A New Ostrowski Type Inequality Involving Integral Means Over End Intervals
Download
Export
Cerone, Pietro (2001) A New Ostrowski Type Inequality Involving Integral Means Over End Intervals. RGMIA research report collection, 4 (2).
Abstract
The Ostrowski inequality expresses bounds on the deviation of a function from its integral mean. The current article obtains bounds for the deviation of a function from a combination of integral means over the end intervals covering the entire interval. Perturbed expressions are also determined via the Chebychev functional. A variety of earlier results are recaptured as particular instances of the current development.
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/17399 |
Subjects | Historical > FOR Classification > 0102 Applied Mathematics Historical > FOR Classification > 0103 Numerical and Computational Mathematics Current > Collections > Research Group in Mathematical Inequalities and Applications (RGMIA) |
Keywords | Ostrowski inequality, Chebychev functional |
Download/View statistics | View download statistics for this item |
CORE (COnnecting REpositories)