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Abstract  

 

The immune-modulatory effects of probiotics were assessed following exposure of 

normal PBMC, cord blood cells, and the spleen-derived monocyte/macrophage cell line CRL-35 

9850 to Lactobacillus acidophilus LAVRI-A1, Lactobacillus rhamnosus GG, EPS-producing 

Streptococcus thermophilus St1275, Bifidobacteriun longum BL536, Bifidobacteriun lactis B94 

and Escherichia coli TG1 strains. Cell production of a panel of pro- and anti-inflammatory 

cytokines following bacterial stimulation was measured, using live, heat-killed or mock GIT-

exposed bacteria, and results show that i) all bacterial strains investigated induced significant 40 

secretion of pro- and anti-inflammatory cytokines from PBMC-derived monocytes/macrophages, 

(ii) cytokine levels increased relative to the expansion of bacterial cell numbers over time for 

cells exposed to live cultures. Bifidobacteria and Streptococcus thermophilus stimulated 

significant concentrations of TGF-β, an interleukin necessary for the differentiation of Treg/Th17 

cells, and as such, the study further examined the induction of Th17 and Treg cells after PBMC 45 

exposure to selected bacteria for 96 hours. Data show a significant increase in the numbers of 

both cell types in the exposed populations, measured by cell surface marker expression and by 

cytokine production. Probiotics have been shown to induce cytokines from a range of immune 

cells following ingestion of these organisms. These studies suggest that probiotics’ interaction 

with immune-competent cells produces a cytokine milieu, exerting immunomodulatory effects 50 

on local effector cells, as well as potently inducing differentiation of Th17 and Treg cells. 
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Introduction 60 

Commensal bacteria in the intestinal lumen play an important role aiding digestion and 

synthesis of vitamins and nutrients. The composition of the gut bacterial population is relatively 

stable over time, but this profile can vary considerably between individuals [1]. This balance can 

be disturbed by dietary changes, stress and antibiotic treatment. However, a healthy balance can 

be re-established with probiotic supplementation, mainly consisting of Bifidobacterium species 65 

and selected lactic acid bacteria (LAB), which protect the host by excluding pathogenic bacteria 

and promoting immune modulatory responses from the gut epithelia [2].  

T helper cell (Th) subsets are regulators of the adaptive immune response against 

infection. Th1-type cells produce cytokines which include, IL-2, TNF-α and IFN-γ, activate 

macrophages and promote cell-mediated immunity, protective against intracellular infections. 70 

Th2-type cells produce a variety of anti-inflammatory cytokines including IL-1 receptor 

antagonist (IL-1ra), IL-4, IL-5, IL-6, IL-10, and IL-13 and promote humoral immune responses 

against extracellular pathogens [7]. Th17 cells are a subset of CD4+ T cells that produce a pro-

inflammatory cytokine IL-17. Th17 cells have recently been shown to play a critical role in 

clearing pathogens during host defense reactions and in inducing tissue inflammation in 75 

autoimmune disease [Korn et al., 2009; 11]. Regulatory T cells (Treg) are thought to be the 

master regulators of the immune response in both humans and rodents. Defects in the 

transcription factor forkhead box P3 (FoxP3), which defines the Treg lineage, results in multiple 

autoimmune diseases and atopy [15, 16], demonstrating the central role of FoxP3+ CD4 cells in 

immune homeostasis..  80 

The probiotic, Lactobacillus (Lb) rhamnosus GG, has been shown to influence Th2-, 

Th1-, and Th17-mediated disorders [20, 21, 22]. In addition, increases in FoxP3 mRNA 

expression in peri-bronchial lymph nodes have been noted upon administration of 

Bifidobacterium lactis Bb12 and Lb. rhamnosus GG, suggesting the induction of regulatory cells 

by these strains [23]. The important discovery that TGF-β and IL-6 could promote Th17 85 

differentiation from naive T cells [24] prompted studies that confirmed that Treg can also be 

generated in vitro by stimulation with TGF-β in the absence of IL-6 [25, 26]. The remarkable 

balancing act of adaptive immunity to facilitate the targeted destruction of pathogens without 

excessive collateral damage to self is nowhere better exemplified than in the shared use of TGF-

β in controlling the newly described Th17 effector lineage and adaptive Treg development. 90 
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Probiotic bacteria can be potent inducers of cytokines, for example gram positive bacteria have 

been found to stimulate IL-12, while gram-negative bacteria tend to stimulate IL-10 production 

[32]. Several studies have demonstrated that selected probiotics are able to induce the production 

of pro-inflammatory cytokines by macrophages and Th1 cytokines by peripheral blood 

monocytes [33,34]. However, little is known about the effects of exposure time and bacterial 95 

state on the stimulation of cytokine production. As such, the aim of this study was to profile pro- 

and anti-inflammatory cytokines secretion from human PBMCs and the CRL-9850 cell line and 

the differentiation of Th17 or induced Treg cells following exposure to various strains of live, 

heat killed or gastrointestinal tract (GIT) simulated bacteria. 

 100 

Materials and methods 

 

Bacteria and cell lines  

Lb. acidophilus LAVRI-A1, Bifidobacterium (B.) lactis B94, and Lb. rhamnosus GG 

(LGG), were kindly provided by DSM Food Specialties (Moorebank, NSW, Australia), and 105 

Vaalia Parmalat Australia Ltd (South Brisbane, Queensland, Australia) respectively. 

Exopolysaccharides-producing Streptococcus (S.) thermophilus St1275, B. longum BL536, and 

pathogenic, Escherichia (E.) coli TG1 used as a Gram-negative control strain, were supplied by 

the culture collection of Victoria University (Melbourne, Australia). Strains were stored at -80°C 

in 40% glycerol. Sterile 10 mL aliquots of de Man Rogosa and Sharpe (MRS) broth (Sigma 110 

Chemical Co., St Louis, USA) supplemented with 0.05% L-cystein.HCl were inoculated with 

107 colony-forming units (CFU)/mL of LAVRI-A1 and LGG and were incubated at 37°C for 18 

h. For the propagation of E. coli and St1275, 107 CFU/mL of either strain was used to inoculate 

10 mL tryptic soy broth (BHI, Difco Laboratories, Sparks, MD, USA) or M17 broth (Amyl 

Media, Dandenong, Australia) respectively [35]. Following two successive transfers to fresh 10 115 

mL broth preparations, bacteria were grown for 18 hours log phase growth. Cultures were 

harvested at 1,360 x g for 30 min at 4°C. To heat kill, samples were incubated at 80°C for 30 

minutes. GIT simulated samples were treated as described below.  Following these 

manipulations, preparations were centrifuged and the pellet resuspended in PBS. Strains were 

washed three times in PBS and subsequently frozen at -80°C in aliquots of 107 CFU/vial in 120 

Iscove’s Modified Dulbecco’s Medium (IMDM) supplemented with 1% L-glutamine (Sigma). 
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The spleen-derived human CRL-9850 cell line was purchased from the American Type Culture 

Collection (ATCC, Manassas VA, USA). Cells were grown in ATCC complete growth medium 

supplemented with 1% antimycotic solution (Sigma). 

 125 

Simulated gastrointestinal digestion of bacteria 

The survival of gram-positive LAB and gram-negative bacteria in the gastrointestinal 

tract was investigated by simulating the physiological secretion of gastric acid and bile, in the 

stomach and the small intestine respectively.  The method described in previous studies [4, 36] 

was used with some modifications as described. To simulate bacterial digestion in the stomach, 130 

distilled-deionised water (40 mL) was added to 0.3 g of bacterial pellet, and the pH was adjusted 

to 2.0. Then, 0.25 g of freshly prepared pepsin solution (4% pepsin A (E.C. 3.4.23.1; Sigma, St. 

Louis, MO, USA) in 0.1M HCl, pH 2.0 was added and the volume was brought to 100 mL. 

Following incubation at 37°C for 2 h in a shaking water bath, the sample was incubated on ice, 

10 min, to stop pepsin digestion. For the subsequent intestinal digestion the pH of the gastric 135 

digests was brought to pH 5.2, then 0.6 g of freshly prepared pancreatin-bile extract mixture 

(pancreatin (0.04 g), from porcine pancreas, plus bile extract (0.25 g) (Sigma) dissolved in 10 

mL of 0.1M NaHCO3, pH 5.2 was added and incubated for an additional 2 h in the 37°C shaking 

water bath.  After a subsequent 10 minute incubation on ice, the pH was adjusted to 7.2 and 

samples were centrifuged (1,360 x g for 15 min, 4ºC), pellets washed in PBS, before 140 

resuspending in 30 mL PBS. 

 

Enumeration of bacterial cells 

For enumeration of bacterial cell number, 1 mL of each freshly prepared culture (live 

(untreated), GIT and killed) was 10-fold serially diluted and plated onto tryptic soy agar (E. coli), 145 

M17 agar (St1275), MRS agar (LAVRI-A1 and LGG) and MRS agar supplemented with 0.05% 

L-cystein.HCl (bifidobacteria), and anaerobically incubated for 72 h at 37°C [37]. For all 

bacterial strains, standard growth curves were produced by plotting optical density at 610 nm in 

MRS broth versus agar plate counts of freshly-prepared, serially-diluted cultures. These curves 

were fitted with logarithmic expressions (in order to calculate viable bacterial counts in freshly-150 

prepared cultures) of which each yielded r2 values of >0.985 (data not shown). 

 



 6 

Isolation of human peripheral mononuclear cells from buffy coat and cord blood using Ficoll 

gradient  

Human peripheral mononuclear cells were isolated from buffy coats (Australian Red 155 

Cross Blood Services (ARCBS), Melbourne, Australia) and cord blood (CB, Cord blood bank, 

Royal Children Hospital, Melbourne, Australia) by Ficoll paque gradient. PBMCs were isolated 

according to the methods described by de Roock et al., and Hessle et al. with minor 

modifications [38,32]. Briefly, buffy coats were diluted with an equal volume of PBS and 

layered on Ficoll-Paque Plus (GE Healthcare, Bio-Sciences, Uppsala, Sweden). Cells at the 160 

interphase were collected following centrifugation (680 x g, 25 min, 18°C) (Sorvall® RT7 

centrifuge, DuPont, Newtown, Ct. USA). Blood lymphocytes were washed once in cold PBS, 

and following centrifugation  (680 x g, 18°C, 10 min) the pellet was resuspended in 2 mL red 

blood cell lysis buffer (0.15 M NH4Cl, 0.01 M KHCO3 and 10 µM EDTA Na2.2H2O) and 

incubated 2 min, room temperature. The volume was then adjusted to 30 mL using sterile PBS 165 

and centrifuged. Following two subsequent washes, the cell pellet was resuspended in IMDM 

(Sigma) supplemented with 10% fetal bovine serum (FBS, GIBCO, Mulgrave, Australia), and 

antimycotic solution (Sigma, 10mg/L).   

 

Stimulation of human PBMCs and CRL-9850 cells with bacteria and cytokine quantification 170 

PBMCs/CRL-9850 cells were plated in 6-well tissue culture plates (Corning, Sigma) at 5 

x 106 cells/well and incubated at 5% CO2, 37°C for 24 h prior to stimulation with bacteria as 

described by Amrouche et al. [31]. Briefly, 106 freshly-prepared viable (live or GIT) or 

equivalent (~106 CFU/mL) heat-killed bacteria were added per 106 cells  and co-cultured for 72 h 

at 5% CO2, 37°C.  At 6, 12, 24, 48 and 72 h, 500 µL samples of the culture medium were 175 

collected and analysed for cytokine secretion by ELISA (BD) in accordance with the 

manufacturer’s instructions. Data are expressed as the mean cytokine response minus 

background (pg/mL) of each treatment from triplicate wells, plus or minus the standard error of 

the mean. 

 180 

Cell staining and Flow Cytometry analysis 

Treg/Th17 populations were characterized following PBMC/bacteria co-culture. Briefly, 

106 PBMC were co-cultured with either live or killed bacteria, lipopolysaccharides (LPS, Sigma) 
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or media alone, in a 24-well plate at 37°C in 5% CO2 for 96 h, then cells were washed twice 

using FACS buffer (PBS + 2% FCS) and centrifuged at 500 x g for 10 min. PBMC were 185 

resuspended at 106 cells/mL, and surface marker staining was performed using fluorescein 

isothiocynate (FITC) -labeled anti-human CD4, allophycocyanin -labeled anti-human 

CD25/CD3 (BD Pharmingen, California, USA), peridinin chlorophyll protein (PerCP) -labeled 

anti-human CD3 (Biolegend, San Diego, CA) and PerCP cyanine (Cy)5.5 -labeled anti-human 

CCR6 (CD196). Intracellular staining was done using phycoerythrin (PE) -labeled anti-human 190 

FoxP3/RORγt (BD Pharmingen and R&D systems, Minneapolis, USA respectively) according to 

the manufacturer instructions. Samples were read using a BD FACSCalibur, data acquired using 

CellQuest program (BD Biosciences), and analysis done using Gatelogic 3.07 software (Inivai, 

Australia). Absolute numbers of Treg cells and Th17 cells were calculated as a percentage of the 

total lymphocyte number.  195 

 

Statistical analysis 

All co-cultures were carried out in triplicate. Results obtained were analysed as a split 

plot in time design with 3 main factors: strains (6 levels) and treatments (3 levels) as the main 

plot and time (5 levels) as a subplot. The statistical evaluations of the data were performed using 200 

the General Linear Model [39]. Significant differences between treatments were tested by 

analysis of variance (ANOVA) followed by a comparison between treatments performed by 

Fisher’s least significant difference (LSD) method, with a level of significance of p<0.05. 

 

Results  205 

Cytokine secretion by PBMCs, cord blood and spleen–derived macrophage cell line following 

co-culturing with live bacteria  

Pooled PBMCs or CRL-9850 cells incubated with selected live bacteria for 48 and 72 h 

yielded cytokine levels as shown in Fig.1 a-c, Fig.2 a,b. Also shown are three individual donor 

cytokine profiles (48 or 72 h) as a representative of the 30 donor PBMCs investigated depicting 210 

varying cytokine levels detected between donors (Tables 1 a-c). A comparison of the 30 

individual donor PBMCs with the pooled donor PBMCs, shows significant differences of 

cytokine levels in line with previous results [40]. Even though some cytokines were not 

detectable from individual donors, substantial and significant production of all investigated 
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cytokines were recorded from pooled PBMC in response to LAB. All strains of bacteria had the 215 

capacity to induce pro- and anti-inflammatory cytokine production from the cell line and 

PBMCs, however the magnitude of production of each cytokine varied depending on the strain, 

as similarly reported by Wu et al. [27]. Generally, buffy coat sourced PBMC produced 

significantly higher (p<0.05) concentrations (100 – 8800 pg/mL) of cytokines compared to cord 

blood-derived PBMCs or CRL-9850 cells. In addition, cytokine production in the buffy coat 220 

PBMC was detectable from early culture (6h, data not shown) and maintained up to 72 hours, 

while cord blood PBMC and CRL 9580 cells showed a later appearance of cytokines in culture 

(48-72 hours, Fig. 2a,b), the delayed response likely due to a lack of established adaptive 

immune responses in cord blood [41]. Whilst pro-inflammatory cytokines were significantly 

produced in the supernatants for all treatments, anti-inflammatory cytokines such as TGF-β, IL-225 

6, and IL-10 were also detected. In the majority of cord blood samples, T-cell responses show an 

IL-10 or Th2-like pattern of cytokine production (Fig. 2a) [41, 42]. Previous studies have 

suggested that IL-10 may play a major role in influencing the activity of the placental 

trophoblast, which has been proposed as a key cell type in regulating foetal immunoprotection 

[43, 44].  230 

 

Cytokine secretion induced by mock GIT subjected bacteria 

The survival of bacteria subjected to conditions mimicking those in the GIT (e.g. low pH, 

exposure to enzymes and bile) was measured and compared to untreated bacteria growth. No 

significant differences were observed between the two sets of results, indicating the bacteria are 235 

able to withstand the harsh physiological conditions (Table 2) [4, 45]. Pro-inflammatory cytokine 

production was measured following co-cultured of GIT simulated bacteria with the different cells 

as above. In general, results showed cytokine production similar to that observed from live 

bacteria (Figs. 1a,b). Of all the bacterial strains assessed, St1275 induced the highest production 

of IL-12 from buffy coat PBMC (Fig. 1b). Conversely, when cultured with cord blood derived-240 

PBMC, St1275 induced significantly (p<0.05) lower levels of IL-12 compared to other bacteria 

(data not shown). Again St1275 appeared to have stimulated significantly higher concentration 

of IL-17 in all GIT co-cultured from buffy coat derived-PBMCs but lower concentrations or no 

production with CRL9850 or cord blood derived-PBMCs (Figs. 1b,2b). E. coli induced IL-10 

secretion poorly from buffy coat PBMC. In contrastLAVRI-A1, B94, BL536, ST1275 and LGG 245 
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were found to stimulate high levels of IL-10 (Fig. 1b). From CRL9850 and cord blood derived-

PBMCsonly LAVRI-A1, LGG, Bl536 and B94 induced significant (p<0.05) levels of IL-10 

production (Fig. 2a). 

 

Cytokine secretion induced by heat killed bacterial cells  250 

Killed bacteria were able to induce substantial levels of all cytokines from buffy coat 

PBMC (Fig. 1c). Strikingly, only IL-10 was seen to be induced in significant amount (p<0.05) 

when killed bacteria were incubated with the other cell types. 

 

Induction of FoxP3 and ROR-γt expression in PBMCs by live/killed selected bacteria strains 255 

PBMC incubation with LAB resulted in enhanced expression of CD25 on CD4+ T 

lymphocytes (Fig. 3) in line with Niers et al. [40]. To investigate whether treatment with 

lactobacilli or bifidobacteria lead to enhanced Th17 or Treg cell differentiation we assessed 

Th17/Treg populations in  PBMC following 72 to 96 h of treatment with live or heat killed 

bacteria. In all cases, following 72 to 96 hours co-culture the number of Treg 260 

(CD4+CD25+FoxP3+) cells as a percentage of total PBMC increased substantially compared to 

untreated control cells, albeit to different levels (Figs. 4A (a,b)). BL536 and B94 were found to 

be the most potent live strains and LAVRI-A1, B94 and St1275 the most potent heat-killed 

strains at inducing FoxP3 expression. The capacity of live or killed bacteria to induce IL-17 

producing cells from PBMC was also investigated. As shown in Fig. 4B, the number of IL-17 265 

expressing CD3+ CD4+ cells was substantially increased compared to control. Since Th17 cells 

typically produce IL-17 in culture, it was therefore likely that these cells were of the Th17 

lineage. To confirm Th17 cell identity, extracellular marker CCR6 (CD196) and intracellular 

marker ROR-γt were subsequently used. The proportion of Th17 cells (CD3+CD4+CCR6+ROR-

γt+) induced by live and for killed bacteria was increased 2.5-fold above control (Fig 4B (a,b)). 270 

with St1275 being the most potent strain (p<0.01). Interestingly, the induction of Th17 cells by 

the stimulation of PBMCs with E. coli or LPS were similar. 

 

Discussion 

Probiotic bacteria are commonly marketed to aid digestion and optimise microbial 275 

balance in the GIT. The current studies assessed the capacity of probiotic bacteria to affect the 
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local cytokine production and regulatory cell populations among different cell types. In addition, 

the models used in these studies simulated the conditions that ingested micro-organisms face 

during transit through the GIT such as low pH, bile concentration, and enzymatic digestion to 

assess their effect on cell survival and the capacity to influence host immunoregulation [49, 4]. 280 

Our results demonstrated the bacteria were resistant to the extreme conditions faced in the gut in 

line with previous reports [4].  

The current studies assessed the ability of common probiotics to induce cytokine 

production from PBMCs, cord blood cells and spleen–derived macrophages. The substantial 

concentrations of IL-2, IL-12, IL-17 and IFN-γ produced by PBMCs in this study indicate the 285 

cells’ potential to prevent/fight infection. LGG has been reported to aid in the prevention of 

atopic dermatitis in infants and as well as alleviate food allergy [53, 54]; if these effects are 

largely IL-12 driven, St1275, B94 and E. coli in our study may likely be as effective in their 

immunomodulatory effects. Miettinen et al. reported that LGG induced the production of pro-

inflammatory cytokines such as IL-6, IL-12 and IFN-γ but limited IL-10 from human PBMC 290 

[34]. On the other hand in our study, LAVRI-A1, LGG and bifidobacteria induced significantly 

higher concentrations of IL-10 from PBMCs compared to the pro-inflammatory cytokines, which 

makes these probiotic strains good candidates for management of autoimmune disorders. 

In the current study we report that selected probiotics induced significant amounts pro-

inflammatory cytokines including IL-2 which is a critical cytokine for clonal expansion of 295 

recently antigen-activated T cells and in regulatory T cell homeostasis [55]. Macrophage-

produced IL-12 stimulates IFN-γ production in T cells and natural killer cells, which accelerates 

the development of naive CD4+ T cells into Th1-type cells [51]. Therefore, IL-12 is a key 

immunoregulator favouring Th1-type responses. However IFN-γ in turn induces IL-12 

production, which can cause a positive feedback loop of IFN-γ and IL-12 production and can be 300 

detrimental, leading to uncontrolled cytokine production and possible shock [56]. IL-17 has 

recently been found to be elevated in the intestinal tissue and serum of patients with IBD and 

other autoimmune disorders [57]. In contrast, anti-inflammatory cytokines IL-4, IL-10 and TGF-

β were also found to be produced in significant concentrations by our healthy PBMCs with the 

co-culture of selected bacteria. These cytokines function to inhibit IL-12 and the production of 305 

other pro-inflammatory cytokines from antigen-presenting cells including macrophages as well 

by inducing expression of other co-stimulatory surface molecules and soluble cytokines [61]. 
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Our findings show that all the selected bacteria, especially LAVRI-A1, LGG and bifidobacteria 

induced significant secretion of IL-10 and TGF-β, which was in line with earlier reports on L. 

acidophilus and bifidobacteria [33, 62, 63]. In addition to its activity as a Th2 lymphocyte 310 

cytokine, IL-10 is also a potent deactivator of monocyte/macrophage pro-inflammatory cytokine 

synthesis [65]. TGF-β1 down regulates monocyte and macrophage activity in a manner similar to 

IL-10, albeit less potently [66]. It suppresses the proliferation and differentiation of T cells and B 

cells and limits IL-2, IFN-γ, and TNF-α production. The severe and uncontrolled inflammatory 

reactions observed in the TGF-β1 knockout mouse attests to the physiologic role of TGF-β as an 315 

endogenous anti-inflammatory cytokine [29].       

Even though in this study gram-negative E. coli stimulated substantial amount of pro- 

inflammatory cytokines, the induction of pro- and anti-inflammatory cytokines with live gram-

positive bacteria (including GIT simulated bacteria) on average, was significantly higher. Hessle 

et al. [32] reported that gram-positive bacteria appeared to stimulate IL-12 production and gram-320 

negative bacteria preferentially stimulate IL-10 production. However, concordant with 

observations reported in Berg et al. [67] and in our study, gram-negative E. coli induced the 

secretion of significant concentrations of pro-inflammatory cytokines by PBMCs and the CRL-

9850 cell line. While the mechanisms by which some bacteria induce the production of IL-10 are 

unclear, LPS of gram-negative bacteria may stimulate this anti-inflammatory response [67]. 325 

Compounds other than LPS in lactobacilli probably contributed to the ability of these probiotic 

bacteria to stimulate an anti-inflammatory cytokine response. Probiotic LAVRI-A1, LGG, B94 

and BL536 induced substantial amounts of pro-and anti-inflammatory cytokines in line with 

previous studies [81] with the balance skewed towards the anti-inflammatory response in our 

study. A demonstration of the utility of this response is the finding that LGG reduced 330 

inflammation in Crohn’s disease [70]. The human gut microbiota has been recently estimated to 

consist of at least 400 different species [68], and it is likely that the potency of each of these 

species to influence immune homeostasis is different. Indeed, cytokine profiles in co-cultures of 

bacteria with PBMC show marked differences between strains [40]. In addition, the effects of 

lactobacilli supplementation on experimental autoimmune encephalomyelitis have been shown to 335 

be highly strain dependent [69]. It is therefore conceivable that the contradicting results found in 

the human trials can be partly explained by differences in the immunomodulatory capacity of the 

strains used.  
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The fact that the killed bacteria in our study were inefficient in inducing substantial 

amounts of pro- and anti-inflammatory cytokines compared to live bacteria suggests that extra- 340 

and intra-cellular bacterial components as well as metabolites likely contribute to cytokine 

production [71]. Conceivably, a combination of certain bacterial fragments, metabolites 

produced in situ, and particular structural motifs may need to interact with receptors on 

monocytes to induce optimal cytokine synthesis [72, 31]. Cross et al. [73] and Macpherson and 

Harris [74] reported that live lactobacilli were more potent inducers of cytokine production in 345 

mammalian leucocytes compared to killed bacteria, similar to our findings. The results of the 

present study indicate that differential immuno-modulatory effects may exist between 

Lactobacilli, bifidobateria and S. thermophilus, suggesting that these bacteria may be stronger 

boosters of host immunity. However in the case of St1275, the presence of EPS might have also 

influenced its ability to stimulate sustained and substantial levels of cytokines in the co-cultures. 350 

Exopolysaccharides from LAB have been claimed to participate in various regulatory processes 

such as immunomodulatory, cholesterol-lowering and anti-ulcer activities [5]. 

 This study also investigated the differentiation of Treg and Th17 cells from PBMCs 

stimulated with the bacteria. TGF-β has been shown to be involved in both Treg and Th17 

development. Animal models have demonstrated that at high levels of TGF-β, Foxp3 expression 355 

is upregulated and Treg differentiation is induced, whereas at low levels of TGF-β, IL-6 and IL-

21 synergize to promote the differentiation of Th17 cells [88]. The identification of the 

transcription factor ROR-γt by intracellular and CCR6 extracellular staining confirms the 

differentiation of Th17 cells in the current experiment. Th17 cells induce a range of pro-

inflammatory mediators that bridge the innate and adaptive immune response enabling the 360 

clearance of invading pathogens [89]. The balance between Treg and Th17 cells may be essential 

for maintaining immune homeostasis. Hence, therapeutic approaches that aim to re-establish 

homeostasis by increasing the number of Treg, while also controlling effector T cell populations, 

may prove effective in the treatment of autoimmune diseases whereas the reverse may also hold 

true for inflammatory diseases such as allergy.  365 

In the current studies, the bacterial strains that induced high FoxP3 expression also 

stimulated the highest levels of the suppressive cytokine, IL-10 [38]. The mechanism of FoxP3+ 

Treg induction in the co-cultures still remains unclear. TGF-β appears to be a key cytokine in 

this induction, although IL-2 also plays an apparent and important role [92]. This was also 
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apparent in our study since IL-2 and TGF-β were among the various cytokines released.  370 

Furthermore, we have shown that production of cytokines and induction of ROR-γt/FoxP3 cells 

were strain dependent, and differed depending on bacterial treatment (i.e. live or killed). Similar 

findings were reported previously [38] when strains of lactobacilli differed significantly in their 

capacity to induce FoxP3+ regulatory cells in vitro, independent of the IL-10 production.  The 

overall extent of induction of FoxP3+ (Treg) and ROR-γt+ (Th17) cells by the selected bacteria in 375 

our study showed a balance between these cells, representative of that found in a healthy donor 

[48]. Previously Lb. acidophilus strain LAVRI-A1 had no clinical effect on eczema [94]; 

however this strain may be effective for other inflammatory disorders, since the current study 

shows a moderate induction of FoxP3/ROR-γt in vitro. Future studies will focus on the 

difference in cell components, such as cell wall proteins or sugars from these strains, to 380 

determine what combination of factors may be responsible for their immune modulating abilities. 
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List of figures 

Figures 1 a,b,c. In vitro production of IL-2, IL-4, IL-6, IL-10, IL-12, IL-17, IFN-γ and TGF-β. 

Supernatants of  and co-cultures of pooled buffy coat-derived PBMC with live, GIT 640 

simulated and heat killed Lb. acidophilus LAVRI-A1, Lb. rhamnosus GG, EPS-producing S. 

thermophilus St1275, B. longum BL536, B. lactis B94 or E. coli TG1 or PBMC in medium alone 

were collected. The concentration of cytokines was subsequently determined using ELISA kits. 

Data are expressed as the mean cytokine response minus controls (pg/mL) of each treatment 

from triplicate wells, plus or minus the standard error of the mean (SEM). 645 

 

Figures 2 a,b. In vitro production of IL-10 and IL-17. Supernatants of  and  h co-

cultures of CRL9850 or cord blood-derived PBMCs with live, GIT simulated or killed Lb. 

acidophilus LAVRI-A1, Lb. rhamnosus GG, EPS-producing S. thermophilus St1275, B. longum 

BL536, B. lactis B94 or E. coli TG1 or PBMC in medium alone were collected. The 650 

concentration of cytokines was subsequently determined using ELISA kits. Data are expressed as 

the mean cytokine response minus controls (pg/mL) of each treatment from triplicate wells, plus 

or minus the standard error of the mean (SEM).  

 

Figure 3. Expression of activation marker CD25 by lymphocytes in response to selected bacteria. 655 

PBMCs were cultured with Lb. acidophilus LAVRI-A1, Lb. rhamnosus GG, EPS-producing S. 

thermophilus St1275, B. longum BL536, B. lactis B94 or E. coli TG1 for 72 h and evaluated on 

the expression of CD25 on T lymphocytes after 72 h of co-culture. Plots were gated on CD3. 

One representative experiment is shown of three different donors and from six strains (live and 

killed) used in these experiments.  660 

 

Figure 4. PBMCs were co-cultured with Live or heat killed Lb. acidophilus LAVRI-A1, Lb. 

rhamnosus GG, EPS-producing S. thermophilus St1275, B. longum BL536, B. lactis B94 or E. 

coli TG1 in a ratio that does not induce apoptosis, LPS or cells alone as control. The percentage 

of induced CD25+FoxP3+ cells [A], and the induction of ROR-γt expressing Th17 cells [B], 665 

were assessed intracellularly by FACSCalibur after 96 h of co-culture. (b) Representative FACS 

plots for cultures described in (a); (d) Representative FACS plots for cultures described in (c). 
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Data are expressed as means plus or minus standard error of the mean (SEM) of three 

independent experiments. 
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Table 1a: Cytokine levels of cultured PBMCs in response to live LAB  
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Table 1b: Cytokine levels of cultured PBMCs in response to GIT LAB 

Gastrointestinal tract (GIT) 
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Table 1c: Cytokine levels of cultured PBMCs in response to heat killed LAB  

 
Values are means ± standard error of the mean (Three healthy donors). Data differ significantly (P<0.05). Lactobacillus (Lb.) acidophilus LAVRI-A1; Lb. 

rhamnosus GG (LGG); Bifidobacterium (B.) lactis B94; B. longum BL536; EPS producing Streptococcus (S.) thermophilus St1275; Escherichia (E.) coli; TG1; 

Interleukin (IL); Interferon (IFN);  transforming growth factor (TGF). 
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Table 2: Enumeration of bacteria after 18 h incubation 

 

 

Cell count (CFU)/mL 

Treatment  

LAVRI-A1 

 

LGG 

 

Bl536 

 

B94 

 

St1275 

 

E. coli 

 

0 h 

 

18 h 

 

0 h 

 

18 h 

 

0 h 

 

18 h 

 

0 h 

 

18 h 

 

0 h 

 

18 h 

 

0 h 

 

18 h 

             

Live 

 

7.47 

 

9.06   7.00 9.29   7.31 8.74 7.10 8.65 7.10 8.77  6.89 8.56  

 

GIT 

simulation 6.27 8.12 6.00 8.43 6.10 8.53 6.15 8.39 6.00 8.02  6.00 

 

8.27  

             

Killed 0 0 0 0 0 0 0 0 0 0 0 0 

             

SEM 0.24 

Results presented as a mean (n=3) ± pooled standard error of the mean (0.243). Lactobacillus (Lb.) acidophilus LAVRI-A1; Lb. rhamnosus GG (LGG); 

Bifidobacterium (B.) lactis B94; B. longum BL536; EPS producing Streptococcus (S.) thermophilus St1275; Escherichia (E.) coli. 
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Figure 1a. Live bacteria induction of PBMC – pro- and anti-inflammatory cytokines 
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Figure: 1b GIT simulated bacteria induction of PBMC – pro- and anti-inflammatory cytokines 
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Figure 1c Killed bacteria induction of PBMC – pro- and anti-inflammatory cytokines 
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Figure 2a Production of IL-10 
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Figure 2b. Production of IL-17 
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Figure 4 
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