Investigating the impacts of COVID-19 lockdown on air quality, surface Urban Heat Island, air temperature and lighting energy consumption in City of Melbourne

Jamei, Elmira ORCID: 0000-0002-4270-0326, Jamei, Yadhar ORCID: 0000-0003-2568-3760, Seyedmahmoudian, Mehdi, Horan, Ben ORCID: 0000-0002-6723-259X, Mekhilef, Saad ORCID: 0000-0001-8544-8995 and Stojcevski, Alex (2022) Investigating the impacts of COVID-19 lockdown on air quality, surface Urban Heat Island, air temperature and lighting energy consumption in City of Melbourne. Energy Strategy Reviews, 44. ISSN 2211-467X

Abstract

The COVID-19 pandemic has threatened city economies and residents' public health and quality of life. Similar to most cities, Melbourne imposed extreme preventive lockdown measures to address this situation. It would be reasonable to assume that during the two phases of lockdowns, in autumn (March) and winter (June to August) 2020, air quality parameters, air temperature, Surface Urban Heat Island (SUHI), and lighting energy consumption most likely increased. As such, to test this assumption, Sentinel 5, ERA-5 LAND, Sentinel 1 and 2, NASA SRTM, MODIS Aqua and Terra, and VIIRS satellite imageries are utilized to investigate the alterations of NO₂, SO₂, CO, UV Aerosol Index (UAI), air temperature, SUHI, and lighting energy consumption factors in the City of Melbourne. Furthermore, satellite imageries of SentiThe results indicate that the change rates of NO₂ (1.17 mol/m2) and CO (1.64 mol/m2) factors were positive. Further, the nighttime SUHI values increased by approximately 0.417 °C during the winter phase of the lockdown, while during the summer phase of the lockdown, the largest negative change rate was in NO₂ (−100.40 mol/m2). By contrast, the largest positive change rate was in SO₂ and SUHI at night. The SO₂ values increased from very low to 330 μm mol/m2, and the SUHI nighttime values increased by approximately 4.8 °C. From the spatial point of view, this study also shows how the effects on such parameters shifted based on the urban form and land types across the City of Melbourne by using satellite data as a significant resource to analyze the spatial coverage of these factors. The findings of this study demonstrate how air quality factors, SUHI, air temperature, and lighting energy consumption changed from pre-lockdown (2019) to lockdown (2020), offering valuable insights regarding practices for managing SUHI, lighting energy consumption, and air pollution.

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vuir.vu.edu.au/id/eprint/47072
DOI 10.1016/j.esr.2022.100963
Official URL https://www.sciencedirect.com/science/article/pii/...
Subjects Current > FOR (2020) Classification > 4005 Civil engineering
Current > Division/Research > College of Science and Engineering
Keywords COVID 19, coronavirus, air quality, urbanisation, Urban Heat Island, urban climate
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login