. 

From a machine learning perspective, amplitude encoding offers a dense and information-

rich representation, but its sensitivity to perturbations can be significant. Adversarial 

changes in input values affect global state amplitudes and can result in non-local effects 

in downstream quantum processing. This raises open questions regarding the robustness 

of amplitude-encoded quantum models under adversarial attack. 

Due to these constraints, this thesis does not utilize amplitude encoding in the experi-

mental implementation. Instead, we focus on the ZZ feature map, which offers more 

hardware-compatible encoding while still enabling non-linear classification through 
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entanglement. Nonetheless, amplitude encoding remains a foundational concept in quan-

tum data representation and may become practical with the advancement of quantum 

memory and efficient state preparation methods. 

3.5 Datasets 

To evaluate the performance of the CNN and quantum support vector machine (QSVM) 

model and its robustness under adversarial conditions, this thesis employs two well-estab-

lished benchmark datasets: MNIST and CIFAR-10. These datasets are widely used in ma-

chine learning research due to their standardized structure and relevance for image classi-

fication tasks. 

The MNIST dataset consists of grayscale images of handwritten digits (0–9), offering a 

relatively simple classification task that is suitable for initial model validation. CIFAR-

10, by contrast, contains coloured images across ten distinct classes, introducing higher 

visual complexity and a more challenging classification environment. 

These datasets enable systematic comparison between classical and quantum models and 

provide a basis for evaluating adversarial vulnerability and defence mechanisms under 

consistent experimental conditions. The following subsections describe each dataset in 

more detail. 

Although this research focused on benchmark datasets such as CIFAR-10 and MNIST for 

controlled experimentation, the proposed models can be extended to large-scale, real-

world datasets including ImageNet and medical-imaging repositories. Such datasets pro-

vide higher-resolution and domain-specific complexity that would better assess generali-

zation under diverse threat conditions. 

Scaling to these datasets requires efficient feature-compression and quantum-encoding 

schemes to manage high-dimensional inputs under current hardware limits. A hybrid clas-

sical–quantum pipeline using classical convolutional feature extraction followed by quan-

tum kernel mapping can enable feasible large-scale evaluation of adversarial robustness. 
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3.5.1 CIFAR-10 Dataset 

The CIFAR-10 (Canadian Institute for Advanced Research) dataset is a benchmark da-

taset widely used in computer vision and machine learning for evaluating image classifi-

cation models. It consists of 60,000 color images uniformly divided into 10 classes, with 

6,000 images per class. Each image in the dataset has a resolution of 32 × 32 pixels and is 

represented in RGB format, meaning each image contains three color channels. 

The ten categories included in CIFAR-10 are: airplane, automobile, bird, cat, deer, dog, 

frog, horse, ship, and truck. The dataset is split into 50,000 training images and 10,000 

test images, providing sufficient diversity and volume to train and evaluate models effec-

tively. Because the images span low-resolution representations of various natural and 

man-made objects, CIFAR-10 is considered more complex than simpler datasets like 

MNIST. This complexity makes it particularly useful for testing generalization, model ro-

bustness, and resistance to adversarial perturbations. 

In the context of this thesis, CIFAR-10 is used to evaluate the performance of quantum 

support vector machines (QSVMs) implemented with the ZZ feature map. However, 

quantum machine learning models often have constraints in terms of input size and qubit 

availability, particularly on noisy intermediate-scale quantum (NISQ) hardware. There-

fore, preprocessing is necessary to adapt CIFAR-10 to formats that are compatible with 

quantum circuits. 

 

3.5.1.1 Preprocessing and Dimensionality Reduction 

Each CIFAR-10 image originally contains 32 × 32 × 3 = 3,072 features when flattened 

into a one-dimensional vector. Directly encoding this high-dimensional data into a quan-

tum state is not currently practical due to hardware limitations. As such, dimensionality 

reduction techniques, such as Principal Component Analysis (PCA), are applied to com-

press the data into a lower-dimensional space. This allows the transformed features to be 

encoded into a manageable number of qubits, typically 4 to 8, depending on the available 

resources. 
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In this thesis, PCA is used to reduce the feature vector to a size compatible with the quan-

tum circuit used in the QSVM. The number of principal components is selected to retain 

most of the variance in the original data while allowing efficient quantum processing. 

Additionally, for initial experiments and binary classification evaluation, a subset of 

CIFAR-10 is used, typically involving two distinct classes such as cat vs. dog or automo-

bile vs. truck. This binary setting simplifies the model structure and makes kernel-based 

classification more tractable, especially under adversarial training or attack scenarios. 

3.5.1.2 Relevance to Adversarial Machine Learning 

CIFAR-10 is known to be vulnerable to a range of adversarial attacks, including Fast 

Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others. These at-

tacks can modify pixel values slightly to cause misclassification, even though the image 

remains visually like a human observer. As such, CIFAR-10 serves as a useful bench-

mark for evaluating the robustness of QSVMs under adversarial conditions. 

By incorporating CIFAR-10 into this study, the thesis demonstrates how quantum-en-

hanced models behave under realistic image-based classification tasks and investigates 

whether quantum embeddings like the ZZ feature map introduce any meaningful robust-

ness or sensitivity to adversarial perturbations. 

3.5.2 MNIST Dataset 

The MNIST (Modified National Institute of Standards and Technology) dataset is one of 

the most used benchmarks in image classification and machine learning research. It con-

sists of 70,000 grayscale images of handwritten digits ranging from 0 to 9, spread across 

10 classes. Each image has a size of 28 × 28 pixels, resulting in 784 features when flat-

tened into a one-dimensional vector. The dataset is divided into 60,000 training samples 

and 10,000 test samples, offering a well-balanced distribution for model development and 

validation. 

MNIST’s simplicity, structured labelling, and relatively low-dimensional input space 

make it an ideal choice for early experimentation, algorithm prototyping, and benchmark-

ing classification models. Although modern deep learning models have achieved near-
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perfect performance on MNIST, it remains highly valuable in contexts such as model in-

terpretability, low-resource learning, and adversarial robustness areas that are particularly 

relevant in the evaluation of quantum machine learning approaches. 

In this thesis, MNIST is used as one of the primary datasets to assess the behaviour and 

effectiveness of the Quantum Support Vector Machine (QSVM), implemented using the 

ZZ feature map. Its structured yet diverse content provides a reliable test case for evaluat-

ing model performance and susceptibility to adversarial perturbations. 

3.5.2.1 Preprocessing and Adaptation for Quantum Models 

Quantum models, particularly those targeting NISQ (Noisy Intermediate-Scale Quantum) 

hardware, are limited by the number of qubits and circuit depth. As such, the original 

784-dimensional feature vectors of MNIST images cannot be directly encoded into a 

quantum circuit. To address this, dimensionality reduction is performed as a prepro-

cessing step. In this thesis, Principal Component Analysis (PCA) is used to reduce the di-

mensionality of the images while retaining most of the data variance. 

The reduced features are then scaled and encoded into quantum states using the ZZ fea-

ture map. The number of PCA components is chosen based on trade-offs between infor-

mation retention and quantum resource constraints. This allows the data to be embedded 

into a quantum circuit of manageable size, enabling meaningful experimentation and 

evaluation on current quantum simulation platforms or restricted real devices. 

In addition, to simplify the classification task and reduce computational requirements, bi-

nary classification settings are used in some experiments. For example, distinguishing be-

tween the digits 3 vs. 8 or 4 vs. 9 allows focused evaluation of quantum kernel methods in 

a controlled scenario. This is particularly useful in adversarial robustness tests, where 

specific class boundaries are examined under perturbation. 

3.5.2.2 Relevance to Adversarial Studies 

MNIST is widely used in adversarial machine learning literature due to its clean structure 

and clear visual features. Small perturbations, imperceptible to the human eye, can often 

lead to significant misclassification, especially in linear or shallow models. In this thesis, 
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adversarial attacks such as FGSM and PGD are applied to MNIST samples to test the ro-

bustness of the QSVM model. 

Using MNIST provides a clear baseline to assess whether quantum feature mappings, 

such as the ZZ feature map, enhance robustness to adversarial inputs or introduce new 

forms of vulnerability. By comparing results on MNIST and CIFAR-10, the thesis evalu-

ates how quantum models perform across datasets of varying complexity. 

3.6 Performance Metrics 

Evaluating the performance of classification models, including quantum and classical ma-

chine learning systems, requires systematic use of performance metrics. These metrics 

not only quantify how well the model performs overall but also reveal specific strengths 

or weaknesses, such as whether the model is better at identifying positive or negative 

classes, or how it balances precision and recall. In this section, we explore the key perfor-

mance metrics employed in this thesis to assess model behaviour under both normal and 

adversarial conditions. 

3.6.1  Confusion Matrix 

The confusion matrix is a fundamental tool in evaluating classification tasks. It is a 

square matrix that summarizes the number of correct and incorrect predictions made by 

the model, categorized by actual and predicted labels. For binary classification, the confu-

sion matrix has four key components: 

• True Positive (TP): Instances where the model correctly predicted the positive 

class. 

• True Negative (TN): Instances where the model correctly predicted the negative 

class. 

• False Positive (FP): Negative instances that the model incorrectly classified as 

positive. 

• False Negative (FN): Positive instances that the model incorrectly classified as 

negative. 
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This matrix forms the basis for several derived metrics, which are discussed below. 

Accuracy 

Accuracy measures the overall proportion of correctly classified instances among all pre-

dictions. It is a commonly used metric but may be misleading in imbalanced datasets, 

where one class dominates the other. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. 

Accuracy is helpful in balanced scenarios but should not be the sole metric in evaluating 

model effectiveness, especially under adversarial perturbations where one class may be 

disproportionately misclassified. 

Precision 

Precision quantifies the proportion of true positive predictions among all instances pre-

dicted as positive. It measures how much the model can be trusted when it labels an in-

stance as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
. 

  

High precision indicates low false positive rates, which is crucial in contexts where false 

alarms are costly, such as fraud detection or intrusion detection. 

Recall (Sensitivity) 

Recall, also known as sensitivity, measures the proportion of actual positives that were 

correctly identified by the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . 

Recall is important in scenarios where missing a positive instance is more harmful than 

mistakenly labelling a negative instance, such as in medical diagnosis or threat detection. 
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F1-Score 

The F1-score is the harmonic mean of precision and recall. It provides a single metric that 

balances both concerns, particularly when there is a trade-off between minimizing false 

positives and false negatives. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  . 

The F1-score is particularly useful when dealing with imbalanced datasets or when the 

cost of false negatives and false positives are comparable. 
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Chapter 4 

Adversarial Training: Reinforced Weighted 

Adversarial Learning for Convolutional 

Neural Networks (CNN) 

This section addresses challenge 1 and has been published in 2024 11th International 

Conference on Machine Intelligence Theory and Applications (MiTA), Machine Intelli-

gence Theory and Applications (MiTA). 

4.0 Introduction 

Given training set of n pairs (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁 ∈  𝒳 × 𝒴 drawn independently and identically 

(iid) from a distribution 𝒟. Here 𝑥𝑖 represents the CIFAR-10 data examples and 𝑦𝑖 de-

notes the corresponding labels. Our primary goal is to develop a robust MobileNet classi-

fier model parameterized by 𝜃 that effectively maps the input space to the output space, 

denoted as 𝑓𝜃:  𝒳 → 𝒴 while minimizing a loss function on adversarial data 𝑥′. In this 

context, we introduce the 𝐿∞ norm metric 𝑑(𝑥, 𝑥′) on 𝒳 and a boundary ball 𝐵𝜖(𝑥) =

{𝑥′: 𝑑(𝑥, 𝑥𝑖) ≤ 𝜖} around 𝑥, an adversary’s goal is to perturb the data examples 𝑥𝑖 to 𝑥𝑖
′
 
 

within a defined budget 𝜖 > 0 with the aim of maximizing the adversarial during the 

training process. 

4.1 Methodology 

4.1.1 Stackelberg Game formulation 

Consider a sequential 2-player non-zero sum Stackelberg game 𝒢= (𝑆𝐿 , 𝑆𝐹 , 𝑢) where 𝑆𝑙 

and 𝑆𝑓 are strategy spaces for the classifier leader and adversary follower of game and 

𝑢: 𝑆𝐿 × 𝑆𝐹 → 𝑅 is the payoff function. The leader has a set of strategies 𝑠𝑙 ∈ 𝑆𝐿 and the 

followers set of strategies is given by 𝑠𝑓 ∈ 𝑆𝐹. For a Stackelberg equilibrium there exist a 
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rational best response mapping function 𝑓: 𝑆𝐿 → 𝑆𝐹 such that 𝑢2 (𝑠𝑙, 𝑓(𝑠𝑙)) ≥

𝑢2(𝑠𝑙, 𝑠𝑓) ∀𝑠𝑙  ∈ 𝑆𝐿 ,  𝑠𝑓 ∈ 𝑆𝐹. 

The leader makes the first move by selecting a strategy. 𝑠𝑙 ∈ 𝑆𝐿 to minimize the 𝑢1, 

knowing the existence of a follower. After knowing 𝑠𝑙, the follower picks 𝑠𝑓2 ∈ 𝑆𝐹 to 

maximize their own payoff 𝑢2 where 𝑠𝑓2 = 𝑓(𝑠𝑙) . Hence, the Stackelberg equilibrium 

strategies  (𝑠𝑙
∗, 𝑠𝑓

∗) pair for leader and follower is 𝑠𝑙
∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝑠𝑙∈𝑆𝐿𝑢1( 𝑠𝑙, 𝑠𝑓2) and 𝑠𝑓

∗ ∈

𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑙∈𝑆𝐿𝑢2( 𝑠𝑙
∗, 𝑠𝑓) respectively such that 𝑢2(𝑠𝑙

∗, 𝑓(𝑠𝑙
∗)) ≤ 𝑢2(𝑠𝑙

 , 𝑠𝑓2). This gives the 

leader an advantage that imposes a solution favorable for himself while optimizing 

against the follower’s anticipated strategy 𝑠𝑓2. 

Proposition 3.1 A Stackelberg equilibrium strategy exists with the defender as the leader 

and adversary the follower if 𝑆𝐿 and 𝑆𝐹 are compact sets and 𝑈𝐿 and 𝑈𝐹 are continuous on 

𝑆𝐿 × 𝑆𝐹. 

Proof. Since the rational adversarial response strategy (𝑠𝑙, 𝑓(𝑠𝑙)) is a subset of the com-

pact set 𝑆𝐿 × 𝑆𝐹 we only need to show that set of adversarial responses is closed. If 

(𝑠𝑙
0, 𝑠𝑓

0) is the closure of 𝛺𝑓 and (𝑠𝑙
𝑛, 𝑠𝑓

𝑛) are sequence of points converging to (𝑠𝑙
0, 𝑠𝑓

0) in 

𝛺𝑓. We show that 𝛺𝑓 is closed and (𝑠𝑙
0, 𝑠𝑓

0), a point on the boundary, is contained in 𝛺𝑓. 

If (𝑠𝑙
0, 𝑠𝑓

0) ∉  𝛺𝑓 then ∃(𝑠𝑙
0, 𝑠𝑓

∗) ∈ 𝛺𝑓 such that 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

∗) > 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

0). Let 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

∗) −

𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

0) = 𝛽. since 𝑈𝐹 is continuous on 𝑆𝐿 × 𝑆𝐹 and (𝑠𝑙
𝑛0, 𝑠𝑓

𝑛∗) → (𝑠𝑙
0, 𝑠𝑓

∗) then ∃ 𝛿1 >

0 such that |𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛∗) − 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

∗)| <
𝛽

3
. Similarly, as (𝑠𝑙

𝑛0, 𝑠𝑓
𝑛∗) → (𝑠𝑙

0, 𝑠𝑓
∗) ∃ 𝛿2 > 0 

such that |𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) − 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

0)| <
𝛽

3
 and |𝑈𝑓(𝑠𝑙

𝑛0, 𝑠𝑓
𝑛0) − 𝑈𝑓(𝑠𝑙

0, 𝑠𝑓
0)| <

𝛽

3
 

,  ∀(𝑠𝑙, 𝑠𝑓) ∈ 𝑆𝐿 × 𝑆𝐹. Therefore, we have 

|𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) − 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

0)| <
𝛽

3
= 𝑈𝑓(𝑠𝑙

𝑛0, 𝑠𝑓
𝑛0) < 𝑈𝑓(𝑠𝑙

0, 𝑠𝑓
0) +  

𝛽

3
 

𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) < 𝑈𝑓(𝑠𝑙
0, 𝑠𝑓

∗) − 𝛽 +
𝛽

3
= 𝑈𝑓(𝑠𝑙

𝑛0, 𝑠𝑓
𝑛0) < 𝑈𝑓(𝑠𝑙

0, 𝑠𝑓
∗) −

2𝛽

3
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= 𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) < 𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

∗) −  
𝛽

3
 

= 𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) < 𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

∗) . 

This contradicts the fact that 𝑈𝑓(𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) is a sequence in 𝑈𝐹, therefore (𝑠𝑙
𝑛0, 𝑠𝑓

𝑛0) ∈ 𝑈𝐹 

and 𝑈𝐹 is closed. 

4.1.2  Adversarial Training as a Stackelberg game 

Traditional methods of adversarial training aim to solve a minimax problem between a 

classifier and attacker by minimizing the loss on the input perturbation. The solution con-

verges to an equilibrium such that for a given dataset 𝑆 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , the model 𝑓𝜃 min-

imizes the expectation of adversarial loss function as shown 

min
𝜃

1

𝑛
∑{ max

𝑥𝑖
′∈𝐵𝜖[𝑥𝑖]

𝑙(𝑓𝜃(𝑥𝑖
′), 𝑦𝑖)}

𝑛

𝑖=1

 

. The model adjusts its parameters 𝜃 to the adversarial perturbations by treating all gener-

ated adversarial samples 𝑥′ equally when estimating the adversarial loss at test time. The 

classifier strategy 𝑠𝑙 ∈ 𝑆𝐿 is a parameter 𝜃 that gives minimum training loss on a training 

set (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁 . The strategy minimizes the payoff empirical risk on the dataset, as shown 

below: 

𝑠𝑙 = min
𝜃
ℒ(𝜃) = min

𝜃

1

𝑛
∑(𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖))

𝑛

𝑖=1

 

. The payoff function 𝑢𝐹: 𝑆𝐿 × 𝑆𝐹 → 𝑅 of the follower is the adversarial loss derived dur-

ing attack at test time. After observing the classifier 𝑓𝜃 the adversary chooses a strategy 

𝑠𝑓 ∈ 𝑆𝑓 that maximally perturbs the original data. To achieve the attack, the optimal strat-

egy 𝑠𝑓 = {𝑥
′: 𝑥 + 𝛿} is the best response to 𝜃 and maximizes the loss ℒ in equation be-

low. The maximum perturbation 𝛿 is derived using projected gradient descent (PGD) al-

gorithm in the 𝑙∞ norm ball. The payoff function ℒ of the adversary selecting 𝑠𝑓 is given 

as 
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𝑢𝐹 = ℒ
′(𝜃) =∑ max

𝑥𝑖
′∈𝐵𝜖(𝑥,𝛿)

𝑛

𝑖=1

(𝑙(𝑓𝜃(𝑥𝑖
′), 𝑦𝑖)) 

𝑠. 𝑡 𝐵𝜖(𝑥, 𝛿) = {𝛿: 𝑑(𝑥, 𝑥 
′
 
) ≤ 𝜖} . 

The adversary selects a best response 𝑠𝑓 that guarantees a high payoff. The solution to 

[eq] obtains a perturbation 𝛿 which also maximizes ℒ′(𝜃). 

In other words, the adversary searches for a strategy 𝑠𝑓  obtained using (PGD) that max-

imizes the adversary’s payoff while observing the classifier’s strategy 𝑠𝑙. 

On the other hand, the best response for the leader is calculated by considering the adver-

sary’s strategy 𝑠𝑓 = {𝑥
′: 𝑥 + 𝛿}  as a function of the classifier’s payoff ℒ(𝜃). The leaders 

Stackelberg strategy 𝑠𝑙
∗ is consequently denoted as 

𝑠𝑙
∗ = min

𝜃
ℒ′(𝑥𝑖

′) = min
𝜃

max
𝑥𝑖
′∈𝐵𝜖(𝑥,𝛿)

(𝑙(𝑓𝜃(𝑥𝑖
′), 𝑦𝑖)). 

4.1.3 Defining the Weighting Parameter ci 

Learning the model parameters requires estimating the loss imposed by potential adver-

saries. The losses which differ from natural data are derived from adversarial samples 

generated by adversarial perturbations added to the original samples. The derivative of 

the summation of individual losses from 𝑥𝑖
′ in a training batch updates the parameter of 

the model. To maximize the loss in the inner loop, strong 𝑥𝑖
′, that is adversarial samples 

that guarantee high losses, are more represented, weaker 𝑥𝑖
′ are less represented and 𝑥𝑖

′ 

that do not misclassify 𝑦𝑖 at all are least represented in the adversarial distribution. The 

loss in fact guides the model into ultimately learning the parameter of the model to accu-

rately predict the on the adversarial samples. Afterall, the essence of an adversarial attack 

is to generate the maximum possible loss, and adversarial samples do not contribute 

equally to the overall loss of the distribution 𝒟′. 

ℒ′ = 𝔼(𝑋,𝑌)∼𝐷,𝑋′∈𝐵𝜖[𝑋,𝜖](𝑙(𝑓(𝑋′), 𝑌)). 
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A priority attacker selects a strategy 𝑠𝑓 ∈ 𝑆𝑓 that not only perturbs the data but also en-

sures a maximum adversarial payoff loss ℒ′. Not all adversarial samples result in incor-

rect predictions with PGD attack; therefore, a priority attacker modifies the data distribu-

tion 𝒟 such that the effective adversarial samples that confidently mislead the model 𝑓𝜃 

into generating outputs different from 𝑦 are more represented. 

For the model to be aware of the underlying distribution of strong adversary samples and 

generalize effectively over benign adversarial data, we introduce the weighting mecha-

nism that prioritizes adversary data 𝑥𝑖
′ during training. Stronger adversarial examples, 

those that result in misclassifications i.e., 𝑓(𝑥𝑖) = 𝑧 such that  𝑧 ≠ 𝑦𝑖 label 𝑦𝑖 with a 

higher margin are assigned greater weight, while the weaker adversarial examples are 

given lower weight. The strength of an adversarial sample is determined by its classifica-

tion margin which is the difference between the probabilities of the wrongly predicted la-

bel and the correct label. A larger difference indicates a stronger adversarial sample and 

vice versa. We define the weight 𝑐𝑖 > 0 as a function of the classification margin 𝑚 of 

the adversarial sample hence we have: 

𝑚(𝑥, 𝑦, 𝑓) = max
𝑧≠𝑦

𝑃(𝑓(𝑥) = 𝑧) − 𝑃(𝑓(𝑥) = 𝑦). 

 

4.1.4 Weighted Adversarial Reinforced Training 

Adversarial training involves the exploration of hyperparameters to achieve an optimized 

model. Once a hyperparameter configuration is established, it remains unchanged until 

the completion of the entire training epoch, resulting in the acquisition of a robust model. 

We propose an alternative approach, wherein instead of adhering to a single hyperparam-

eter throughout all epochs, we dynamically adjust the hyperparameter during training. 

This adaptation process aims to yield a better-optimized model for the defender by end of 

the training. In pursuit of hyperparameter optimization, the defender employs the SARSA 

(State-Action-Reward-State-Action) algorithm. Specifically, the objective is to learn the 

hyperparameter denoted as 𝜑 with the intention of enhancing the accuracy of the selected 

strategy within a single training epoch. Indeed, the retraining is at the cost of additional 
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overall epochs until an optimal accuracy is reached. A Q-value function 𝑄(𝑠𝑙
∗, 𝜑) is esti-

mated using a Stackelberg equilibrium strategy-state 𝑠𝑙
∗ and an action 𝜑 from a previous 

𝜑′. The defender takes and action 𝜑 and observes the next strategy state 𝑠𝑙
∗′ and reward 𝑟. 

The reward 𝑟 ensures that the accuracy of the current state is higher than the previous 

one, the Q-value estimate uses the following update rule: 

𝑄(𝑠𝑙
∗, 𝜑) = 𝑄(𝑠𝑙

∗, 𝜑)+∝ (𝑟 + 𝛾𝑄(𝑠𝑙
∗′ , 𝜑′) − 𝑄(𝑠𝑙

∗, 𝜑)). 

where ∝ and 𝛾 is the learning rate and discount factors of the reinforcement learning pro-

cess. 

4.2 Experiment 

For reproducibility, all experiments were implemented in PyTorch 2.0 and executed on an 

GPU. Each adversarial example was generated with ε ∈ {0.01, 0.03, 0.07} and PGD itera-

tion k ∈ {1, 3, 5, 7}. Training employed the Adam optimizer (learning rate = 0.001, batch 

size = 64, epochs = 30). These parameters were kept constant across architectures (Mo-

bileNet, ResNet-56, VGG13BN, ShuffleNetv2) to ensure comparability. Code and con-

figurations were maintained in version-controlled repositories for transparency and repro-

ducibility.  

We conducted experiments using the Weighted Adversary Stackelberg (WAS) Training 

model and fine-tuned its performance with a Reinforcement Learning (RL) algorithm on 

a pretrained MobileNet, resulting in the Weighted Adversarial Reinforced Stackelberg 

(WARS) model. In our experiment, we employed an adversarial attacker to perturb the 

CIFAR-10 dataset using the PGD attack. We varied the attack’s strength by adjusting the 

parameter k. The perturbed dataset was used to assess the accuracy and robustness of the 

WAS MobileNet. 

We evaluated the adversarial robustness of our WARS model on the CIFAR-10 dataset, 

benchmarking it against traditional adversarial training methods under PGD attacks. We 

applied the WARS algorithm to enhance 3 additional pre-trained models: ResNet-56, 

shufflenetv2, and vgg13_bn , using different values of k, such as 7 and 20 to evaluate the 



  

80 
 

effectiveness of our algorithm. The results demonstrated that our method consistently 

achieved higher test accuracy compared to traditional adversarial training methods. We 

used the concept of Natural accuracy 𝐴𝑛  representing the accuracy of the pre-trained 

model 𝑓𝜃 on the natural CIFAR-10 dataset. After subjecting the model to PGD attacks 

with varying k, denoted as k-steps, the corresponding accuracy 𝐴𝑛
′  of the pre-trained 

model on the perturbed dataset 𝑥′ consistently fell below 𝐴𝑛, for all the values of k. After 

training, the resulting WAS model becomes more robust than the initial pre-trained 𝑓𝜃 

showing accuracy 𝐴𝑅 consistently greater than 𝐴𝑛
′  but still less than 𝐴𝑛. The WARS 

model fine-tunes the hyper-parameter 𝜑 of the WAS to achieve an accuracy 𝐴𝑅
∗  equals to 

or greater than 𝐴𝑅, such that 𝐴𝑛
′ < 𝐴𝑅 ≤ 𝐴𝑅

∗ . 

The hyper-parameter 𝜑 was initially set to 0.7 in the WAS model but improved by the 

WARS training process for enhanced robustness. As shown in Fig4.1, Fig.2, Fig4.3 and 

Fig4.4 we observe that in addition to the improved test accuracy, the training loss reduced 

significantly in a single training epoch, a contrast to traditional adversarial training, which 

does not exhibit the same behaviour. It’s worth noting that the WARS training resulted in 

a wider range of loss values compared to AT training, and we attribute this to the distri-

bution-aware weight assigned to potential adversarial data points during training, increas-

ing the overall training loss of the model. 
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Figure 4. 1 Epoch training loss for Adversarial Trained and WARS trained mobilenetv2 

 

Figure 4. 2 Epoch training loss for Adversarial Trained and WARS trained shufflenetv2 
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Figure 4. 3 Epoch training loss for Adversarial Trained and WARS trained RestNet56 

 

 

Figure 4. 4 Epoch training loss for Adversarial Trained and WARS trained vggh 
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Figure 4. 5 Accuracy for the different Adversarial Trained and WARS trained CNN in a sin-
gle Epoch 

 

We illustrate how an attacker, observing the pre-trained model 𝑓𝜃, employs PGD to 

perturb and launch an attack against the target model. The extent of perturbation depends 

on the selected value of k, subsequently reducing the accuracy of the pre-trained models. 

In our Stackelberg game illustration, the defender selects an equilibrium strategy by ob-

serving the attack and choosing a WAS model parameter (through retraining on the per-

turbed dataset) to minimize losses on the perturbed dataset. 

 



  

84 
 

. 

 

 

 

Table 4. 1 WARS training for various PGD steps for a ResNet-56 Model on CIFAR-10 da-
taset 

Models 𝐴𝑛% k 𝐴𝑛
′ % 𝐴𝑅% 𝜑 𝐴𝑅

∗% 

vgg13_bn 94.24 20 14.17 78.22 0.8 78.22 

3-7  7 17.78 78.22 0.7 78.22 

mobilenetv2_x1_4 93.88 20 7.21 74.91 0.8 79.1 

3-7  7 10.66 78.11 0.9 80.01 

shufflenetv2_x2_0 93.63 20 12.24 78.14 0.8 79.83 

3-7  7 16.89 76.26 0.8 79.11 

ResNet-56 94.46 20 6.81 79.83 0.8 81.23 

3-7  7 10.23 79.33 1 80.45 

Weighted Adversarial Stackelberg Training leads to improved accuracy compared to the 

original pre-trained model. Further enhanced learning accuracy is achieved after retrain-

ing with a hyper-parameter 𝜑 . For a moderate preset hyper-parameter 𝜑 = 7 an overall 

increase in accuracy is observed across all models. The WARS model further improves 

the training hyper-parameter during retraining. 

As seen in Table 4.1, a PGD attack with k=20 results in stronger attack dataset, signifi-

cantly reducing the accuracy of all models. Attack steps with k=7 used by the attacker 

also lead to decreased accuracy in the models. Larger values consistently decrease the 

overall accuracy of all models. For k values consistently reduce the, the impact of the at-

tack is more pronounced in ResNet-56, with accuracy dropping to 10.23% from the initial 

natural accuracy of 94.46%. The higher the K, the greater the image distortion, and even 

when the distortion is imperceptible, the attack still significantly reduces the model’s ac-

curacy. After retraining, using distribution-aware Stackelberg training, the accuracy 
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improves to 60.67% , and the WAS model fine-tunes it further to an accuracy of 65.67% 

with a WARS 𝜑 of 1.0. The training involved 8 epochs for the WARS training, with ad-

ditional epochs based on when the model reaches optimal accuracy. For the ResNet-56 

model, default epoch training and adversarial accuracy reached 78.11%, and the WARS 

trained model optimized the accuracy to 80.01% with a 𝜑 of 0.8. 

From Table II, epoch accuracy for WAS training gradually improves after each epoch 

from an initially low 𝐴𝑛
′  of the original model. The original pre-trained model exhibits re-

duced accuracy after the attack, with MobileNet showing an 𝐴𝑅 of 10.66%, dropping to 

78.11% at the final epoch after achieving 78.68% accuracy. However, the WARS model 

fine-tunes the model back to an optimized accuracy of 80.01%. The ResNet-56 model’s 

accuracy is optimized to 80.45% after reaching an 𝜑 1.0, up from a previous WAS accu-

racy of 79.33%, while the vgg13_bn accuracy for both WAS and WARS training re-

mained 78.22% at the default 𝜑 of 0.7. 

 

 

Table 4. 2 Epoch accuracy of the WAS training for k=7 on various CNN models using 
CIFAR-10 dataset. 

Models E=2 E=3 E=4 E=5 E=6 𝐴𝑅
∗ % 

vgg13_bn 79.46 78.29 78.68 77.32 78.42 78.22 

mobilenetv2 78.56 77.73 77.96 77.57 78.68 79.12 

Shufflenetv2 77.06 76.68 78.39 78.89 77.99 79.83 

ResNet-56 79.52 80.18 79.99 79.92 80.19 81.23 

 

 

Table 4. 3 Epoch accuracy of the WAS training for k=20 on various CNN models using 
CIFAR-10 dataset. 

Models E=1 E=2 E=3 E=4 E=5 𝐴𝑅
∗% 

vgg13_bn 77.33 77.53 77.75 77.79 78.22 78.22 
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Models E=1 E=2 E=3 E=4 E=5 𝐴𝑅
∗% 

mobilenetv2 76.73 77.23 77.98 79.35 75.92 80.01 

Shufflenetv2 76.19 76.12 77.94 78.75 77.93 79.11 

ResNet-56 78.86 76.58 80.2 78.52 77.73 80.45 

 

4.3 Discussion 

In this research, we have developed a novel adversarial training approach for MobileNet 

CNNs, conceptualizing it as a dynamic interaction within a WAS game framework. By 

strategically emphasizing adversarial data points during training, our methodology has 

substantially improved the model’s accuracy. This is achieved by prioritizing adversarial 

inputs that are more likely to cause misclassifications, thereby training the MobileNet 

model to develop a bias that enhances its resilience during adversarial attacks. 

When comparing our WAS model to traditional AT methods, we observe a notable supe-

riority in terms of robustness under adversarial conditions. Although the WAS model ini-

tially shows a broader range of training losses compared to AT models, it demonstrates a 

more rapid decrease in training loss within a single epoch, particularly when applied to 

dataset like CIFAR-10, tailored for MobileNet’s architecture. 

Moreover, our research introduces the WARS training methodology. This refined ap-

proach further strengthens the MobileNet model’s resilience against adversarial attacks. 

Our empirical findings, as detailed in the accompanying tables, show consistent enhance-

ments in the performance of MobileNet across various levels of𝜑 increments in the train-

ing process. This iterative and strategic reinforcement leads to a discernible improvement 

in accuracy with each successive training epoch, underscoring the efficacy of the WARS 

approach in crafting a more robust MobileNet CNN. 

The experimental findings demonstrate that the Weighted Adversarial Stackelberg 

(WAS) and Weighted Adversarial Reinforced Stackelberg (WARS) frameworks signifi-

cantly enhance the robustness of convolutional neural networks against adversarial per-

turbations. The progressive improvement from WAS to WARS highlights the 
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effectiveness of integrating reinforcement learning (RL) into the Stackelberg game for-

mulation, where the defender adaptively fine-tunes the hyperparameter 𝜙to optimize both 

model accuracy and stability. 

The observed relationship between the attack strength parameter 𝑘and model perfor-

mance confirms the theoretical expectation that higher attack intensities induce greater 

perturbations in the input space, thereby amplifying misclassification rates. As 𝑘increases 

from 7 to 20, the perturbations generated by PGD become increasingly aggressive, lead-

ing to substantial declines in natural accuracy across all pre-trained models. This degrada-

tion is particularly evident in deeper architectures such as ResNet-56, where accuracy 

dropped from 94.46% to 10.23%, suggesting that complex gradient landscapes in deep 

networks are more exploitable by iterative adversarial attacks. Nevertheless, retraining 

with distribution-aware Stackelberg optimization improved performance substantially, el-

evating accuracy to 60.67%, and further to 65.67% under WARS fine-tuning with 𝜙 =

1.0. 

The key insight lies in how reinforcement learning complements adversarial Stackelberg 

optimization. By dynamically updating 𝜙, the defender (learner) progressively identifies 

optimal policy adjustments in response to the adversary’s strategy, effectively learning 

equilibrium behavior through experience. Unlike static hyperparameter tuning in conven-

tional adversarial training, WARS introduces an adaptive feedback mechanism that ad-

justs weights in real time, leading to faster convergence and improved model resilience. 

This adaptive process is evidenced by the sharp reduction in training loss within a single 

epoch, as shown in Figures 4.1–4.4, contrasting with the slower convergence patterns typ-

ical of standard adversarial training. 

The broader training loss range observed in WARS, compared to adversarial training 

(AT), is indicative of distribution-aware weighting across adversarial data samples. Ra-

ther than uniformly treating all perturbations, the WARS algorithm assigns higher 

weights to regions in the data manifold more likely to be exploited by the adversary. This 

results in a controlled increase in training loss but yields better generalization to unseen 
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adversarial distributions, validating the trade-off between training variance and robust-

ness. 

Performance metrics across models further reinforce this conclusion. The consistency of 

post-training improvements across MobileNet, ShuffleNetV2, VGG13BN, and ResNet-56 

suggests that the WARS optimization process generalizes well across architectures with 

varying depth and parameter density. For instance, ResNet-56’s adversarial accuracy in-

creased from 78.11% to 80.01%, and VGG13BN maintained stable robustness at 78.22%, 

confirming that WARS enhances or at least preserves robustness even for architectures 

sensitive to adversarial gradients. These improvements, though incremental, signify sta-

bility under high-dimensional perturbation stress, an essential property for deploying 

CNNs in adversarially exposed environments. 

The results also highlight a meaningful theoretical implication: Stackelberg equilibrium is 

empirically attainable in adversarial learning contexts when reinforcement feedback is 

embedded into the optimization process. The defender’s reinforcement-guided parameter 

tuning mirrors equilibrium adaptation, where the leader (classifier) iteratively adjusts 

strategies based on the observed payoff dynamics of the adversary. This dynamic optimi-

zation aligns with the principles of hierarchical game theory, demonstrating that adversar-

ial learning can transition from purely reactive defense to proactive, equilibrium-seeking 

behavior. 

Moreover, the superior convergence speed observed in WARS training compared to 

standard adversarial methods implies reduced computational cost per effective epoch. 

This finding supports the hypothesis that reinforcement-guided Stackelberg optimization 

not only enhances robustness but also improves training efficiency, which is crucial for 

scaling adversarial defense to large models or resource-constrained environments. 

In summary, the WARS model achieves a robust–accuracy balance unattainable by tradi-

tional adversarial training or fixed Stackelberg formulations. The integration of reinforce-

ment learning provides adaptability, allowing the system to infer optimal defense weights 

and policies dynamically as adversarial pressure evolves. These findings validate the the-

oretical framework proposed in this research: that weighted and reinforced Stackelberg 
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learning yields superior adversarial resilience, improved convergence behavior, and gen-

eralizable robustness across diverse CNN architectures under varying attack intensities. 

 

4.4 Summary 

In this paper, we have designed a novel adversarial training methodology, conceptualized 

as a Weighted Adversarial Stackelberg game, specifically tailored for training a robust 

MobileNet CNN. Our research demonstrates the effectiveness of the Stackelberg equilib-

rium model in enhancing MobileNet’s resilience against adversarial attacks. We further 

augment this model’s robustness by incorporating a SARSA algorithm, which acts as a 

defensive mechanism, fine-tuning the MobileNet architecture to counteract such attacks 

more effectively, we also showed the effectiveness of our methods on other CNN models. 

Our approach in the Stackelberg game formulation centres on assigning asymmetric 

weights that focus more on adversarial data points during testing. This strategy signifi-

cantly reduces misclassification errors in MobileNet. We derive a pure strategy model 

with optimized learning parameters by solving the Stackelberg game. This outcome em-

powers the MobileNet model to generalize more effectively and exhibit increased robust-

ness to targeted and perturbation attacks. 
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Chapter 5 

Adversarial Learning with Multiple adver-

saries Using Bayesian Stackelberg Game 

This section addresses challenge 2 and has been published in EAI Endorsed Transactions 

on Scalable Information Systems, 2025. 

5.0 Introduction 

This section focuses on the application of the Decomposed Optimal Bayesian Stackelberg 

Solver (DOBSS) as a framework for enabling a machine learning-based defender to com-

pute optimal mixed strategies in the presence of multiple adversaries. The goal is to deter-

mine how the defender can maximize classification performance when faced with strate-

gic attacks. In adversarial settings, attackers often manipulate inputs or influence training 

data to reduce model reliability. To address this, the defender must not only detect and re-

spond to attacks but also plan strategies that remain effective under uncertainty. By incor-

porating a probabilistic game-theoretic model, the research seeks to formalize the interac-

tion between a single learner and several potential adversaries, each with multiple possi-

ble strategies. The DOBSS framework allows the defender to consider uncertainties in 

adversary behavior and select a distribution over its strategies that provides the best ex-

pected outcome. 

A central focus is improving the robustness of the defender in machine learning environ-

ments where multiple adversaries operate with varying and possibly unknown objectives. 
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These adversaries may exploit different vulnerabilities, such as input perturbation, poi-

soning, or model inversion. The defender, therefore, must be able to generalize across 

threat scenarios and adopt a policy that performs well against a distribution of potential 

attacks. This section investigates how a mixed strategy approach, where the defender se-

lects among multiple classification models or parameter settings probabilistically, can re-

duce error rates and mitigate risk under diverse and uncertain threat landscapes. 

The section answers several guiding questions. The first explores whether learning and 

deploying a mixed strategy can improve the defender’s ability to maintain classification 

accuracy and robustness across a range of adversarial attacks. It also asks what specific 

types of prior knowledge about the adversaries, such as attack frequency, model target-

ing, or payoff structures, are needed to construct an optimal strategy. A key consideration 

is the computational feasibility of solving the Bayesian Stackelberg game formulation, 

particularly when the number of adversaries or their strategy spaces grow. The study 

evaluates how the scalability of the DOBSS algorithm is affected by these factors and 

whether approximations or reductions in strategy space are necessary to make the solver 

practical in real-world settings. By examining these questions, the research contributes to 

the understanding of how machine learning defenses can be designed using principled 

strategic reasoning in adversarial environments. 

 

5.1 Stackelberg game formulation 

Let Adversarial machine learning problem is defined as an input space 𝑋 ∈ ℝ𝒹 where 𝒹 is 

the number of attributes in the vector space. For a learning model classifier 𝔣  with an input 

𝓍 𝜖 𝑋 and a corresponding output given as 𝓎 𝜖 {+1,−1}, there is an adversary able to cor-

rupt the model at test time by an amount 𝛿 such that a malicious instance 𝑥 will be mis-

classified as benign given by 𝑓(𝑥) ≠ 𝑓(𝑥 + 𝛿). Thus adversarial machine learning focuses 

to obtain a robust algorithm such that the probability of the algorithm misclassifying even 

under attack is as small as possible 𝑃(𝑓(𝑥) ≠ 𝑓(𝑥 + 𝛿)) < 𝜀 𝑓𝑜𝑟 𝜀 > 0. If we have input 

samples𝑥𝑖|𝑖=1,…𝑛 𝜖𝜒 and want to estimate target label 𝑦𝑖𝜖Υ where Υ = {+1,−1} to be clas-

sified by a learner function 𝑔: 𝜒 → ℝ with a feature vector 𝜙(𝑥𝜖𝑋 ) ∈ ℝ𝒹 The predicted 
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value 𝑦̂ = 𝑔(𝑤, 𝑥𝑖)|𝑤𝜖ℝ𝑁  is obtained by optimizing a loss function L. The learner’s loss 

function with regularization is given as ∑ ℓ(𝑦𝑖̂
𝑛
𝑖=1 , 𝑦𝑖) + 𝜆||𝜔||

2 where 𝜆 is a regularization 

parameter that penalizes weights 𝜔 of the classifier. A cost vector 𝑐 is included in the loss 

function to reflect the weights of individual input data, and the learner now optimizes the 

equation: 

argmin
𝜔

𝐿 = argmin
𝜔

∑𝑐𝑖. ℓ(𝑦𝑖̂, 𝑦𝑖) + 𝜆||𝜔||
2

𝑛

𝑖=1

  . 

The loss function can be extended to an adversarial learning problem. If an adversary 

wishes to influence the learner by modifying the input data, then the learner’s classification 

task to obtain 𝑦̂ on the transformed data becomes 𝑦̂ = 𝜔𝑇 . 𝜙(𝑓𝑡(𝑥𝑖, 𝜔)) where 𝑓𝑡 is the 

function used by the adversary to transform the data: 

𝑓𝑡(𝑥𝑖, 𝜔) = 𝑥𝑖 + 𝛿𝑥(𝑥𝑖, 𝜔). 

 𝛿𝑥 is the displacement vector that determines the level of perturbation of original input 𝑥𝑖, 

hence the adversarial learning can be defined as argmin
𝜔

argmax
𝛿𝑥

𝐿(𝜔, 𝑥, 𝛿𝑥). 

 5.2 Adversarial Attacks 

The aim of training a classifier algorithm on a dataset is to correctly label all input images 

to target label set. A classifier model can correctly classify a sample x to its corresponding 

label y expressed as argmax𝑃(𝑦𝑖| 𝑥) = 𝑦𝑡𝑟𝑢𝑒. Given that  𝑦 𝜖 𝑌 = {𝑦1, 𝑦2,…,𝑦𝑘} is an 

output label class with k unique classes.  𝑃(𝑦𝑖|𝑥) shows the confidence value of model in 

predicting a sample x to 𝑦𝑖 . Hence the adversarial attack aims to generate adversarial sam-

ple such as small perturbation δ added to 𝑥 will lead the classifier model to predict another 

label other than the correct label 𝑦𝑡𝑟𝑢𝑒  argmax𝑃(𝑦𝑖| 𝑥′) ≠ 𝑦𝑡𝑟𝑢𝑒 , 𝑥 = 𝑥 + 𝛿. 

5.2.1 Fast Gradient Sign Method 

The method generates adversarial samples by adding perturbations in the direction of the 

loss function that is the positive direction of the slope gradient, a normal input image x, 

FGSM calculates a similar adversarial example x’ to fool the classifier. 𝑥′ is derived by 
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optimizing the loss function, defined as the cost of classifying 𝑥′as a label lx with minimum 

possible perturbation 

𝑥′ = 𝑥 + 𝜀. 𝑠𝑖𝑔𝑛(▽𝑥 𝐿𝑜𝑠𝑠(𝑥, 𝑙𝑥)). 

 

5.2.2 IFGSM  

This is an extension of FGSM but computes perturbations in iterations rather than in a 

single shot, achieving samples of better image quality than FGSM. The FGSM algorithm 

is simply applied multiple times with miniature perturbations rather than a single large one. 

After the completion of each iteration the pixels are cropped such that the perturbation 

remains as close as possible to the input image 𝑥. 

𝑥𝑖 = 𝑐𝑙𝑖𝑝𝑥,𝜖(𝑥(𝑖−1) + 𝜖. 𝑠𝑖𝑔𝑛 (▽ 𝑥(𝑖−1)𝐿𝑜𝑠𝑠(𝑥(𝑖−1), 𝑦))). 

 

Where 𝐿𝑜𝑠𝑠(𝑥, 𝑙𝑥) shows the cost function given 𝑥 as an input image, 𝑙𝑥 as the correspond-

ing true output label and ε the parameter that determines the magnitude of perturbation for 

𝑥. 

 

5.2.3 Analyzing Existing Works using Regularized FGSM (FGSMR) for 

Adversarial Training 

Tianjin H. et al (2020) increased the similarity between vanilla FGSM and Projected Gra-

dient Descent (PGD) attack by reducing the curvature along the perturbed direction pro-

jected by FGSM [91] [98] [99] [88]. This was achieved by regularizing the curvature of the 

FGSM and restraining the projection to make the perturbed direction close to those gener-

ated by PGD-inf attacks. Restraining the gradient direction along the FGSM, which is the 

second direction derivative, gives a perturbed direction that can be expressed as   

∇𝑥𝑔
2 𝐿𝜃(𝑥) = lim

ℎ→0

∇𝑥𝐿𝜃(𝑥 + ℎ𝑔) − ∇𝑥𝐿𝜃(𝑥)

ℎ
  , 
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also given a curvature regularization term 𝑅𝜃 then the adversarial training optimization 

objective is to minimize the expression:min
𝜃
𝐿(𝑥 + 𝜖𝑔) + 𝜆𝑅𝜃. The hyperparameter 𝜆 is 

penalizing factor for controlling the curvature along the FGSM direction. Robust models 

trained by adv.FGSMR had higher perturbed data accuracy than adv.PGD for PGD-infinity 

and FGSM attacks, also adv.FGSMR models achieved state of the art accuracy on clean 

MNIST datasets. For further comparison, the times spent on training 50 epochs with 

adv.FGSMR for ResNet-18/34 models was considerable lower that adv.PGD since the later 

takes k (usually k is set to 20) iterations of forward and backward process to find an opti-

mum perturb vector in the 𝑙∞ ball while adv.FGSM takes only 1 iteration for the forward 

and backward process to find a perturbed vector and 2 times forward and backward process 

for the curvatures regularization. 

 

Table 5. 1 Qualitative Analysis of FGSMR and PGD Attack Methods 

 Attack Method Accuracy 

Trained Models Clean FGSM PGD-inf 

Vanilla train 0.98 0.361 0.27 

adv.PGD(e:0.1) 0.993 0.897 0.974 

adv.PGD(e:0.2) 0.992 0.966 0.982 

adv:FGSMR(e:0.1) 0.994 0.961 0.979 

adv:FGSMR(e:0.2) 0.992 0.968 0.982 

Robust models trained on adv.FGSMR with e=0.1, 0.2 achieved some improvement in ac-

curacy of 0.994 and 0.992 on clean MNIST Dataset while adv.PGD (e=0.1) achieved 0.993. 

The accuracy decreased slightly for both training methods under a PGD-inf attack but the 

accuracy on the adv.FGSMR trained models was still higher with and accuracy of 0.983 

when epsilon is set at 0.2. For a less aggressive FGSM attack the accuracy of the adv.PGD 

dropped to 0.897 while the adv.FGSMR dropped only slightly to 0.961 for the same epsilon 

=0.1. 
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5.2.3 FGSM and PGD Attack Strategies 

An attacker’s goal is to both increase the misclassification error of the learner and remain 

undetected. The learner’s objective is to derive optimum accuracy at every stage of the 

game even when faced with an uncertain adversary. In our work, the strategy of the adver-

sary regardless of the type is to transform the data using FGSM or PGD as a method to 

obtain the perturbation 𝛿 for transforming the input vector [100] [101] [102] [103]. A 

stealthy attacker who is more concerned about being undetected than increasing the error 

of the defender classifier will more likely implement a FGSM to solve the inner maximi-

zation by only projecting by a small 𝜀 in the direction of the gradient of the input image. 

Conversely an aggressive attacker will implement the PGD to optimize the 𝛿 in the 𝑙∞ ball, 

the attacker wants to maximize 𝛿 to guarantee a misclassification by the learner. 

max
||𝛿||≤∈

ℓ(ℎ𝜃(𝑥 + 𝛿), 𝑦). 

In a Stackelberg game the follower who is the attacker observes the model parameters of 

the learner and selects transformation strategy based on their type. The leader observes the 

follower’s strategy and chooses a model that minimizes the error based on the transfor-

mation 

𝐿 = min
𝜃

∑ max
𝛿∈∆(𝑥)

ℓ(ℎ𝜃(𝑥 + 𝛿), 𝑦)

(𝑥,𝑦)∈𝑇

 . 

The leader solves the equation to minimize the loss to obtain set of models 𝒢 =

{ℊ𝑠, ℊ𝑓1 … . } strategies. 

 

Single Leader Single Follower Game Illustration 

A convolutional neural network (CNN) with the parameters shown on Fig 3.5 was trained 

using the MNIST dataset to obtain the 3 different models based on the methods of the data 

transformation by the untargeted attacker (follower), we obtain the payoff table for the 

Defender as shown in Table 3.2 
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Figure 5. 1 Parameters of CNN model in Pytorch 

 

Table 5. 2 Accuracy of a CNN model trained on MNIST data transformed using FGSM and 
PGD for an untargeted Attack 

 

Defender       Attacker 

No Attack FGSM PGD 

Vanilla Train .98 0.09 0.01 

adv.FGSM(epsi-

lon=0.3) 

.97 0.89 0.07 

adv.PGD(epsilon=0.3) 0.96 0.88 0.86 

 

Table 5.2 illustrates a zero-sum game between the defender and the adversary. The payoff 

of the defender is the accuracy obtained choosing a model 𝑔𝑙 that was trained over a trans-

formation 𝑤𝑓 of the adversary strategy 𝑊. From the attacker’s standpoint 𝑤𝑓1 is a domi-

nated strategy and wouldn’t be played by even by a stealthy attacker during the game and 

hence can be eliminated from the payoff matrix. The adversary therefore chooses between 

𝑤𝑓2 𝑎𝑛𝑑 𝑤𝑓3 , which also varies depending on the type of adversary. As shown in the figure 

3.5 a stealthy attacker benefits from choosing 𝑤𝑓2 since after the attack has been imple-

mented the handwritten digits for epsilon=0.05,0.1 almost do appear like the original, main-

taining the cover of the attacker. Strategy  𝑤𝑓2 on the other hand even at epsilon=0 looks 

visibly perturbed and gives the attacker away. However, an attacker that uses 𝑤𝑓2 is more 

concerned about questioning the accuracy or trustworthiness of the classifier by imple-

menting an unrestrained form of attack. The payoff of the unrestrained adversary for the 

zero-sum game is given as 

𝑒𝑟𝑟𝑜𝑟𝑙𝑒𝑎𝑟𝑛𝑒𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐿𝑒𝑎𝑟𝑛𝑒𝑟 , 
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the payoff of the stealthy adversary is the same as the aggressive adversary but discounted 

with the distance between the original image and the perturbed image. The discount penal-

izes images that are too disparate from the original in terms of the level of perturbation and 

measured as the average distance from the original. Given that 𝑥′ is the generated adver-

sarial sample by the attacker, and 𝒟 is the size of the test dataset the discount factor is 

defined as follows 

𝒹 =
1

|𝒟|
∑

||𝑥′ − 𝑥||

||𝑥||2
𝑥∈𝒟

 

𝑃𝑎𝑦𝑜𝑓𝑓𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 = 𝑒𝑟𝑟𝑜𝑟𝑙𝑒𝑎𝑟𝑛𝑒𝑟 − 𝜆𝑑. 

 

Figure 5. 2 FGSM attack on MNIST showing 
the intensity (less aggressive) on varying 
epsilon 

 

 

Figure 5. 3 PGD attack on MNIST showing 
the attack intensity (more aggressive) on 
varying epsilon 

 

  

5.3 System Modelling and Analysis 

Adversarial attack. Given a classifier 𝑓𝜃:  𝒳 → 𝒴 and a dataset (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁 ∈  𝒳 × 𝒴, the 

adversary finds a perturbation 𝑑 that changes 𝑥 from its original class to adversarial data, 
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yet the changes on the adversarial data 𝑥′ is imperceptible to the human eye, this action is 

called an adversarial attack. To ensure the attack is undetectable the attacker constrains 

the perturbation within a defined budget 𝜖 > 0 in a boundary ball around 𝑥 such that 

𝐵𝜖(𝑥) = {𝑥
′: 𝑑(𝑥, 𝑥𝑖) ≤ 𝜖}. While the classifier is pretrained on 𝑥 by reducing the empiri-

cal loss function the adversary aims to increase the classifier’s loss on the adversarial data 

𝑥. 

5.3.1 Game Theory Perspective. 

In this game the defender is the row player and the attacker the column player, 𝑞 denotes 

the defender strategies consisting of a vector of pure strategies in this case a pre-trained 

model and an adversarial trained model. The value of 𝑞𝑖 is the proportion of time where 

the defender uses the strategy i in their set 𝑞. Similarly, 𝑝 denotes the vector of possible 

strategies deployed by the attacker. 𝑄 and 𝑃 represent the sets of both the attacker and de-

fender’s pure strategies. The payoff matrices 𝐷 and 𝑅 are defined such that 𝐷𝑖𝑗 represents 

the accuracy of the classifier and 𝑅𝑖𝑗 is the misclassfication rate of the classifier when the 

defender chooses a classifier 𝑞𝑖 and the attacker deploys an attack 𝑗 . Given an attacker, 

the defender maximises their payoff by selecting the optimal classifier to attack 𝑝𝑗 as the 

following: 

max∑ ∑𝐷𝑖𝑗
𝑝∈𝑃𝑞∈𝑄

𝑝𝑖𝑞𝑗 

𝑠. 𝑡∑ 𝑞𝑖
𝑞∈𝑄

= 1  . 

The objective function maximizes the expected payoff given 𝑞, while the constraints en-

sure a mixed strategy 𝑗 for the defender. The attacker maximizes his payoff function 

given the the policy 𝑞 of the defender by selecting a pure strategy 𝑝𝑗 in response. The at-

tacker solves the following objective function. 

max∑ ∑𝑅𝑖𝑗
𝑞∈𝑄𝑝∈𝑃

𝑞𝑖𝑝𝑗 
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𝑠. 𝑡∑𝑝𝑗
𝑝∈𝑃

= 1  . 

5.3.2 Stackelberg 2 Player Game 

Similar to adversarial training, the defender solves its objective function to minimize the 

empirical loss for a classifier 𝑞 ∈ 𝑄 which is either pretrained on natural data 𝑥 or re-

trained on adversarial data 𝑥′ depending on the strategy 𝑝 ∈ 𝑃 deployed by the attacker. 

The solution for the set of strategies 𝑞 ∈ 𝑄 converge to an equilibrum that minimizes the 

expectation of adversarial loss on the dataset such that for a given dataset minimizes the 

expectation of adversarial loss function. Q denotes the set of possible strategies by the de-

fender as shown 

𝑄 =

{
 
 

 
 min

𝜃

1

𝑛
∑(𝑙(𝑓𝜃(𝑥𝑖), 𝑦𝑖))

𝑛

𝑖=1

min
𝜃

1

𝑛
∑{ max

𝑥𝑖
′∈𝐵𝜖[𝑥𝑖]

𝑙(𝑓𝜃(𝑥𝑖
′), 𝑦𝑖)}

𝑛

𝑖=1

   . 

The classifier 𝑞 ∈ 𝑄 selected by the defender updates its learning parameters 𝜃 to the 

minimising the adversarial loss across all data points to improve accuracy. The attacker 

aiming to increase the loss or misclassification rate of the selected classifier, perturbs the 

natural data (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁 . To achieve the attack, the attacker finds an optimal pure strategy 

𝑝 ∈ 𝑃, 𝑝𝑗 = {𝑥
′: 𝑥 + 𝛿} which is the best response to 𝜃 that maximizes the loss. The 

maximum perturbation 𝛿 is derived using projected gradient descent (PGD) algorithm. 

The adversary selects a best response pure strategy 𝑞𝑗 that guarantees a high payoff after 

observing the defender’s selection. 

In a Stackelberg game the defender seeks a mixed strategy of 𝑞 that maximizes his pay-

off, given that the attacker selects an optimal response 𝑝(𝑞), hence the defender solves 

the following optimization 

max
𝑞
∑ ∑𝐷𝑖𝑗

𝑝∈𝑃𝑞∈𝑄

𝑝(𝑞)𝑞𝑖 
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𝑠. 𝑡∑𝑞𝑖
𝑞∈𝑄

= 1 

𝑞𝑖 ∈ [0. . .1] 

𝑝𝑗 ∈ {0,1}. 

  

5.3.3 Payoff for the Defender and Attacker 

A Bayesian Stackelberg game models the interaction between a defender and multiple ad-

versaries, where the defender only knows the prior probabilities 𝑝 of the different types of 

attackers 𝑡 ∈ 𝑇 . We assume that an attacker 𝑡𝑛 has two strategies of attack, a selective 

strategy 𝑝1 that focuses only on the impact of adversarial data 𝑥′ on the classifier selected 

by the defender , and the other, a universal strategy 𝑝2 focused on the overall accuracy of 

the attack on both natural 𝑥 and adversarial data 𝑥′. The prior probability that an attacker 

of type will appear is 𝑝𝑡 , while probability the other attacker appearing is 1 − 𝑝𝑡 . 

With PGD attack we can model a range of attack types using 𝑘 to vary the strength of at-

tack. A small 𝑘 value yields a small perturbation corresponding to a weak attack, while a 

large 𝑘 value yields a large perturbation leading to a stronger attack. The payoff of 𝑝1 is 

the classification error caused by the perturbed data 𝐷′ on the classifier 𝑞 ∈ 𝑄. Hence for 

a classifier 𝑞𝑖 with accuracy 𝐴 on dataset 𝐷′ the payoff 𝑅 of attacker 𝑡𝑛 using the selec-

tive strategy 𝑝1 is given as 

𝑅1 = 1 − 𝐴. 

The universal adversary strategy 𝑝2 also attacks a classifier using varying values of 𝑘 

PGD attack. However, 𝑝2 derives from both the classification error of selected classifier 

𝑞 ∈ 𝑄 by the defender on adversary data 𝐷′ and natural data 𝐷. The intuition for this is 

that the more the classifier is fitted to the adversarial data 𝐷′, the less accurately it pre-

dicts on the natural data 𝐷. For instance, a classifier that is retrained on 𝐷′ will be less ac-

curate on 𝐷 since the distribution of both datasets varies due to the perturbations added to 

𝐷′. Hence, along with the classification error on 𝐷′, strategy 𝑝2 is also concerned with the 
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classification error of the pretrained classifier on 𝐷. The payoff 𝑅 of strategy 𝑝2 for a 𝑞𝑖 

classifier selected by the defender, given that the accuracy of 𝑞𝑖 on a dataset 𝐷 is 𝐴𝑞𝑖(𝐷) 

is given below 

𝑅2 = 𝐴𝑞𝑖(𝐷, 𝐷′) = 2 − (𝐴𝑞𝑖(𝐷) + 𝐴𝑞𝑖(𝐷
′)) , 

an adversary 𝑡 ∈ 𝑇 changes the value of 𝑘 in projected gradient descent attack to vary the 

intensity of an attack. A small value of 𝑘 value of yields a small perturbation 𝛿, and vice 

versa. Therefore, a spectrum of adversary types can be specified that ranges from least 

aggressive to most aggressive. Using the payoff matrices of the classifier and the adver-

saries, a single defender with 𝑇 possible multiple follower types can be modeled using 

decomposed Multiple integral Linear programming (Paruchuri 2008) to obtain an optimal 

strategy for the leader. 

5.3.4 Stackelberg Solution for Multiple Adversaries 

When multiple types of attackers are considered in adversarial training, the adversary 

chooses an optimal pure strategy after observing the defender’s strategy, the formulation 

can be solved by a Bayesian Stackelberg Equilibrium. The defender’s strategy 𝑄 which is 

a vector probability distribution of defender’s pure strategies 𝑞, where the value 𝑞𝑖 is the 

proportion of times where strategy 𝑖 is used. 𝑄𝑡 denotes the vector of strategies of the at-

tacker 𝑡 ∈ 𝑇 type, and the corresponding payoff for the attacker and defender is giving as 

𝐷𝑖𝑗
𝑡  and 𝑅𝑖𝑗

𝑡  respectively. 𝑀 is some large constant and 𝑟𝑡 is the upper bound that corre-

sponds to the highest payoff obtainable by the attacker. 

max
𝑞,𝑝,𝑟

∑ ∑∑𝑝𝑡

𝑗∈𝐽𝑡∈𝑇𝑞∈𝑄

𝐷𝑖𝑗𝑝𝑖𝑗𝑗
𝑡 

𝑠. 𝑡∑ 𝑝𝑖
𝑞∈𝑄

= 1 

∑𝑝𝑗
𝑡

𝑞∈𝑄

= 1 
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0 ≤ (𝑟𝑡 −∑𝐴𝑖𝑗
𝑡

𝑝∈𝑃

𝑞1) ≤ (1 − 𝑝𝑖
𝑡)𝑀 

𝑞𝑖 ∈ [0. . .1] 

𝑝𝑗 ∈ {0,1} 

𝑟𝑡 ∈ ℝ . 

The prior probability of the occurrence of an attacker type 𝑡 is denoted by 𝑝𝑡. 𝑝𝑖 denotes 

the probability that the defender selects a mixed strategy 𝑖. 𝑝𝑗
𝑡 represents the probability 

that the attacker with type 𝑡 adopts a pure strategy. Constraints 1 and 4 enforce a feasible 

mixed strategy for the defender, while constraints 2 and 5 enforce a feasible pure strategy 

for the attacker. Constraint 3 enforces the feasibility of the attacker’s problem to ensure 

an optimal pure strategy with a maximum payoff of 𝑎 = ∑ 𝑅𝑖𝑗𝑞∈𝑄 𝑝𝑖 when 𝑝𝑡 = 1. The 

quadratic programming problem can be linearized by combining the 𝑝𝑖𝑞𝑗
𝑡 such that 𝑧𝑖𝑗

𝑡 =

𝑝𝑖𝑞𝑗
𝑡, and obtaining the following equations. 

max
𝑞,𝑝,𝑟

∑ ∑∑𝑝𝑡

𝑗∈𝐽𝑡∈𝑇𝑞∈𝑄

𝐷𝑖𝑗𝑧𝑖𝑗
𝑡  

𝑠. 𝑡∑ ∑𝑧𝑖𝑗
𝑡

𝑝∈𝑃𝑞∈𝑄

= 1 

∑𝑧𝑖𝑗
𝑡

𝑝∈𝑃

≤ 1 

∑𝑝𝑖
𝑞∈𝑄

= 1 

0 ≤ (𝑟𝑡 −∑𝐴𝑖𝑗
𝑡

𝑝∈𝑃

(∑𝑧𝑖𝑗
𝑡

𝑝∈𝑃

)) ≤ (1 − 𝑝𝑖
𝑡)𝑀 
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∑𝑧𝑖𝑗
𝑡

𝑝∈𝑃

=∑𝑧𝑖𝑗
1

𝑝∈𝑃

 

𝑧𝑖𝑗
𝑡 ∈ [0. . .1] 

𝑝𝑗 ∈ {0,1} 

𝑟𝑡 ∈ ℝ . 

 

5.4 Experiment 

For reproducibility, all experiments were implemented in PyTorch 2.0 and executed on an 

GPU. Each adversarial example was generated with ε ∈ {0.01, 0.03, 0.07} and PGD itera-

tion k ∈ {1, 3, 5, 7}. Training employed the Adam optimizer (learning rate = 0.001, batch 

size = 64, epochs = 30). These parameters were kept constant across architectures (Mo-

bileNet, ResNet-56, VGG13BN, ShuffleNetv2) to ensure comparability. Code and con-

figurations were maintained in version-controlled repositories for transparency and repro-

ducibility.  

In this experiment, we use the CIFAR-10 dataset as the test data to be perturbed by the 

adversary and evaluate the impact of adversarial attacks on four different CNN classifi-

ers: MobileNet, ResNet, VGG13BN, and ShuffleNet. The original CIFAR-10 dataset is 

evaluated on each of the pre-trained models to obtain the initial accuracy 𝐴 of the models. 

The perturbations added to the natural dataset are derived using the Projected Gradient 

Descent (PGD) algorithm, with varying 𝑘 values to adjust the strength of the attack. A 

higher value of 𝑘 corresponds to a higher attack strength, and vice versa. The attack algo-

rithm takes in the natural dataset and returns adversarial datasets generated with respect 

to the corresponding pre-trained model and bounded by epsilon 𝜖. The pre-trained models 

are then evaluated with the generated adversarial dataset to observe the accuracy 𝐴𝑘 of 

the models after the PGD attack, which is lower than the initial accuracy 𝐴, as shown in 

Table 1. Using adversarial training, the pre-trained models are retrained to obtain models 

robust to perturbed adversarial data. The accuracy results show a significant improvement 
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from the pre-trained models. The accuracy 𝐴𝑘
′  of the retrained models is also shown in 

Table 1. The accuracy of the model decreases with the strength of the PGD attack, which 

can be varied by changing the value of 𝑘. Increasing the value of 𝑘 in the PGD algorithm 

produces more perturbed CIFAR-10 datasets, leading to more misclassifications of the 

pre-trained models. For the pre-trained ResNet-53 model, the accuracy reduced from 

94.24% to 10.24% with a PGD 𝑘 value ranging from 1 to 7 (𝑘 = {1,3,5,7}). Similarly, 

ShuffleNetv2, MobileNetv2, and VGG13BN also show reduced accuracy as 𝑘 increases, 

as depicted in Figure 2. 

To observe the impact of adversarial data on the robust retrained model, the retrained 

model is evaluated on the natural dataset. We find that the accuracy 𝐴𝑘
′  of the retrained 

model on the natural dataset is significantly lower than the accuracy of the pre-trained 

model on the natural dataset. 

 

 

Table 5. 3 Mixed Bayesian Stackelberg Accuracy A^* for Multiple Adversary Types k=(1,3) 

Models 𝐴 k 𝐴𝑘% 𝐴𝑘
′% 𝐴𝑚𝑖𝑛

∗ % 𝐴𝑚𝑎𝑥
∗ % 

vgg13_bn 94.24 1 53.41 17.93 38.05 43.81 

  3 14.38 16.97 – 

mobilenetv2_x1_4 93.88 1 52.31 10.54 43.29 46.39 

  3 21.72 10.78 – 

shufflenetv2_x2_0 93.63 1 53.76 20.80 39.20 43.08 

  3 15.14 20.09 – 

ResNet-56 94.46 1 54.06 32.00 45.84 48.69 

  3 22.93 32.32 – 
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Table 5. 4 Mixed Bayesian Stackelberg Accuracy A* for Multiple Adversary Types k=(5,7) 

Models 𝐴 k 𝐴𝑘% 𝐴𝑘
′% 𝐴𝑚𝑖𝑛

∗ % 𝐴𝑚𝑎𝑥
∗ % 

vgg13_bn 94.24 5 25.17 15.66 35.96 37.59 

  7 10.24 17.58 – 

mobilenetv2_x1_4 93.88 5 32.37 10.67 40.99 42.23 

  7 16.94 10.72 – 

shufflenetv2_x2_0 93.63 5 25.96 20.77 37.06 38.56 

  7 10.69 20.25 – 

ResNet-56 94.46 5 33.5 34.53 44.66 46.14 

  7 17.85 33.65 – 

We performed experiments on four pre-trained classifiers: MobileNet, ResNet56, 

VGG13BN, and ShuffleNet. Using the PGD attack, we modeled two pairs of attacks: a 

mild adversarial perturbation and a strong perturbation attack, corresponding to a weak 

attacker 𝑔 and a stronger attacker 𝐺 by varying the 𝑘 value in the PGD algorithm. The 

pairs of attacks represent the adversary type; a lower value of 𝑘 denotes a weak adversary 

𝑔, while a higher value of 𝑘 denotes a stronger adversary 𝐺. In an attack scenario, adver-

sary type 𝑡1, which is the weak adversary 𝑔, will have a lower 𝑘 value compared to attack 

𝑡2, which is the stronger adversary 𝐺. In addition to these, each adversary has two strate-

gies to choose from to maximize their payoff. The payoff for each strategy is derived 

from Equations (6) and (7) to confront a defender that chooses between deploying a pre-

trained or retrained model. 

As an illustration, a defender deploys a pre-trained model with an accuracy of 94.24% on 

the CIFAR-10 dataset. After an adversary uses PGD with 𝑘 = 1 to perturb the dataset, the 

pre-trained model’s accuracy drops to 53.41%. However, by using adversarial training to 

retrain the pre-trained model on the perturbed dataset, the accuracy improves from the 

previous 53% to 63%. On evaluating the retrained model on the original CIFAR-10 da-

taset, we observe that even though the retrained model has improved accuracy on the 
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adversarial data, its accuracy on the original data dropped to 17.93%. The accuracy of the 

retrained model facing an adversary 𝑡2 with 𝑘 = 5 is even lower. The adversarial training 

accuracy is 46.92%, while the retrained accuracy on CIFAR-10 is 16.97%. 

 

Figure 5. 4 Robust Accuracy for CNN Models Considering Adversary Types k=(1,3) 
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Figure 5. 5 Robust Accuracy for CNN Models Considering Adversary Types k=(5,7) 

 

To obtain a model that performs well on both natural and adversarial datasets, a mixed 

Bayesian Stackelberg algorithm is employed. The problem is modeled with two types of 

adversaries using two different strategies: a global strategy and a direct strategy. The pay-

offs for both adversary strategies are given by Equations (6) and (7). The optimal mixed 

strategy of the defender is obtained by solving the mixed integer quadratic equation (9) 

and the corresponding accuracy payoff. The goal is to develop a randomized classifier se-

lection strategy such that the adversary cannot deploy a perturbed dataset to undermine 

the accuracy of the selected classifier. The relationship between the defender and the ad-

versary is framed as a Bayesian Stackelberg game consisting of 𝑡 adversary types, 1,… , 𝑡. 

The defender’s set of pure strategies includes two CNN models: a pre-trained model and 

a retrained model. The defender can choose a mixed strategy such that the adversary is 

uncertain about which CNN model is being deployed, although the adversary may be 

aware of the mixed strategy the defender is implementing. For instance, the adversary can 

observe how often each CNN model is deployed over time and then select an attack strat-

egy that guarantees maximum impact. The adversary will receive a lower payoff if it uses 

a direct attack targeted at a pre-trained model while the defender deploys a retrained 

model. Conversely, the adversary will achieve a higher payoff if it uses the global attack 

while the defender chooses a pre-trained model. 
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Figure 5. 6 Accuracy of CNN Models based on the Prior Probability of Adversary Type 

 

 

 

Figure 5. 7  Accuracy of CNN Models based on the Prior Probability of Adversary Type 
k=(5,7) 
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To reconcile the effect of the significant reduction in accuracy, the Bayesian Stackelberg 

algorithm finds a mixed strategy, as shown in Fig. 1, for the defender. This strategy en-

sures that the accuracy after retraining the model is consistently better than the accuracy 

of the pre-trained model when attacked by the strongest adversary, and also better than 

the accuracy of the retrained model on the original CIFAR-10 dataset. The pre-trained 

VGG13BN model experienced the highest impact from adversarial attacks, with a notable 

reduction in accuracy after perturbation for both 𝑘 = 3 and 𝑘 = 7. Figure above shows 

that the pre-trained accuracy 𝐴𝑘 and the retrained accuracy 𝐴𝑘
′  after the attack are 25.17% 

and 15.66% for 𝑘 = 3, respectively, and even lower, at 10.24% and 17.58% for 𝑘 = 7, as 

shown in Fig. 2. However, the mixed strategy for the defender, which combines both pre-

trained and retrained models, achieves an accuracy of 35.96% as shown in Fig. 1. Similar 

results are observed for MobileNetV2, ShuffleNetV2, and ResNet-56. 
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Figure 5. 8 Accuracy of CNN Models based on the Prior Probability of Adversary Type 
k=(1,3) 

 

Before committing to a mixed strategy, the defender considers the prior probability 𝑃 of 

encountering type of adversary. With varying probabilities 𝑃 that a strong adversary 𝐺 

may not appear, the defender only begins to see a notable increase in accuracy when there 

is at least 60% certainty that they will confront a weaker adversary 𝑔, as shown in Fig. 7. 

This indicates that, with the knowledge that the models are more susceptible to a strong 

attack, the mixed strategy accuracy is conservative and only improves when there is a 

higher likelihood that a strong attack will not occur. As shown in Fig. 5 and Fig. 6, the 

knowledge of the prior probability of an adversary type perturbing the dataset also affects 

the accuracy achieved by the mixed strategy implemented by the defender. Intuitively, a 

higher prior probability of a weak adversary 𝑔 perturbing the dataset, as opposed to a 

stronger adversary 𝐺, results in higher accuracy from the mixed strategy. Conversely, if 

there is a higher probability that the adversary is stronger, the resulting accuracy from se-

lecting the mixed Bayesian Stackelberg strategy will be lower. 
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5.5 Finding Summary 

The experimental results underscore the inherent trade-off between adversarial robustness 

and natural-data performance. The observed accuracy degradation of all pre-trained models 

under increasing PGD iteration 𝑘values demonstrates that adversarial perturbations am-

plify the model’s sensitivity to small input variations, exposing weaknesses in gradient-

based decision boundaries. The sharper accuracy decline in models such as VGG13BN and 

ResNet-56 suggests that deeper or more parameter-rich architectures may possess larger 

attack surfaces due to the greater number of gradient pathways that adversaries can exploit. 

This finding aligns with existing theoretical analyses indicating that model complexity of-

ten correlates with increased vulnerability to perturbations. 

Adversarial retraining significantly mitigates this vulnerability by reorienting model gradi-

ents toward smoother local minima, thereby improving the model’s capacity to resist high-

frequency perturbations. However, this improvement comes at a measurable cost: retrained 

models exhibit reduced generalization on clean data, as observed in the drop of 𝐴𝑘
′ on the 

natural CIFAR-10 dataset. This accuracy reduction reflects a phenomenon known as robust 

overfitting, where models trained on adversarially augmented datasets adapt excessively to 

synthetic perturbations while underperforming on unaltered examples. Consequently, 

while retraining enhances defensive resilience, it introduces a tension between robust ac-

curacy and standard accuracy, echoing the theoretical robustness–accuracy frontier dis-

cussed in prior works. 

The implementation of the mixed Bayesian Stackelberg strategy effectively balances this 

trade-off by probabilistically selecting between pre-trained and retrained models according 

to the inferred adversary type. The resulting equilibrium demonstrates that a randomized 

defence mechanism can outperform either pure strategy alone. When the defender employs 

this mixed policy, the adversary faces uncertainty about the classifier type, leading to a 

reduced expected payoff for any deterministic attack. Empirically, this is reflected in the 

improved mixed-strategy accuracy (e.g., 35.96% for VGG13BN under 𝑘 = 7), which ex-

ceeds both the standalone retrained and pre-trained model accuracies under the same attack 

conditions. 
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From a game-theoretic perspective, these findings validate the existence of a practical 

Stackelberg equilibrium in the adversarial learning framework. The Bayesian formulation 

further highlights the role of prior belief distributions in shaping defensive outcomes. Fig-

ures 5–7 reveal that accuracy under the mixed strategy increases when the defender’s prior 

probability 𝑃(𝑔)of encountering a weaker adversary exceeds 0.6. This indicates that the 

mixed strategy is conservative optimizing for average-case rather than worst-case scenarios 

consistent with rational behaviour under incomplete information. When the likelihood of 

facing a strong adversary rises, the mixed strategy adjusts defensively but at the expense 

of accuracy, illustrating a real-world manifestation of the accuracy–robustness trade-off 

predicted by equilibrium theory. 

The results also suggest that adversarial uncertainty introduces a stabilizing effect: by 

avoiding commitment to a single defensive posture, the defender reduces vulnerability to 

exploitative attacks targeting predictable model behaviour. This adaptive equilibrium prin-

ciple underpins the proposed framework’s novelty, demonstrating that rational defence ran-

domization guided by Bayesian inference can yield superior resilience without extensive 

retraining. The convergence of experimental outcomes across MobileNetV2, Shuf-

fleNetV2, ResNet-56, and VGG13BN further indicates that the mixed Stackelberg formu-

lation generalizes effectively across diverse architectures, reinforcing its potential as a scal-

able and architecture-agnostic defence strategy. 

In summary, these results confirm that while adversarial training enhances robustness, its 

benefits are most effectively realized within a game-theoretic defense framework that ac-

counts for uncertainty, model heterogeneity, and adversary adaptation. The mixed Bayes-

ian Stackelberg approach provides a principled mechanism to navigate the robustness–ac-

curacy boundary, ensuring improved defensive stability under varying adversarial condi-

tions. 
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Chapter 6 

Quantum Machine Learning: Quantum SVM 

Algorithms for Efficient Defense Against 

Gradient-Based Adversarial Attacks 

This section addresses challenge 2 and has been published in NaNA 2025 International 

Conference on Networking and Network. 

6.1  Introduction 

Quantum computing has applications across a wide range of fields, including chemistry, 

physics, artificial intelligence, and data mining. Quantum game theory, which extends clas-

sical game theory into the quantum domain, has attracted growing interest from researchers 

in these disciplines. In this framework, quantum strategies that leverage quantum mechan-

ics properties such as superposition, entanglement, and interference are adopted rather than 

traditional classical strategies. 

The advancement and increasing accessibility of quantum computers have provided re-

searchers with greater opportunities to explore and experiment with quantum systems. This 

accessibility has accelerated investigations into quantum strategies within conventional 

games, such as the Prisoner’s Dilemma and various two-player games. While zero-sum 

finite games may not always exhibit equilibrium in pure strategy settings, they often reveal 

equilibrium when players adopt mixed strategies. 

More recently, quantum game theory has gained significant attention in the field of cyber-

security, where researchers are evaluating whether classical cryptographic systems are re-

silient enough to withstand emerging threats posed by quantum computing technologies 

[104] [105]. 
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6.1.2 Qubits and the Quantum Computing Paradigm 

Quantum computing represents a fundamentally different model of computation compared 

to classical computing. In a classical computer, information is processed through electrical 

signals, where high voltage represents a 1 and low voltage represents a 0. These values 

form the basis of bits, the basic units of classical information, which operate under a deter-

ministic logic given an input, the output is always predictable. 

Quantum computers are built on the principles of quantum mechanics, which introduces 

non-determinism and probabilistic behaviour into computation. The basic unit of infor-

mation in a quantum computer is the qubit. Unlike classical bits, which can only exist in 

one of two states, a qubit can exist in a superposition of both states at the same time. 

Qubits are represented using Dirac notation. The two fundamental states of a qubit are 

written as |0⟩ and |1⟩ which are numbers but vectors in a mathematical space known as a 

Hilbert space a 2-dimensional complex vector space [106] [47]. 

A qubit’s state can be any combination of these two basic states, expressed as: 

|ψ⟩ = α|0⟩ + β|1⟩. 

Where α and β are complex number amplitudes that describe the probability of measuring 

the qubit in either state, or they must satisfy the condition: 

|α|² + |β|² = 1. 

This ensures the state is normalized, meaning the probabilities of all possible outcomes add 

up to 1. These qubit states can also be expressed in the computational basis as: 

|0⟩ = [1, 0] and |1⟩ = [0, 1]. 

Quantum computers manipulate these qubit states through specialized operations that re-

spect quantum principles. What makes qubits powerful is both their ability to hold more 

than one value at a time and also their ability to become entangled a property where the 

state of one qubit depends on another, even across distance. These quantum properties 
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superposition, entanglement, and quantum parallelism are what enable quantum computers 

to solve certain problems much more efficiently than classical computers. 

In a two-qubit system, each individual qubit can exist in either the state |0⟩ or |1⟩. When 

considering the combined system of both qubits, this results in four possible configurations: 

both qubits can be in the |0⟩ state, the first in |0⟩ and the second in |1⟩, the first in |1⟩ and 

the second in |0⟩, or both in the |1⟩ state. These four combinations |00⟩, |01⟩, |10⟩, and |11⟩ 

form what is known as the computational basis of the two-qubit system. This basis spans a 

four-dimensional complex vector space, which arises from taking the tensor product of the 

two individual qubit spaces.  

Quantum entanglement arises when two or more qubits become linked in such a way that 

the state of one qubit cannot be described independently of the state of the other(s). This 

interaction produces a unique combined state for the entire system, one that cannot be de-

composed into separate, individual qubit states. In this work, we focus specifically on the 

characteristics of entangled states that emerge from the combination of quantum states in 

two-qubit systems [107]. 

Bell states are a specific set of four maximally entangled two-qubit states that form a basis 

for the space of entangled qubit pairs that can be created through the application of specific 

quantum gates. For instance, when a Hadamard gate is applied to the first qubit in the initial 

state |00⟩, followed by a CNOT gate with the first qubit as the control and the second as 

the target, the system evolves into an entangled state known as the Bell state: 

|Φ⁺⟩ = (|00⟩ + |11⟩) / √2. 

The state inherently has a property that measurement of one qubit instantly determines the 

outcome of the other, regardless of the distance between them. This non-classical correla-

tion is at the heart of many quantum algorithms and protocols, including quantum tele-

portation and quantum cryptography. 

In general, a two-qubit quantum state |ψ⟩ can be written as a linear combination of the four 

computational basis states: 

|ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩. 
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where α, β, γ, and δ are complex probability amplitudes that satisfy the normalization con-

dition: 

|α|² + |β|² + |γ|² + |δ|² = 1. 

Whether or not such a state is entangled depends on whether it can be factored into the 

tensor product of two single-qubit states. If not, the state is entangled. 

The tensor product, denoted by the symbol ⊗, is a mathematical operation used to combine 

quantum states. If the first qubit is in state |0⟩, represented as the column vector [1, 0], and 

the second qubit is in state |1⟩, represented as [0, 1], then the tensor product |0⟩ ⊗ |1⟩ yields 

a new state vector |01⟩, which corresponds to [0, 1, 0, 0] in the four-dimensional space. 

This structure is essential in quantum computing because it not only allows us to represent 

independent combinations of qubit states but also forms the mathematical foundation for 

describing entangled states, which have no classical equivalent [94] [108]. Understanding 

the tensor product and the computational basis is crucial for working with multi-qubit sys-

tems and for harnessing the full potential of quantum information processing. 

6.1.3 Quantum Gates and State Transformations 

Another fundamental aspect of quantum computing is the ability to deliberately transform 

the states of qubits. In this framework, transformations are carried out by quantum gates, 

which are mathematically represented as unitary matrices. For two-qubit systems, these 

gates act on vectors within a four-dimensional complex vector space. 

The simplest way to construct a two-qubit gate is by taking the tensor product of two single-

qubit gates; two one-qubit gates, denoted U₁ and U₂, and two one-qubit states, |ψ₁⟩ and |ψ₂⟩. 

By applying the tensor product of the gates, we can create a two-qubit gate that acts on the 

combined state |ψ₁⟩⊗|ψ₂⟩. Thanks to the property of linearity in quantum mechanics, this 

operation can be naturally extended to any linear combination of two-qubit states. 

Mathematically, the two-qubit gate associated with these operations is the tensor product 

of the individual one-qubit matrices, expressed as: 

U₁ ⊗ U₂ . 
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This resulting matrix is itself unitary, preserving the essential properties required for quan-

tum evolution, and therefore rightly deserves the title of a quantum gate. 

More generally, a unitary operator U in quantum mechanics is simply a matrix that, when 

applied to a quantum state |ψ⟩, results in a new state |ψ'⟩. The operation is described by: 

|ψ'⟩ = U|ψ⟩. 

This means that applying a unitary matrix to a quantum state transforms it within its Hilbert 

space without changing its overall probability norm. As illustrated in Figure 3, the unitary 

operator Uf acts on the initial state |ψ⟩ and produces the transformed state |ψ'⟩. 

Figure of Hadamard gate and qubit 

 

For 𝐻 =
1

√2
(
1 1
1 −1

) , 

Hadamard gate applied to a qubit transforms it to a state of superposition. Hence for state 

0, 𝐻|0⟩ = 1
√2
⁄ (|0⟩ + |1⟩), and state 1, 𝐻|1⟩ = 1

√2
⁄ (|0⟩ − |1⟩). The Hadamard   gate 

and the operation on qubit state |0⟩ and |1⟩ is represented in matrix form as: 

𝐻|0⟩ = 1
√2
⁄ (

1 1
1 −1

) (
0

1
) = (

1
√2
⁄

−1/√2
) 

𝐻|1⟩ = 1
√2
⁄ (

1 1
1 −1

) (
1

0
) = (

1
√2
⁄

1/√2
) . 

A CNOT gate applies an X-gate to a target qubit only if we measure the control qubit as 1. 

This gate takes in t 2 inputs, a control qubit and a target qubit. If the control qubit is |0⟩ 

then nothing happens but if the control qubit is |1⟩ then the CNOT-gate applies an X-gate 

on the target qubit essentially flipping its state. 
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𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] . 

 

 

6.1.4 Entangled Strategy Simulation for Adversarial Threat Model-

ling 

 

The quantum circuit is initialized with two qubits, which represent the roles of a defender 

and an attacker in an adversarial interaction. The marginal probability assigned to the first 

qubit is set using an RY rotation, which prepares it in a superposition state corresponding 

to the defender’s likelihood of adopting a defensive strategy.  

 

Figure 6. 1 Circuit diagram for quantum entanglement and rotation of 2 Qubits 

 

By adjusting the rotation angle based on the defender’s probability of success or choice, 

the qubit’s quantum state encodes uncertainty in the defender’s response to an attack. This 

reflects the realistic nature of cybersecurity, where a defender's actions are probabilistic 

rather than deterministic, depending on detection capabilities, resource allocation, and stra-

tegic priorities. 
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Figure 6. 2 Blochs Sphere showing the rotation of qubit 0 and qubit 1 

 

Following the preparation of the defender’s qubit, a controlled RY gate (CRY) is applied 

between the defender's and the attacker's qubits. This operation introduces a conditional 

relationship between their behaviours: the attacker’s strategic move, represented by the 

second qubit, is influenced by the state of the defender’s qubit. The conditional probability 

encoded by the CRY gate models a dependency where the attacker's success is not inde-

pendent but tied to the defender's initial preparedness. If the defender prepares poorly, low 

defensive probability, the attacker's probability of a successful breach increases, and vice 

versa. In quantum terms, the CRY operation entangles the two players' states partially, 

creating a system where the measurement outcomes for one player affect the probability 

distribution for the other. 

Finally, simulating and measuring the quantum circuit allows observation of the joint prob-

ability distribution over attacker and defender outcomes. This reflects a quantum game 

setting where strategies are probabilistically entangled rather than separate. From an ad-

versarial learning perspective, this simple two-qubit model captures dynamic and strategic 

dependencies, highlighting how defence mechanisms condition an attacker’s pathway. It 

serves as a basic yet powerful demonstration of how quantum computing can model 
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adversarial behaviour; not simply by independent actions, but through structured, entangled 

probability spaces that better reflect real-world security dynamics. As quantum computa-

tion scales, such models could extend into more complex quantum game frameworks, help-

ing design more robust, adaptive cybersecurity strategies against quantum-enabled threats. 

We present a toy example context of quantum game theory, modelling the interaction be-

tween an adversarial attacker and a defender using a two-qubit quantum system reveals 

unique advantages. The setup involves representing 2 events; event A associated with the 

attacker’s strategy and event B associated with the defender’s strategy as marginal proba-

bilities on individual qubits. A qubit 0 is manipulated to represent the probability of the 

attacker’s strategy with a marginal probability of 0.6, while qubit 1 represents the proba-

bility of the defender’s reaction with a marginal probability of 0.4. Using quantum RY and 

CRY gates to rotate the qubit probabilities are encoded directly into the quantum states. 

The critical state 0011 where both qubits are 1 captures the overlap of these strategies, 

resulting in a joint probability of 0.24 (0.6 × 0.4). This setup mirrors the real-world situation 

where the success of the attacker depends on their own action and the likelihood of an 

effective defensive response occurring simultaneously. 

The construction of the quantum circuit further enriches this strategic model by controlling 

how probabilities are transferred and recombined. Initially, the RY gate splits the probabil-

ity amplitudes across different states depending on the rotation angle determined by event 

A. When the CRY gate is applied next, it further refines the distribution by conditionally 

rotating qubit 1 based on the state of qubit 0. This creates a fine-grained control over the 

states, allowing the model to differentiate cases where the attacker succeeds or fails based 

on whether the defender has activated their countermeasure. For instance, the application 

of the CRY gate results in a correction: states where qubit 0 is 0, indicating no attack, have 

their probability moved back into the baseline (state 0000), while when qubit 0 is 1 (attack 

initiated), the effect on qubit 1 simulates the likelihood of defence activation. Importantly, 

after applying a second CNOT gate, the probabilities of states are realigned so that the joint 

probability (state 0011) accurately reflects the simultaneous occurrence of both attacker 

and defender actions. This progression ensures that the outcome measurement of a single 

qubit captures the full dynamics of the encounter. 
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Figure 6. 3 States probability distribution of 4 states representation of 2 qubits after en-
tanglement and measurement of Marginal probability 

 

From a strategic standpoint, this quantum setup gives the defender a precise method to 

focus resources only where needed for instance when an attack is likely. The controlled 

RY gate allows transformations to occur only when qubit 0 (the attack event) is active, 

meaning that the defender does not waste computational "energy" on unnecessary states. 

Similarly, the attacker’s likelihood of success can be modelled and adjusted based on their 

choice of strategies encoded in the qubit rotations. Unlike classical probability models that 

split all possibilities equally, quantum circuits using controlled operations like CRY gates 

provide fine-tuned control over the quantum state space. This better mirrors real-world 

adversarial settings, where strategic actions and reactions are highly conditional and inter-

twined. As a result, the use of quantum circuits with controlled rotations elegantly captures 

the essence of adversarial dynamics: selective influence, strategic overlap, and outcome 

dependence, making it a powerful framework for quantum-based cybersecurity simula-

tions. 

 

6.1.5 Adversarial Learning in the Design of Quantum Games 

The paradigms of quantum computing have drawn from the structures and parameters of 

classical game theory. Quantum mechanics enables the reinterpretation of game-theoretic 

models in environments where strategies exist in superposition and outcomes may be en-

tangled. This gives rise to quantum games, where decision-making reflects probabilistic 

outcomes and quantum interactions. Classical game theory provides a foundation for 
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structuring these interactions - distinguishing between symmetric and asymmetric roles, 

zero-sum and non-zero-sum outcomes, games with or without Nash equilibria or Pareto 

optimality. However, not all classical game categories apply to quantum computing. Some 

types - such as extensive-form, combinatorial, or imperfect-information games - are diffi-

cult to implement in quantum circuits due to constraints and differences in state evolution. 

To address the complexity of quantum game implementation, adversarial learning has 

emerged as a framework. One technique, adversarial GRAPE (a-GRAPE), models quan-

tum control design as a game between a control agent and an adversary introducing uncer-

tainty or noise. Both sides optimize strategies in a game-theoretic sense - seeking an equi-

librium where the controller maintains fidelity despite perturbations. This models adver-

sarial dynamics where players operate under uncertainty. Quantum generative adversarial 

networks (QuGANs) adapt classical GANs to quantum systems, creating a competition 

between a generator and a discriminator. The generator produces quantum states similar to 

real data, while the discriminator attempts to detect forgeries. This process moves both 

sides toward a minimax equilibrium. 

Adversarial learning improves the robustness of quantum strategies by integrating simu-

lated perturbations during training. Quantum classifiers, like classical ones, can be vulner-

able to adversarial examples designed to cause misclassification. Training on such exam-

ples improves model performance. The learning process, framed as a repeated game be-

tween a classifier and an attacker, helps define decision boundaries that generalize in noisy 

or adversarial conditions. This mirrors classical Nash equilibrium scenarios, where no 

player can improve their outcome alone. 

By embedding adversarial dynamics into quantum game design, researchers can simulate 

hostile environments, identify weaknesses, and find optimal strategies. 

6.1.6 Adversarial and Defender Decision Strategies 

In adversarial and defender decision-making, quantum games allow both players to adapt 

strategies based on prior interactions. A non-cooperative quantum game can be described 

by the tuple ⟨N, Ω, P⟩, where N is the number of players, Ω the strategy set for each player, 

and P the payoff function mapping strategies to outcomes. The adversary seeks to reduce 
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the defender's effectiveness through perturbations or misleading moves. The defender ad-

justs their approach to maintain system performance. These interactions form a loop where 

participants refine strategies through quantum operations, using feedback from entangled 

states and payoff outcomes. 

Strategies involve quantum measurement, probabilistic modeling, and unitary transfor-

mations, where each move depends on expected utility and observed responses. The goal 

is to reach a quantum Nash equilibrium, where no player gains by changing strategy alone. 

This setup mirrors minimax optimization, where each player responds to the best possible 

action of the other. Adversarial learning allows for iterative improvement of strategies in 

quantum systems. 

The transformation from classical to quantum algorithms introduces challenges, including 

new implementation techniques such as qutrits and Hadamard gates. Hadamard transfor-

mations entangle quantum states, enabling multiple overlays and allowing quantum games 

to use computational parallelism. These features expand the strategic scope of adversarial 

decision-making. Ongoing debate on implementation reflects the evolving nature of quan-

tum game design. While quantum systems may resolve a range of decision strategy prob-

lems, constructing architectures to support these strategies remains a work in progress. 

 

6.1.7 Quantum Nash Equilibrium 

Nash equilibrium in classical game theory describes a strategy profile where no player im-

proves their outcome by changing strategy alone. In quantum game theory, this includes 

quantum phenomena such as superposition and entanglement, leading to a quantum Nash 

equilibrium. Each player's strategy, possibly involving unitary operations on entangled 

qubits, remains optimal relative to the others' strategies. 

Quantum Nash equilibria differ from classical ones due to the expanded strategy space in 

quantum systems. Superposition and entanglement modify how payoffs are structured. A 

classical example is the Prisoner’s Dilemma, where both players defect to gain individu-

ally. This game also demonstrates pure strategies without randomness or probability. In 

quantum implementations, entanglement allows players to reflect on each other's strategies. 
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According to Van Enk and Wu, this transformation eliminates individualistic strategies and 

turns the game from non-cooperative to cooperative. This results in outcomes where both 

players may choose cooperation instead of mutual defection. 

In the Eisert-Wilkens-Lewenstein (EWL) quantum version of the Prisoner's Dilemma, each 

player's strategy is a unitary operator acting on a shared entangled state. When players use 

quantum strategies instead of classical moves, new outcomes emerge. Hadamard transfor-

mations entangle qubits and generate multiple overlays, enabling quantum parallelism. 

These overlays increase strategic combinations, expand the decision space, and enable co-

operation. Designing such quantum games involves implementation techniques like using 

qutrits and specific quantum gates. 

In the classical version, if both players confess, each receives 3 years in prison. If one 

confesses and the other does not, the confessor goes free while the other gets 5 years. If 

neither confesses, both receive 1 year. This payoff matrix creates a clear incentive for de-

fection, resulting in a Nash equilibrium at mutual confession. Quantum implementations 

alter this behavior through entanglement, potentially changing the payoff structure. Studies 

have explored transitions using mathematical models, comparisons to human strategies, 

and analysis of decoherence. Some models omit Hadamard gates; others include them to 

study entanglement and unitary operations. These variations reflect the evolving landscape 

of quantum game theory. By adjusting their operations, players can escape the classical 

dilemma and reach cooperation, forming a quantum Nash equilibrium. 

The reversibility of unitary operations allows players to revise strategies to improve pay-

offs. Entanglement may act as a coordination mechanism, similar to contracts in abstract 

economics. The EWL framework formalizes classical games into quantum settings while 

preserving equilibrium properties. 

In adversarial learning, understanding quantum Nash equilibria aids in designing algo-

rithms that remain stable under competition or uncertainty. As players model threats and 

responses, equilibrium concepts guide consistent strategy development. This integration of 

game theory and quantum systems supports algorithm design and control. 
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Ensuring the robustness of machine learning classifiers against adversarial attacks has be-

come a critical challenge. The vulnerability of these classifiers to adversarial data has at-

tracted considerable interest in the use of machine learning in real-world applications. 

Adversarial attacks exploit this vulnerability by introducing perturbations that are imper-

ceptible to humans but sufficient to cause a model to misclassify with high probability. In 

response to these susceptibility, quantum adversarial machine learning has emerged as a 

promising approach. By leveraging the principles of quantum computing, quantum adver-

sarial machine learning has potential to enhance classifier robustness, offering more ef-

fective defense measures against adversarial perturbations and increasing overall robust-

ness. 

The advantages of quantum technologies in fields such as cryptography, simulation, and 

quantum computing have become well recognized by researchers. Recent advancements 

in quantum computing have enabled applications of quantum machine learning (QML) 

that were previously infeasible. While machine learning (ML) algorithms have shown 

significant potential, training these algorithms on large datasets, especially for applica-

tions like computer vision and genomics, presents challenges. Specifically, for classifica-

tion tasks for which the data Hilbert-space dimension is large making such applications 

vulnerable to adversarial attack. The numerous real-life applications of large datasets to 

ML training result in increased vulnerability of ML models to adversarial perturbations 

attacks in areas like adversarial training, consequently robustness of ML classifiers is of 

critical concern. 

Quantum machine learning presents an opportunity to exponentially improve perfor-

mance of ML classifiers compared to classical ML techniques. This improvement has 

motivated the implementation of QML models, particularly in applications with limited 

resources. For example, deep quantum neural networks have demonstrated notable ad-

vantages in tasks like image recognition, showing improvements in system performance, 

accuracy, and robustness. In adversarial machine learning, quantum techniques are being 
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applied to study vulnerabilities in ML algorithms, providing new defense mechanisms 

against adversarial perturbations. 

Adversarial attacks pose a significant threat to machine learning models, particularly 

around decision boundaries, where small perturbations can lead to misclassifications. 

Support Vector Machines (SVMs), which rely on kernel methods to map data into higher-

dimensional spaces, are vulnerable to adversarial examples that exploit these decision 

boundaries. Research has shown that adversarial samples, generated by adding slight per-

turbations to natural data, can cross decision boundaries, resulting in high-probability 

misclassifications. These misclassifications are particularly challenging in high-dimen-

sional spaces, where the trade-off between robustness and quantum advantages becomes 

complex. 

Quantum machine learning models, such as SVM classifiers enhanced with quantum ker-

nels, offer a promising solution. Quantum kernels enable the SVM to learn non-linear re-

lationships in adversarial data by leveraging the dot product of input vectors in high-di-

mensional quantum spaces. This capability allows the model to capture intrinsic proper-

ties of adversarial perturbations that would be difficult for classical models to process. 

This paper investigates the potential of quantum-enhanced SVMs in adversarial environ-

ments, focusing on the impact of quantum kernels in improving robustness and perfor-

mance. We propose an adversarial attack specifically designed for image classification 

tasks, focusing on the perturbations introduced to the original data. Our gradient-based 

attack injects sufficient noise to facilitate the crossing of the decision boundary by the 

manipulated data [109] [110] [111] [110] [76] [112] [113] [114]. We assess the perfor-

mance of the adversarial samples on a classical Support Vector Machine (SVM) model 

employing adversarial training, considering various kernel functions, including Radial 

Basis Function (RBF), linear, and polynomial kernels. Additionally, we develop a quan-

tum kernel utilized by the Quantum Support Vector Machine (QSVM) and evaluate the 

performance of the adversarial data on this model. The feature mapping for the input data 

is conducted using ZZ-feature maps in the quantum circuit to better represent the non-
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linearity of the adversarial data, enabling a comprehensive analysis of the robustness of 

quantum approach to adversarial training. 

6.1.8 Adversarial training strategies for Machine Learning Algorithms 

Previous works have shown that conventional methods of training may not be sufficient 

to guarantee the robustness of CNN algorithms. Methods such as data augmentation only 

provide partial solutions to misclassifications. Naveed et al. used empirical methods to 

demonstrate that dimensionality and image complexity impact a classifier’s robustness 

against adversarial attacks in the real world. Hence, adversarial learning is essential for 

the development of CNN algorithms that are less susceptible to practical attack methods. 

Our study focuses on using adversarial training in a Stackelberg game to find a mixed 

equilibrium strategy that guarantees optimal accuracy and robustness for a CNN with 

fixed dimensions. 

Game theory has been used in numerous works to model the interaction between a classi-

fier and adversarial attacks to obtain optimal robust strategies. Humin et al. used the mini-

max theorem to find equilibrium for non-convex-non-concave games. Meunier et al. 

demonstrated that no deterministic pure Nash equilibrium exists in such interactions be-

tween a classifier and adversaries, while revealing that mixed strategies outperform their 

pure strategy counterparts in an infinite zero-sum game . Ya-Ping H. et al. developed 

practical and efficient game theory algorithm frameworks via a two-player game to com-

pute mixed Nash equilibrium [115]. An adversarial example maxmin game between a 

classifier and an adversary derives an optimal adversary against Neural Networks, which 

can be utilized to better understand accuracy-robustness trade-offs for neural networks. 

Chivukula A S et al.  formulated deep learning using a Stackelberg game with variational 

adversaries, but did not show the existence of an equilibrium [19]. Tanner Flez et al. and 

Chi Jin et al. studied the existence and properties of local optimality in sequential games. 

These works presented adversarial deep learning as a non-cooperative game; however, 

Lefeng et al. explained the concepts of adversarial attacks and defenses in a cooperative 

game setting. Our studies focus on non-cooperative interaction between the classifier and 
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the adversary, where the adversaries perpetually perturb the data to increase the misclas-

sification error of the classifier. 

To optimize a learner’s defense mechanism for resilience towards adversarial attacks, it is 

important to understand how the attacks are developed. The essence of adversarial data 

generation is to understand different methods for which adversarial data can be created by 

a potential adversary. The adversary aims to perturb a valid data sample such that the per-

turbation is imperceptible to the human eye, but when presented to the machine learner, 

the data is misclassified to a wrong class. This is achieved by adding just enough pertur-

bation to cross the decision boundary of the learner classifier. If the value of the perturba-

tion is too large, the data becomes distorted and nonsensical to the human eye and be-

comes obviously perturbed. Also, if the perturbation is too small, the data looks normal to 

the human but is not enough to cross the decision boundary and would not lead to mis-

classification by the learner. Carlini et al.  proposed a technique that added a small vector 

to an input of a model such that the magnitude of the vector is equal to the sign of the gra-

dients of the cost function of the model, which reliably causes a wide variety of classifiers 

to misclassify their input. The technique showed that by training the model with the 

worst-case adversarial perturbation rather than itself helps to regularize the model and 

generally makes it perform better even under adversarial attacks. Goodfellow et al.  pro-

posed the fast gradient method (FGSM) to generate perturbations that are added to exam-

ples. The work highlighted the importance of the direction of the gradient of the cost 

function in deriving appropriate perturbations. Madry et al.  investigated the robustness of 

neural networks through min-max optimization with Projected Gradient Descent (PGD). 

The min-max formulation reflects adversarial training and attacks against constrained op-

timization models [116] [117] [118] [119]. 

To obtain optimal strategies, attack models need to be defined explicitly. There is no sin-

gle learning strategy that can be unilaterally implemented for all attack models. Current 

neural networks and defenses are only effective against a few attacks, keeping the models 

vulnerable to other types of attacks. Indeed, there is a trade-off between accuracy and ro-

bustness in the implementation of defense against adversarial samples. The large number 

of scenarios of attacks and metrics such as 𝐿0, 𝐿1, 𝐿2, and 𝐿∞ makes it difficult to 
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generalize defenses since different levels of perturbations result in varying attack sensi-

tivity and resulting adversarial accuracy. Therefore, there is a need for algorithms that 

generalize well over multiple attacks without trading off accuracy for the robustness of 

the network [120] [121] [110]. 

Huang et al.  model a machine learning scenario as an interaction between a learner and 

an adversary. The learner’s objective is to correctly predict the input data, while the ad-

versary transforms the data to make the learner misclassify them to a wrong label or out-

put. Adversarial learning presents a considerable level of cybersecurity threat in the do-

mains of machine learning classifiers, including automated email spam filters, image 

classification algorithms for self-driving cars, medical imaging applications, etc [172-

179]. Kantarcioglu et al. solved a classification problem using Stackelberg equilibrium 

with a simulated annealing algorithm to obtain an optimal set of attributes [122] [123] 

[124] [125] [126]. Fiez et al.  also conducted similar work, but rather than assuming both 

players knew one another’s payoff function, they showed that it’s enough to know only 

the adversary’s payoff function. Both works modeled the adversary as the leader who sto-

chastically chooses his strategy, while the classifier is the follower and searches for an 

equilibrium after observing the adversary’s choice. Madry et al.  investigated the robust-

ness of machine learning classifiers through robust optimization of mini-max theoretical 

frameworks [200 - 202]. The optimization method reflected the essence of adversarial 

training and attack methods against constrained optimization. 

 

6.2 System Modelling and Analysis 

6.2.1 Adversarial Samples 

Given a dataset 𝑋 in a subspace of ℝ𝑑, an SVM classifier 𝑓: 𝑋 → 𝑌 is susceptible to ad-

versarial attacks, where small perturbations to input data can lead to misclassification. An 

adversarial sample 𝑥∗ is crafted by introducing a minimal perturbation to a valid input 𝑥 

such that ∥ 𝑥∗ − 𝑥 ∥ is small, but 𝑓(𝑥∗) ≠ 𝑓(𝑥). In non-targeted attacks, the goal is any 
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misclassification, while targeted attacks aim for a specific label 𝑓(𝑥∗) = 𝑦∗. The magni-

tude of the perturbation is typically measured using the 𝐿𝑝 norm, with 𝑝 = 0,1,2,∞. 

For example, the Fast Gradient Sign Method (FGSM) is a white-box attack commonly 

used against SVMs, where the adversary has access to model parameters. FGSM modifies 

the input data 𝑥 based on the gradient of the loss function 𝐿𝜃(𝑥, 𝑦), generating an adver-

sarial sample as: 

𝑥∗ = 𝑥 + 𝜖 ⋅ sign(∇𝑥𝐿𝜃(𝑥, 𝑦)), 

where 𝜖 controls the size of the perturbation, and ∇𝑥𝐿𝜃(𝑥, 𝑦) is the gradient of the 

model’s loss for the true label 𝑦. For instance, consider an SVM trained on the MNIST 

dataset to distinguish between digits 3 and 8. By applying FGSM, a small perturbation to 

a digit 3 image can cause the classifier to misclassify it as an 8, despite the negligible vis-

ual difference. 

In contrast, black-box attacks do not rely on model parameters. These attacks either trans-

fer adversarial examples generated from another model or query the SVM to learn about 

its decision boundary. Although more difficult to craft, black-box attacks are more gener-

alizable and can affect various models. Both white-box and black-box attacks highlight 

the vulnerabilities of SVMs, as even small, targeted perturbations can lead to significant 

classification errors. 

6.2.2 Support Vector Machine 

The Support Vector Machine (SVM) is a machine learning algorithm for classifying two 

disjoint categories. The SVM primary objective is to identify a hyperplane that effec-

tively separates the two categories into their respective classes. For a given input training 

dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , where 𝑥𝑖 ∈ ℝ

𝑑  is the input feature vector, 𝑦 ∈ {−1,+1} is the 

output label, 𝑁 is the number of samples, and 𝑑 is the dimension of the input space; the 

plane is defined as a normal vector 𝑤 ∈ ℝ𝑑 indicating the plane’s orientation and a scala 

𝑏 ∈ ℝ representing the intercept such that 𝑤𝑇 ⋅ 𝑥 + 𝑏 = 0. The hyperplane serves as a 
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boundary that distinguishes between positive and negative class samples by applying the 

principle of structural risk minimization. 

We aim to achieve a margin between each class and the boundary, which requires finding 

the optimal parameters 𝑤 and 𝑏, such that: 

𝑤𝑇 ⋅ 𝑥𝑖 + 𝑏 ≥ 1 for 𝑦𝑖 = +1 

𝑤𝑇 ⋅ 𝑥𝑖 + 𝑏 ≤ −1 for 𝑦𝑖 = −1 . 

The hyperplane for these conditions can be expressed as: 

𝑤𝑇 ⋅ 𝑥𝑖 + 𝑏 = 0 . 

A soft margin formulation of an SVM, used to obtain a hyperplane from training data, is 

formulated below by solving the following optimization problem: 

Minimize 
1

2
∥ 𝑤 ∥2+ 𝐶∑𝜉𝑗

𝑗

 

subject to: 

𝑦𝑗(𝑤 ⋅ 𝑥𝑗 + 𝑏) ≥ 1 − 𝜉𝑗 , 𝜉𝑗 ≥ 0 . 

The value 𝐶 > 0 is a hyperparameter to tune the model. The larger the value of 𝐶 , the 

less tolerant the model is to the training samples that fall either inside the margin or on 

the wrong side of the hyperplane. By using the Lagrangian multiplier method, the dual 

problem is solved as a convex quadratic programming problem with inequality con-

straints and the parameter 𝛼 can be obtained. The soft-margin optimization problem is ex-

pressed in terms of parameters 𝛼𝑗 as follows: 

Maximize ∑𝛼𝑗
𝑗

−
1

2
∑𝑦𝑗
𝑗,𝑘

𝑦𝑘𝛼𝑗𝛼𝑘(𝑥𝑗 ⋅ 𝑥𝑘) 

subject to the constraints: 

0 ≤ 𝛼𝑗 ≤ 𝐶, ∑𝛼𝑗
𝑗

𝑦𝑗 = 0 . 
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Once the 𝛼𝑗 values are obtained, we can return to the original formulation and compute 𝑏 

and w. Specifically, w can be computed as: 

𝑤 =∑𝛼𝑗
𝑗

𝑦𝑗𝑥𝑗  , 

𝑤 only depends on the training points 𝑥𝑗 where 𝛼𝑗 ≠ 0. We can also obtain 𝑏 by selecting 

any 𝑥𝑗 that lies on the margin boundary and solving the equation: 

𝑏 = 1 − (∑𝛼𝑗

𝑁

𝑖=1

⋅ 𝑦𝑗 ⋅ 𝑥𝑖
𝑇) ⋅ 𝑥(𝑁), for 𝑦(𝑁) = 1 . 

Based on the result, we decide if 𝑥 belongs to the positive or negative class, depending on 

whether the output is greater than zero or not. 

6.2.3 SVM Kernel Trick 

This method involves transforming the data from its original space ℝ𝑛 into a higher-di-

mensional space ℝ𝑁, such that the resulting hyperplane can separate the data in that new 

space. This higher-dimensional space is called the feature space, and the function 

𝜙:ℝ𝑛 → ℝ𝑁, which maps the original data to the feature space, is known as the feature 

map. Let x be a vector from the input space of dimension 𝐷, and let {𝜙𝑗(x)}𝑗=1
∞  represent 

a set of nonlinear functions that map from a 𝐷-dimensional space to an infinite-dimen-

sional feature space. In this feature space, the hyperplane can be defined as: 

𝑤𝑇 ⋅ 𝜙(𝑥) + 𝑏 = 0 , 

where 𝜙(𝑥) is the feature vector in the infinite-dimensional space, and 𝑤 is the weight 

vector in that same space. With 𝑁𝑠 representing the number of support vectors, we can 

express the weight vector as: 

𝑤 =∑𝛼𝑖

𝑁𝑠

𝑖=1

⋅ 𝑦𝑖 ⋅ 𝜙(𝑥𝑖) . 
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However, we don’t need the weight vector itself; all we require is the decision boundary, 

which can be expressed as: 

∑𝛼𝑖

𝑁𝑠

𝑖=1

⋅ 𝑦𝑖 ⋅ 𝜙
𝑇(𝑥𝑖)𝜙(𝑥) = 0 . 

What we need are the inner products between the support vectors, ⟨𝜙(𝑥𝑖), 𝜙(𝑥)⟩. These 

inner products can be calculated using a kernel function: 

𝑘(𝑥, 𝑥𝑖) = 𝜙
𝑇(𝑥𝑖)𝜙(𝑥) = ⟨𝜙(𝑥𝑖), 𝜙(x)⟩ . 

By specifying the kernel 𝑘(𝑥, 𝑥𝑖), we can avoid explicitly computing the weight vector 𝑤 

. With the kernel, we can fully leverage the fact that: 

∑𝑤𝑗

∞

𝑗=1

⋅ 𝜙𝑗(𝑥) + 𝑏 =∑𝛼𝑖

𝑁𝑠

𝑖=1

⋅ 𝑦𝑖 ⋅ 𝑘(𝑥, 𝑥𝑖) + 𝑏 = 0 . 

In the dual problem, the scalar product 𝑥𝑖
𝑇𝑥𝑗 = ⟨𝑥𝑖, 𝑥𝑗⟩ is replaced by the kernel 𝑘(x𝑖 , 𝑥𝑗), 

while everything else remains the same. Given the training sample {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  with 𝑦𝑖 ∈

{−1,+1}, we want to find the Lagrange multipliers {𝛼𝑖}𝑖=1
𝑁  that maximize: 

∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖

𝑁

𝑗=1

𝑁

𝑖=1

𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖, 𝑥𝑗) 

subject to the constraints: 

∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2, … ,𝑁 , 

where 𝐶 is a user-specified positive parameter. To compute the output, we follow these 

steps: 
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6.2.4 SVM Adversarial Attack 

In this section, we describe a method for generating adversarial examples that target Sup-

port Vector Machines (SVM) using a Radial Basis Function (RBF) kernel. The attack it-

eratively perturbs an input 𝑥 to alter the SVM’s classification by leveraging the decision 

function 𝑓(𝑥) and its gradient ∇𝑥𝑓(𝑥). The perturbation is designed to be proportional to 

the function value and gradient, ensuring that the attack effectively drives the input across 

the decision boundary, resulting in a misclassification. 

Let 𝑓(𝑥) represent the SVM decision function, defined as: 

𝑓(𝑥) =∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏 . 

where 𝛼𝑖 are the Lagrange multipliers associated with the support vectors, 𝑦𝑖 ∈ {−1,1} 

are the labels of the support vectors 𝑥𝑖, and 𝐾(𝑥, 𝑥𝑖) = exp (−
∥𝑥−𝑥𝑖∥

2

2𝜎2
) is the RBF kernel 

with width parameter 𝜎. The SVM assigns a class label to an input 𝑥 based on the sign of 

𝑓(𝑥). The goal of the adversarial attack is to find a perturbed input 𝑥𝑎𝑑𝑣 such that the 

sign of 𝑓(𝑥𝑎𝑑𝑣) is different from the sign of 𝑓(𝑥), thereby causing a misclassification. 

To achieve this, we iteratively perturb the input in the direction that maximizes the 

change in the decision function. The gradient of the decision function with respect to 𝑥 is 

given by: 

∇𝑥𝑓(𝑥) = −
1

𝜎2
∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝐾(𝑥, 𝑥𝑖)(𝑥 − 𝑥𝑖) . 

This gradient points in the direction of the steepest change in 𝑓(𝑥). The perturbation at 

each step is calculated as follows: 

𝜖 =
𝑓(𝑥)

∥ ∇𝑥𝑓(𝑥) ∥2
∇𝑥𝑓(𝑥) . 

This formulation ensures that the magnitude of the perturbation is proportional to the de-

cision function value 𝑓(𝑥), scaled by the squared magnitude of the gradient ∥ ∇𝑥𝑓(𝑥) ∥
2, 
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and applied in the direction of the gradient. This adaptive perturbation allows the adver-

sarial example to efficiently cross the decision boundary while keeping the perturbation 

as small as possible. 

The adversarial example 𝑥𝑎𝑑𝑣 is updated iteratively using the perturbation: 

𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣 + 𝜖 . 

At each step, the perturbation is recalculated using the updated 𝑥𝑎𝑑𝑣, and the process is 

repeated until the classification of 𝑥𝑎𝑑𝑣 differs from the original classification of 𝑥, i.e., 

until sign(𝑓(𝑥𝑎𝑑𝑣)) ≠ sign(𝑓(𝑥)). 

The intuition behind this attack is that by computing the perturbation as a function of both 

𝑓(𝑥) and ∇𝑥𝑓(𝑥), we ensure that the adversarial modification is aligned with the SVM 

decision boundary, leading to a more efficient and targeted attack. This approach also 

minimizes the overall perturbation applied to the input by adapting the step size based on 

the function value and gradient magnitude, making the adversarial example less detecta-

ble while still achieving misclassification. 

The iterative nature of the attack allows for a controlled traversal of the decision bound-

ary, ensuring that the adversarial example is incrementally modified until the desired mis-

classification is achieved. By applying the perturbation iteratively, the attack can finely 

tune the adversarial example to achieve the minimal necessary perturbation for misclassi-

fication. This approach provides a balance between the effectiveness of the attack and the 

perceptibility of the perturbation, making it well-suited for generating adversarial exam-

ples that are both effective and subtle. 

Input: Input sample 𝑥, SVM decision function 𝑓(𝑥), gradient of decision function 

∇𝑥𝑓(𝑥), support vectors 𝑥𝑖, labels of support vectors 𝑦𝑖, Lagrange multipliers 𝛼𝑖, kernel 

width 𝜎 Initialize: 𝑥𝑎𝑑𝑣 ← 𝑥 Compute the gradient ∇𝑥𝑓(𝑥𝑎𝑑𝑣) =

−
1

𝜎2
∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖𝐾(𝑥𝑎𝑑𝑣, 𝑥𝑖)(𝑥𝑎𝑑𝑣 − 𝑥𝑖) Compute the perturbation 𝜖 =

𝑓(𝑥𝑎𝑑𝑣)

∥∇𝑥𝑓(𝑥𝑎𝑑𝑣)∥
2 ∇𝑥𝑓(𝑥𝑎𝑑𝑣) Update the adversarial example 𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣 + 𝜖 Output: Adver-

sarial example 𝑥𝑎𝑑𝑣. 
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6.2.5 Quantum Kernels for Adversarial Support Vector Machines 

Quantum computing enhances classical machine learning models, particularly through the 

use of quantum kernels in Support Vector Machines (SVMs). Quantum kernels rely on 

quantum feature maps such as the ZZ features maps, which transform classical data into 

high-dimensional quantum spaces through parameterized quantum circuits. These circuits 

make use of quantum mechanical properties such as superposition and entanglement, al-

lowing quantum systems to represent and process adversarial data in ways that are diffi-

cult for classical SVMS to replicate during adversarial training. The quantum transfor-

mation enables SVMs to classify complex, non-linearly separable data with adversarial 

perturbations in an efficient manner. 

Classical SVMs utilize the Radial Basis Function (RBF) kernel to classify non-linear data 

by mapping the input into a higher-dimensional feature space. While effective, the RBF 

kernel requires tuning of parameters such as 𝜎, which controls the kernel width. Addi-

tionally, its computational cost can increase significantly for adversarial training, as the 

process of explicitly mapping adversarial data into higher-dimensional spaces becomes 

resourceful. For adversarial training, where the SVM model must handle adversarial data 

𝑥𝑎𝑑𝑣 in addition to natural data 𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙, the computational cost is impacted by the in-

creased complexity of mapping data into higher-dimensional feature spaces. The kernel 

function must now handle both natural and adversarial data: 

𝐾(𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙, 𝑥𝑎𝑑𝑣) = exp(−
∥ 𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙 − 𝑥𝑎𝑑𝑣 ∥

2

2𝜎2
) . 

As adversarial data is generated to be near the decision boundary, the distance ∥

𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙 − 𝑥𝑎𝑑𝑣 ∥ may be small, increasing the difficulty of classification. For illustra-

tion, suppose 𝐴𝑛𝑎𝑡𝑢𝑟𝑎𝑙 represent the accuracy of the SVM on natural data, 𝐴𝑎𝑑𝑣 represent 

the accuracy of the SVM on adversarial data generated using the model, and 𝑓𝑠𝑣𝑚 denote 

the SVM model pretrained on natural data. If the 𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙 be the natural data samples, 

and 𝑥𝑎𝑑𝑣 be the adversarial data samples generated from 𝑓𝑠𝑣𝑚, then the accuracy on natu-

ral data can be defined as: 
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𝐴𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 𝔼𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙[𝕀(𝑓𝑠𝑣𝑚(𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙) = 𝑦𝑛𝑎𝑡𝑢𝑟𝑎𝑙)] . 

where 𝑦𝑛𝑎𝑡𝑢𝑟𝑎𝑙 is the true label of the natural data, and 𝕀(⋅) is an indicator function that 

returns 1 if the prediction is correct and 0 otherwise. 

Similarly, the accuracy on adversarial data is given by: 

𝐴𝑎𝑑𝑣 = 𝔼𝑥𝑎𝑑𝑣[𝕀(𝑓𝑠𝑣𝑚(𝑥𝑎𝑑𝑣) = 𝑦𝑎𝑑𝑣)] , 

where 𝑦𝑎𝑑𝑣 represents the true label of the adversarially perturbed data. 

Since adversarial data is designed to deceive the model, the relationship between the two 

accuracies can be expressed as: 

𝐴𝑎𝑑𝑣 < 𝐴𝑛𝑎𝑡𝑢𝑟𝑎𝑙 , 

which indicates that the SVM model performs less accurately on adversarial data than on 

natural data. 

In contrast, quantum kernels automatically encode classical data into an exponentially 

large quantum feature space, without requiring manual parameter tuning. The feature 

space has a dimension of 2𝑚, where 𝑚 is the number of qubits. The quantum circuits en-

code data into these large feature spaces through superposition and entanglement, allow-

ing quantum kernels to represent complex relationships between data points through 

quantum interactions. Quantum feature maps are used to encode classical data into quan-

tum states by leveraging quantum circuits composed of layers of quantum gates. For in-

stance, the Pauli feature map, proposed by Havlicek et al., which is specifically designed 

to be difficult to simulate classically. These quantum circuits consist of layers of Hada-

mard gates, interleaved with entangling gates such as CNOT gates. A Pauli feature map 

of depth 𝑑 transforms a classical input vector 𝑥 of dimension 𝑧 = 𝑚 into a quantum state 

through a sequence of quantum gate operations. This transformation can be expressed as: 

𝑈𝜙(𝑥) =∏𝑈𝜙
𝑑

(𝑥)𝐻𝑚 , 
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In this equation, Pauli gates 𝑃𝑗 ∈ {𝐼, 𝑋, 𝑌, 𝑍} are used, and the index 𝑆 determines the in-

teractions between qubits, defining how they are connected. Adversarial data is encoded 

into the function 𝜙𝑆(𝑥𝑎𝑑𝑣), which captures the interactions between both single and 

multi-qubit systems. This encoding process allows the quantum SVM to represent data in 

a high-dimensional quantum feature space, facilitating classification. 

A fundamental property of quantum circuits is their reversibility. Given an input state 

|0⟩𝑚, a parameterized quantum circuit 𝑈𝜙(𝑥𝑎𝑑𝑣) maps the adversarial data into a quan-

tum feature space. Applying the inverse of this circuit, 𝑈𝜙
†(𝑥𝑎𝑑𝑣), restores the original 

state: 

𝑈𝜙
†(𝑥𝑎𝑑𝑣)𝑈𝜙(𝑥𝑎𝑑𝑣)|0⟩

𝑚 =|0⟩𝑚 , 

This reversible nature allows for a comparison of different data points. If two adversarial 

data points, 𝑥𝑎𝑑𝑣 and 𝑦𝑎𝑑𝑣, are compared by first applying the quantum circuit for 𝑥𝑎𝑑𝑣 

and then applying the inverse circuit for 𝑦𝑎𝑑𝑣, the system can be measured to determine 

how similar the two points are. If the points are similar, the probability of measuring the 

state |0⟩𝑚 will be high. On the other hand, if the points are dissimilar, this probability de-

creases: 

𝑈𝜙
†(𝑦𝑎𝑑𝑣)𝑈𝜙(𝑥𝑎𝑑𝑣)|0⟩

𝑚 , 

This forms the basis of the quantum kernel. In classical SVMs, kernel functions compute 

the similarity between data points by evaluating inner products in a feature space. A 

quantum kernel follows a similar approach but instead computes the inner product be-

tween quantum states associated with the classical data points. For two points 𝑥𝑎𝑑𝑣 and 

𝑦𝑎𝑑𝑣, the quantum kernel is expressed as: 

𝑘(𝑥𝑎𝑑𝑣, 𝑦𝑎𝑑𝑣) = |⟨𝜙(𝑥𝑎𝑑𝑣)|𝜙(𝑦𝑎𝑑𝑣)⟩|
2 =|⟨0𝑚|𝑈𝜙

†(𝑦𝑎𝑑𝑣)𝑈𝜙(𝑥𝑎𝑑𝑣)|0
𝑚⟩|2 , 

The kernel value is estimated by measuring the quantum state multiple times and record-

ing the number of systems that collapses to the state |0⟩𝑚. The number of times provides 



  

139 
 

an estimate of the similarity between the points 𝑥𝑎𝑑𝑣 and 𝑦𝑎𝑑𝑣, with a higher kernel value 

indicating greater similarity. 

The process of leveraging quantum kernels in SVMs integrates the quantum kernel com-

putation with classical kernel methods. The quantum kernel is used in place of traditional 

kernels by generating the Gram matrix (or kernel matrix) using a quantum computer (or 

simulator). The remaining computations, such as solving the optimization problem in the 

SVM, are carried out on a conventional computer. One common approach is to pass the 

quantum kernel function to a classical algorithm, or alternatively, to precompute the train-

ing and testing kernel matrices. The internal representations of the quantum kernel itself 

are often hidden from the external user, as the quantum system directly provides the nec-

essary kernel evaluations. 

The Pauli Feature Map and the ZZ Feature Map serve as concrete implementations of 

quantum kernels, enabling non-linear interactions between features to be modeled 

through entangling operations between qubits. The ZZ Feature Map is a specific case of 

the Pauli feature map that uses Z gates to perform entangling operations between pairs of 

qubits. These transformations allow for complex data representations that are not feasible 

in classical feature spaces [201-205]. 

 

Figure 6. 4 Circuit diagram of 4 qubit states ZZ feature mapping and entanglement oper-
ation for Quantum Kernel 
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6.2.5 Enforcing correlation between Defender and adversarial attackers 

Considering the payoff matrix of the defender and the adversarial attack where the defender 

has 2 strategies 𝐷𝑖(𝑖 = {1,2}) using adversarial trained classical advSVM or QSVM while 

the attacker has 2 strategies 𝑇𝑖(𝑖 = {1,2}) whether to use a strong perturbation attack data 

𝑥𝑎𝑑𝑣  that is more resourceful quantified as 𝜆, and risks detection or use a milder perturba-

tion attack which is less resourceful and less visually perceptible correlated as the distance 

𝑑 between the original image 𝑥𝑛𝑎𝑡𝑢𝑟𝑎𝑙  and perturbed image 𝑥𝑎𝑑𝑣. The advSVM is trained 

on the worst-case scenario of adversarial perturbation available to aggressive an adversary 

based on the k(k=300) value of its PGD attack. The payoff of the stealthy adversary is the 

same as the aggressive adversary but discounted with the distance between the original 

image and the perturbed image. The discount penalizes images that are too disparate from 

the original in terms of the level of perturbation and measured as the average distance from 

the original. Given that 𝑥𝑎𝑑𝑣   is the generated adversarial sample by the attacker, and 𝒟 is 

the size of the test dataset the discount factor is defined as follows 

𝒹 =
1

|𝒟|
∑

||𝑥′ − 𝑥||

||𝑥||2
𝑥∈𝒟

 

𝑃𝑎𝑦𝑜𝑓𝑓𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 = 𝑒𝑟𝑟𝑜𝑟𝑙𝑒𝑎𝑟𝑛𝑒𝑟 −
𝜆

𝑑
. 

 

 

Table 6. 1 Payoff Matrices for Defender and Adversarial Attacker for Quantum Game 

 𝑇1 𝑇2 

𝐷1 (𝑎, 𝑤) (𝑏, 𝑥) 

𝐷2 (𝑐, 𝑦) (𝑑, 𝑧) 
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Given that the defender payoff 𝑐 > 𝑎 > 𝑑 > 𝑏 and similarly 𝑦 > 𝑤 > 𝑧 > 𝑥 is the adver-

sary payoff hence 𝐷2𝑇2 is the dominant strategy for both players and the Nash equilib-

rium for the game. Such that if the defender selects a QSVM model corresponding to 𝐷1, 

the attacker having complete information will select a stealthy strategy 𝑇2,  that still re-

sults in attack success however less costly. If the defender selects adversarial SVM corre-

sponding to strategy 𝐷2 the attacker still selects 𝑇2 making this a dominant strategy for 

the attacker. However, the strategy 𝐷1𝑇1 has the highest payoff and appeals to the de-

fender but cannot be achieved using the classical game theory framework. In this situa-

tion, the defender prefers a dominant strategy of deploying an adversarial trained classical 

SVM not only because of accuracy on adversarial dataset 𝑥𝑛𝑎𝑡 but also for the relative 

low resource in training on any modern CPU/GPU, however for robustness against adver-

sarial attack and high-dimensional data the defender prefers to deploy QSVM requiring 

quantum simulators with potential exponential speed-ups.  

Rather than classically choosing between pure strategies probalistically as mixed strate-

gies, the quantum game player applies unitary operator 𝑈(𝜑,𝛼,𝜃) that superimposes both 

parties’ strategies and control gate 𝐽 that entangles the defender and adversarial qubit ma-

nipulation such that strategies become correlated. 

Quantum Game 

The game is initially set up in the qubit state |00⟩, and the players select their quantum 

strategies  𝑈𝑖  corresponding the rotation 𝜃𝑖 of the qubit. The quantum strategies of the 

players 𝑖 = 1,2 is the set of 2 × 2 matrices  𝑈(𝜑𝑖,𝛼𝑖,𝜃𝑖)  thereby leading the system from 

the initial state to a final state |Ψ⟩ such that 

|Ψ⟩ = (𝑈1⨂𝑈2)|00⟩ = 𝑈1 [
1
0
]⨂ 𝑈2 [

1
0
] 

where 𝑈𝜑,𝛼,𝜃 = (
ℯ 𝑖𝜑 cos

𝜃

2

−ℯ−𝑖𝛼 sin
𝜃

2

ℯ𝑖𝛼 sin
𝜃

2

ℯ−𝑖𝜑 cos
𝜃

2

)  0 ≤ 𝜑, 𝛼 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋 
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|Ψ⟩ =

[
 
 
 
[𝑈1]11 [𝑈2]11
[𝑈1]11 [𝑈2]21
[𝑈1]21 [𝑈2]11
[𝑈1]21 [𝑈2]21]

 
 
 

= [

∝
𝛽
𝛾
𝛿

] 

=∝ |00⟩ + 𝛽|01⟩ + 𝛾|10⟩ + 𝛿|11⟩ . 

The amplitudes 𝛼, 𝛽, 𝛿, 𝑑 are complex numbers that are determined by the players’ se-

lected strategy given that |∝|2 + |𝛽|2 + |𝛾|2 + |𝛿|2 = 1. The payoff 𝑃  for each player is 

calculated as: 

𝑃𝑑𝑒𝑓 = 𝑎|∝|
2 + 𝑏|𝛽|2 + 𝑐|𝛾|2 + 𝑑|𝛿|2 

𝑃𝑎𝑑𝑣 = 𝑤|∝|
2 + 𝑥|𝛽|2 + 𝑦|𝛾|2 + 𝑧|𝛿|2 . 

The payoff of both players is a classical mixed strategies where the defender chooses to 

use the QSVM classifier with a probability [𝑈1]11  and use adversarial trained classical 

SVM with probability [𝑈1]21 . To obtain distinct payoff different from the classical, the 

qubits are entangled using and entanglement 𝐽 operator before the manipulation by both 

parties after which the final state is given by 𝑈1⨂𝑈2𝐽|00⟩ 

|𝜓′⟩ = 𝐶𝑁𝑂𝑇. (𝑈1⨂𝑈2)|00⟩ 

|𝜓′⟩ = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

] . [
[𝑈1]11 [𝑈2]11 ⋯ [𝑈1]12 [𝑈2]12

⋮ ⋱ ⋮
[𝑈1]21 [𝑈2]21 ⋯ [𝑈1]22 [𝑈2]22

].[

1
0
0
0

] = [

∝′

𝛽′

𝛾′

𝛿′

] . 

The resulting state |𝜓′⟩ is entangled, since the product of their outer probability ampli-

tude of the vector is not equal to the product of the inner probability amplitude. The en-

tanglement leads to correlation between both parties such that if the defender selects a 

strategy there are guaranteed that the adversarial will select a particular corresponding 

strategy without any prior communication between the players. 

6.3 Experiment 

We demonstrated the effectiveness of the quantum SVM kernel defense, by implementing 

a radial basis function gradient descent attack on MNIST and CIFAR-10 image datasets. 
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In our experiment we considered a classical SVM with RBF kernel and SVM with a 

quantum kernel, using two classes from both MNIST and CIFAR-10 dataset, one as be-

nign data the other as adversarial data.  The datasets were split into training and test sets, 

the dimensionality of each data was reduced to 8, using PCA to make them compatible 

with ZZ feature mapping of the quantum circuit. The RBF kernel function is used to com-

pute the perturbation using the coefficient of the support vectors expressed in the equa-

tion to generate the respective adversarial sample. The number of steps in the direction of 

the deepest descent is controlled by k, which correlates to the strength of adversarial at-

tack, the table below shows the accuracy of attack declines with increase value of k for 

both MNIST and CIFAR-10 datasets. Using adversarial training, the classical SVM 

model is trained to obtain an SVM model that is more robust to the attack. The accuracy 

results show some improvement compared to the natural model. For the QSVM, the ad-

versarial dataset is reduced to 4 features using PCA corresponding to the number of 

qubits to be used in the experiment and normalized to between I and -1. 

 

Figure 6. 5 Entanglement Operation for Quantum Game formulation 

 

Using Qiskit, we encoded the adversarial data into the quantum state space by utilizing 

the quantum feature map. The ZZ feature maps the classical adversarial feature vector to 

the quantum state by applying a unitary operation 𝑈∅ on the initial qubit state |0⟩𝑛 repre-

senting the encoded adversarial data shown in the circuit diagram. The quantum feature 

maps result in a quantum kernel which corresponds to the similarity measure for each pair 

of datapoints in the training adversarial data 𝑥𝑎𝑑𝑣 and 𝑦𝑎𝑑𝑣 we used the training and test 

kernel matrices in the classical SVM algorithm. The strength of the adversarial data 𝑥𝑎𝑑𝑣 
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was varied in the adversarial attack to observe the robustness of the QSVM shown in ta-

ble below. 

 

 

 

Table 6. 2 Table showing the accuracy on of the advSVM and QSVM model after PGD ad-
versarial using various value of k for FGSM dataset 

k AdvSVM  QSVM 𝑑 

25 0.81 0.7 0.1290 

30 0.51 0.73 0.1489 

35 0.51 0.73 0.1635 

45 0.49 0.62 0.1871 

100 0.51 0.61 0.2508 

150 0.48 0.52 0.2651 

200 0.44 0.51 0.2687 

250 0.44 0.47 0.2702 

300 0.46 0.49 0.2705 
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Table 6. 3 Table showing the accuracy of the advSVM and QSVM model after PGD adver-
sarial using various value of k for CIFAR-10 dataset 

k AdvSVM  QSVM 𝑑 

25 0.72 0.74 0.1610 

30 0.45 0.62 0.1523 

35 0.44 0.59 0.1810 

45 0.40 0.59 0.2012 

100 0.40 0.55 0.2723 

150 0.39 0.52 0.2946 

200 0.35 0.51 0.3001 

250 0.35 0.48 0.2901 

300 0.32 0.47 0.3105 
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Figure 6. 6 Robust Accuracy for MNIST dataset on AdvSVM and QSVM under PGD At-
tack=[25,300] 
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Figure 6. 7 Robust Accuracy forCIFAR-10dataset onAdvSVM and QSVM 

 

Figure 6. 8 Adversarial Robustness for AdvSVM and QVSM under PGD Attack 
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Using quantum games, we correlated the adversarial attack and defense strategies to en-

sure the defender selects the optimal defensive state for maximum accuracy. By varying 

the angle 𝜃𝑖  the strength of entanglement between both qubits varies, allowing higher 

payoffs through modifying the amplitudes affecting the final state probabilities. 

 

Figure 6. 9 Simulation of Payoff for Defender and Attacker in a Quantum Game Formula-
tion 

6.4 Discussion 

From our experiment, we observed that the generated adversarial samples increase in 

strength as the PGD steps increase. The impact of the adversarial attack is observed in fig 

which shows the gradual reduction of accuracy of both models advSVM and QSVM 

model. However, the QSVM model showed more robustness to the same attack and its 

accuracy was consistently higher than those of the advSVM model for the MNIST and 

CIFAR-10 dataset. Hence, the QSVM model is more robust in the face of adversarial at-

tack compared to an advsQSVM trained on adversarial data. We evaluated the efficacy of 

quantum enhanced strategies in the adversarial setting by simulating a quantum game 
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between a defender implementing a QSVM and advSVM against an gradient based ad-

versarial attacker to obtain optimal payoff for dynamic interaction between both players.  

We used a 2-qubit quantum circuit each qubit representing the strategy of the players, 

qubit 0 for the defender and qubit 1 for the adversarial attacker. The initial state of the 

qubit |00⟩ is entangled using a Hadamard and CNOT gate, followed by the application of 

quantum strategies parameterized by angles 𝜃 from 0 to 𝜋, with 𝜙 =
𝜋

2
. The attacker ap-

plies a fixed classical strategy with 𝜃 = 𝜋 and 𝜙 = 0. After the strategy is selected, an in-

verse entanglement operation 𝐽† is applied before measurement. The simulation was iter-

ated over 50 evenly spaced values of 𝜃, and the expected payoffs for both players were 

calculated at each point. Results in Figure 3 show a clear payoff gradient favouring quan-

tum strategies. The defender's strategy is parameterized by an angle 𝜃 , varied from to 0 

to 𝜋 . The attacker uses a fixed classical strategy with 𝜃 = 𝜋. The circuit includes an en-

tanglement step (Hadamard and CNOT), player strategies, and disentanglement before 

measurement. 

For one iteration at 𝜃 = 𝜋 2⁄  , the measured output was: 

′00′ ∶ 320, ′01′ ∶ 180, ′10′ ∶ 140, ′11′ ∶ 384 

Probabilities:  

𝑃00 = 0.312, 𝑃01 = 0.176, 𝑃10 = 0.137, 𝑃11 = 0.375  

Payoff matrix: 

𝑃𝑎𝑦𝑜𝑓𝑓(𝐷𝑖,𝑇𝑗) =

{
 
 

 
 (0.62, 0.38)  𝑖𝑓 (𝑖, 𝑗) = (0,0)

(0.28, 0.60) 𝑖𝑓 (𝑖, 𝑗) = (0,1)
(0.60, 0.28) 𝑖𝑓 (𝑖, 𝑗) = (1,0)

(0.52, 0.48) 𝑖𝑓 (𝑖, 𝑗) = (1,1)

 

Expected payoffs: 

𝑃𝐷 = 0.312 × 0.62 + 0.176 × 0.28 + 0.137 × 0.60 + 0.375 × 0.48 = 0.442 

This shows that at 𝜃 = 𝜋 2⁄ , the defender receives a higher payoff. The entangled quan-

tum strategy allows the QSVM to outperform the classical strategy under the defined 
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matrix, which reflects asymmetric outcomes for cooperative and defective behavior. Re-

peating the simulation for different values of 𝜃 reveals that the payoff improves as the de-

fender shifts from classical to quantum strategies. This escape from classical equilibrium 

traps highlights the strategic advantage of quantum correlations in adversarial scenarios. 

 

 

6.5 Findings Summary 

The study demonstrated the robustness and advantage of QSVM in adversarial settings. 

Evaluating adversarial perturbed samples for MNIST and CIFAR-10 datasets, the QSVM 

consistently outperformed its adversarial trained advSVM counterpart, maintaining 

higher accuracy with increasing perturbation strength. Furthermore, by modelling the in-

teraction between a defender and an attacker, where the defender has 2 strategies namely 

deploying QSVM and advsm, the quantum enhances strategies enable the defender to es-

cape and achieve higher payoffs. These findings underscore the potential of quantum 

learning models to adaptively and optimally respond to adversarial threats, establishing 

QSVM as a resilient defense paradigm in defending against adversarial attacks. The im-

proved robustness observed after adversarial retraining supports the hypothesis that 

weighted Stackelberg reinforcement enhances resilience by emphasizing high-risk sam-

ples during optimization. However, the slight drop in clean-data accuracy confirms the 

classical robustness–generalization trade-off. 

Models such as WARS and QSVM demonstrate that integrating game-theoretic and 

quantum principles can mitigate this trade-off by redistributing learning focus adaptively. 

This behaviour aligns with theoretical expectations of mixed-strategy equilibria, where 

probabilistic defences yield improved average-case robustness against heterogeneous ad-

versaries 
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Chapter 7 

Conclusion and Future Work 

7.1 Research Summary 

In this paper, we present an adversarial training method formulated as a Weighted Adver-

sarial Stackelberg game, developed to enhance the robustness of MobileNet CNN mod-

els. Our method incorporates both a strategic game-theoretic framework and reinforce-

ment learning. We demonstrate how the Stackelberg equilibrium contributes to reducing 

MobileNet’s vulnerability to adversarial perturbations. We further improve this defense 

mechanism by integrating the SARSA reinforcement learning algorithm, which enables 

the model to adaptively refine its parameters during training. The combination of the 

Stackelberg game and SARSA algorithm strengthens MobileNet's ability to handle input 

manipulations and extends the model's applicability to other CNN architectures. 

Our Stackelberg game formulation focuses on assigning different weights to clean and 

adversarial samples during model training. These weights are adjusted to give higher em-

phasis to adversarial data during testing. This prioritization effectively minimizes the mis-

classification rate caused by adversarial interference. Through this setup, we are able to 

derive a deterministic strategy model with learning parameters optimized using the 

Stackelberg equilibrium conditions. The result is a MobileNet variant that exhibits better 

generalization and maintains classification accuracy in the presence of both targeted and 

untargeted attacks. 

Beyond MobileNet, we validate our method across other CNN models, demonstrating 

consistent improvements in robustness. This suggests that the proposed framework can 

serve as a general defense approach in adversarial learning. Our contributions also 
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highlight the potential for combining reinforcement learning with game-theoretic strate-

gies to build adaptable, scalable, and attack-resilient deep learning systems. 

We develop a Bayesian Stackelberg game framework in which the defender, modeled as 

a machine learning classifier, optimizes its strategy in response to multiple intelligent ad-

versaries. The defender does not have complete knowledge of the specific type of adver-

sary it will face but holds prior beliefs about the distribution of possible adversary types. 

Each adversary, in turn, has access to a range of attack strategies. This setting reflects 

real-world security scenarios where adversaries are diverse and unpredictable. 

Traditional adversarial learning approaches often focus on defending against a single, 

static type of attacker with a fixed strategy and payoff function. In contrast, our frame-

work accounts for uncertainty and variability in adversarial behavior. Using a nested 

Stackelberg game structure, the defender first models’ adversarial transformations on in-

put data and then searches for an optimal mixed strategy in a single-leader, multi-follower 

setting. This allows the defender to prepare for a wider spectrum of potential attacks. We 

evaluate different attack and defense strategies, including adversarial training. In our ex-

periments, models trained using the FGSMR method achieved higher accuracy on clean 

MNIST data compared to those trained with PGD, while also requiring less training time 

per epoch (Tianjin H. et al., 2020). 

To further enhance the framework, we introduce a variant of the Bayesian Stackelberg 

game where the defender, as the leader, directly anticipates and responds to the expected 

behavior of adversaries. Unlike classical game-theoretic models that assume perfect in-

formation or rely on equilibrium-based solutions, we incorporate uncertainty in the de-

fender's knowledge of the environment. Our contribution includes the use of the Decom-

posed Optimal Bayesian Stackelberg Solver (DOBSS), which allows the defender to 

compute an optimal leader strategy without requiring a full Nash equilibrium. This 

method identifies high-reward, non-equilibrium strategies by solving a single mixed-inte-

ger linear program, thereby improving computational efficiency (Paruchuri, 2008; Zhou 

et al., 2016). 
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The model enables the defender to compute a mixed strategy that maximizes expected 

payoff against a distribution of possible attackers. This is especially relevant in real-world 

environments where adversaries vary in behavior, knowledge, and goals. 

The formulation of this Bayesian Stackelberg game involves solving the payoff matrices 

associated with different defender and adversary strategies, using a probabilistic frame-

work to reflect uncertainty. We derive a mixed strategy solution that allows the defender 

to switch probabilistically between CNN models or decision rules, depending on the type 

of attacker encountered. This approach increases resilience to both known and unseen ad-

versarial tactics. Our results demonstrate that the mixed strategy approach derived from 

the Bayesian Stackelberg equilibrium provides more robust performance in classification 

tasks under adversarial conditions. It enables better generalization across different attack 

profiles while minimizing overall classification error. 

The integrated PGD is an efficient generator of adversarial samples compared to other 

methods on CIFAR, MNSIT and ImageNet dataset [49]. Using the PGD attack for each 

of the distance metric, more adversarial samples were obtained compared to other state of 

the arts methods. The 𝑙0 and 𝑙2 attack found adversarial samples with lower distortion 

than the other previously published attack methods and performed with a 100% success. 

The 𝑙∞ attacks with the PGD method have a higher success rate and quality compared to 

previous works. For instance, on the ImageNet dataset 𝑙∞ attacks have high attacks suc-

cess rate that by only flipping the lowest bit of each pixel one can change the classifica-

tion of an output label without changing the visual perception of the output image. Hence, 

the PGD is a better baseline for developing an effective adversarial sample to be inte-

grated with the JND image masking algorithm for an overall improved attack sample. 

Furthermore, JND generated images can successfully fool an already trained Inception v3 

image classifier as well as a RetinaNet object detector, results from experiments show 

that JND adversarial images have higher quality compared to state-of-the-art generators 

especially when input images with high resolutions are used. Therefore, our combination 

of the JND and PGD algorithm as a method to develop adversarial samples with im-

proved quality will result to an efficient and less time-consuming process of adversarial 

attack generation. 
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The study demonstrated the robustness and effectiveness of quantum support vector ma-

chines (QSVM) when subjected to adversarial scenarios. Using adversarially perturbed 

samples from the MNIST and CIFAR-10 datasets, QSVM consistently achieved higher 

classification accuracy than the adversarially trained classical support vector machine 

(advSVM), particularly as the strength of the perturbations increased. The QSVM main-

tained performance across various perturbation magnitudes, indicating its ability to pre-

serve decision boundaries and withstand input manipulations that degrade classical mod-

els. 

The analysis modeled the interaction between a defender and an attacker, where the de-

fender selected between two strategies using QSVM or using an adversarially trained 

SVM. The attacker employed gradient-based perturbations. Results showed that quan-

tum-enhanced strategies enabled the defender to break free from suboptimal equilibrium 

positions common in classical frameworks, achieving higher payoff in a game-theoretic 

context. This advantage stemmed from the entangled nature of the strategies in the quan-

tum domain, which allowed the defender to influence the attacker's outcome without ex-

plicit coordination. 

Overall, the findings support the view that quantum learning models are capable of adap-

tively responding to adversarial threats with enhanced resilience. The QSVM approach 

offers a path toward more secure and reliable classification systems in adversarial envi-

ronments. By exploiting quantum feature spaces and leveraging entanglement, QSVM es-

tablishes itself as a viable defense paradigm for machine learning applications exposed to 

adversarial interference. 

7.2 Future work 

Future work will explore applying the proposed Stackelberg reinforcement learning 

framework to transformer-based models and evaluating its effectiveness beyond CNNs. 

The approach can be extended to online learning scenarios where the defender adapts to 

changing adversarial behavior in real time. Incorporating this framework into federated 

learning setups will allow multiple agents to train collaboratively while handling adver-

sarial threats without centralized data sharing. Future studies can also investigate 
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integrating quantum classifiers into the Stackelberg model to assess the impact on model 

performance under adversarial conditions. Additional work will examine how the frame-

work performs against perceptually tuned adversarial examples generated using methods 

like PGD combined with JND masking.  

Although the results demonstrate promising robustness improvements, real-world deploy-

ment presents practical challenges. Quantum hardware still faces qubit-decoherence and 

scalability issues that limit large-scale quantum adversarial training. Similarly, adversari-

ally retrained models on edge devices may encounter energy and memory constraints, re-

quiring lightweight adaptations. 

Moreover, integration into safety-critical domains such as healthcare and autonomous 

systems introduces regulatory, privacy, and interpretability requirements. Addressing 

these socio-technical considerations will be essential for transitioning adversarially robust 

quantum models from laboratory environments to operational deployment. 

A practical limitation of adversarial training is its computational cost, particularly for em-

bedded or edge systems where processing and power resources are constrained. Each 

PGD iteration requires multiple gradient computations, resulting in quadratic growth in 

training time. 

Optimization strategies include: 

• Gradient approximation – using single-step or stochastic perturbations to approximate 

PGD; 

• Quantization-aware training – reducing precision to lower memory and computation 

without compromising robustness; 

• Model pruning and knowledge distillation – transferring adversarial robustness from 

large to lightweight models; and 

• Quantum-inspired parameter optimization, which can exploit quantum parallelism for 

faster convergence. 

Combining these methods can substantially reduce complexity while maintaining robust 

performance suitable for edge deployment. Testing the method across domains such as 

autonomous systems, medical data, and cybersecurity will help validate its 



  

156 
 

generalizability. Finally, integrating multi-objective optimization into the Stackelberg 

solver could improve its ability to balance model performance, robustness, and resource 

usage during training. 
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