Implementation of Dijkstra's Algorithm in a Dynamic Microgrid for Relay Hierarchy Detection

Full text for this resource is not available from the Research Repository.

Ustun, Taha Selim, Ozansoy, Cagil ORCID: 0000-0002-9375-9571 and Zayegh, Aladin (2011) Implementation of Dijkstra's Algorithm in a Dynamic Microgrid for Relay Hierarchy Detection. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, Piscataway, N.J., pp. 481-486.

Abstract

Unlike conventional utility grids, microgrids comprise generators, storage devices and loads at all levels of the system. Power generation, distribution and consumption levels are not discrete and power flow may occur at any direction. At any point in time, microgrid may be disconnected from the utility grid and continue its operation under islanding conditions. Furthermore, some microgrids may have changing structures with alternative paths and the coupling point for a device or a part of the microgrid may change due to the altering conditions. Considering all of these challenges, it is required to develop a new protection concept/scheme for a safe and secure operation. Maintaining proper selective operation of relays in these new systems and new dynamic microgrid structures is also a challenge in itself. This requires monitoring the connections and updating time delays of the relays to ensure the desired protection hierarchy in the system. In this paper, a microgrid system is modeled according to the graph theory where the components are represented as nodes. Dijkstra's algorithm, which is famous for shortest-path calculation purposes, is run over the microgrid to determine the relay hierarchy at any point in time. In this manner, regardless of the dynamic changes occurring in the system the hierarchy of network components can be extracted. The implemented algorithm not only ensures proper selective operation under fault conditions but also facilitates the introduction of new connections and new devices to the system. Since the relay hierarchy is detected automatically, even with new connections, this algorithm serves for plug-and-play concepts in electrical networks.

Dimensions Badge

Altmetric Badge

Additional Information

Conference held: Brussels, 17-20 October, 2011.

Item type Book Section
URI https://vuir.vu.edu.au/id/eprint/9493
DOI 10.1109/SmartGridComm.2011.6102370
Official URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb...
ISBN 9781457717048 (print), 9781457717024 (online)
Subjects Historical > Faculty/School/Research Centre/Department > School of Engineering and Science
Historical > FOR Classification > 0906 Electrical and Electronic Engineering
Historical > SEO Classification > 8901 Communication Networks and Services
Keywords ResPubID23038, central protection, distributed generation, graph theory, relay programming, selectivity, circuit breakers, circuit faults, delay effects, heuristic algorithms, relays, Dijkstra algorithm, dynamic microgrid structure, electrical networks, plug-and-play concept, power consumption level, power distribution level, power flow, protection concept-scheme, relay hierarchy detection, time delay, utility grid
Citations in Scopus 25 - View on Scopus
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login