Deep Learning for Multi-Class Antisocial Behavior Identification From Twitter

[thumbnail of 09222124.pdf]
Preview
09222124.pdf - Published Version (2MB) | Preview
Available under license: Creative Commons Attribution

Singh, Ravinder, Subramani, Sudha ORCID: 0000-0002-8102-0278, Du, Jiahua, Zhang, Yanchun ORCID: 0000-0002-5094-5980, Wang, Hua ORCID: 0000-0002-8465-0996, Ahmed, Khandakar ORCID: 0000-0003-1043-2029 and Chen, Zhenxiang ORCID: 0000-0002-4948-3803 (2020) Deep Learning for Multi-Class Antisocial Behavior Identification From Twitter. IEEE Access, 8. pp. 194027-194044. ISSN 2169-3536

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vuir.vu.edu.au/id/eprint/41846
DOI 10.1109/ACCESS.2020.3030621
Official URL https://ieeexplore.ieee.org/document/9222124
Subjects Historical > FOR Classification > 0801 Artificial Intelligence and Image Processing
Current > Division/Research > Institute for Sustainable Industries and Liveable Cities
Keywords deep learning, Recurrent Neural Network , Convolutional Neural Networks, architectures, word embeddings of text data, gold standard data set, visualization, personality disorder, online antisocial behaviour
Citations in Scopus 5 - View on Scopus
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login