Nonlinear analysis of short concrete-filled steel tubular beam-columns under axial load and biaxial bending
Liang, Qing ORCID: 0000-0003-0333-2265 (2008) Nonlinear analysis of short concrete-filled steel tubular beam-columns under axial load and biaxial bending. Journal of Constructional Steel Research, 64 (3). pp. 295-304. ISSN 1873-5983
Abstract
This paper presents a nonlinear fiber element analysis method for determining the axial load–moment strength interaction diagrams for short concrete-filled steel tubular (CFST) beam–columns under axial load and biaxial bending. Nonlinear constitutive models for confined concrete and structural steel are considered in the fiber element analysis. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a composite section to satisfy equilibrium conditions. The accuracy of the fiber element analysis program is verified by comparisons of fiber analysis results with experimental data and existing solutions. The fiber element analysis program developed is employed to study the effects of steel ratios, concrete compressive strengths and steel yield strengths on axial load–moment interaction diagrams and the C-ratio of CFST beam–columns. The proposed fiber element analysis technique is shown to be efficient and accurate and can be used directly in the design of CFST beam–columns and implemented in advanced analysis programs for the nonlinear analysis of composite columns and frames.
Dimensions Badge
Altmetric Badge
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/3793 |
DOI | 10.1016/j.jcsr.2007.07.001 |
Official URL | http://www.sciencedirect.com/science/article/pii/S... |
Subjects | Historical > Faculty/School/Research Centre/Department > School of Engineering and Science Historical > FOR Classification > 0905 Civil Engineering Historical > SEO Classification > 8702 Construction Design |
Keywords | ResPubID14779, biaxial bending, composite columns, fiber element analysis, nonlinear analysis, strength |
Citations in Scopus | 32 - View on Scopus |
Download/View statistics | View download statistics for this item |