Na+-H+ Exchanger Regulatory Factor 1 (NHERF1) PDZ Scaffold Binds an Internal Binding Site in the Scavenger Receptor Megalin
Slattery, Craig, Jenkin, Kayte, Lee, Aven, Simcocks, Anna C, McAinch, Andrew ORCID: 0000-0002-8762-4865, Poronnik, Philip and Hryciw, Deanne H ORCID: 0000-0003-1697-8890 (2011) Na+-H+ Exchanger Regulatory Factor 1 (NHERF1) PDZ Scaffold Binds an Internal Binding Site in the Scavenger Receptor Megalin. Cellular Physiology and Biochemistry, 27 (2). pp. 171-178. ISSN 1015-8987 (print) 1421-9778 (online)
Abstract
The scavenger receptor megalin binds to albumin in the microvilli of the renal proximal tubule, and transports the ligand to the intravillar cleft for processing by endocytosis. Albumin endocytosis in the proximal tubule is regulated by protein complexes containing a number of transmembrane and accessory proteins including PDZ scaffolds such as NHERF1 and NHERF2. PDZ scaffold proteins bind to class I PDZ binding motifs (S/T-X-Φ) in the extreme C-terminus of targets. Megalin contains a functional PDZ binding motif (SDV) in its distal terminus, however a potential interaction with the NHERF proteins has not been investigated. As megalin associates with NHE3 in the microvilli and NHE3 is tethered to the intravillar cleft via its interaction with NHERF1, we investigated if there is a direct interaction between megalin and NHERF1 in renal proximal tubule cells. Using confocal microscopy we determined that megalin and NHERF1 co-localise in the apical region in proximal tubule cells. Immunoprecipitation experiments performed using rat kidney lysate indicated that megalin bound NHERF1 in vivo. Using fusion proteins and peptides, we determined that PDZ2 of NHERF1 bound to megalin and that this interaction was via the C-terminus of megalin directly and in the absence of any accessory protein. We next investigated which domain in megalin was regulating this interaction. Using GST fusion proteins we determined that the loss of the most distal C-terminus of megalin containing the PDZ binding motif (SDV) did not alter its ability to bind to NHERF1. Significantly, we then identified an internal NHERF binding domain in the C-terminus of megalin. Using peptide studies we were able to demonstrate that NHERF1 bound to an internal PDZ binding motif in megalin and that a loss of a single threonine residue abolished the interaction between megalin and NHERF1. Finally, in proximal tubule cells, silencing NHERF1 increased megalin expression. Therefore, we have identified a novel protein interaction in proximal tubule cells and specifically identified a new internal PDZ binding motif in the C-terminus of megalin.
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/7642 |
Official URL | http://content.karger.com/produktedb/produkte.asp?... |
Subjects | Historical > Faculty/School/Research Centre/Department > School of Biomedical and Health Sciences Historical > FOR Classification > 1116 Medical Physiology Historical > SEO Classification > 9201 Clinical Health (Organs, Diseases and Abnormal Conditions) |
Keywords | ResPubID22869, ResPubID22824, megalin, NHERF1, PDZ binding motif, albumin endocytosis |
Citations in Scopus | 29 - View on Scopus |
Download/View statistics | View download statistics for this item |