An efficient Parkinson's disease detection framework: Leveraging time-frequency representation and AlexNet convolutional neural network

[thumbnail of An_efficient_Parkinson's_disease_detection_framework.pdf]
Preview
Available under license: Creative Commons Attribution

Siuly, Siuly ORCID: 0000-0003-2491-0546, Khare, Smith K ORCID: 0000-0001-8365-1092, Kabir, Enamul, Sadiq, Muhammad Tariq ORCID: 0000-0002-7410-5951 and Wang, Hua ORCID: 0000-0002-8465-0996 (2024) An efficient Parkinson's disease detection framework: Leveraging time-frequency representation and AlexNet convolutional neural network. Computers in Biology and Medicine, 174. ISSN 0010-4825

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vuir.vu.edu.au/id/eprint/48602
DOI 10.1016/j.compbiomed.2024.108462
Official URL https://www.sciencedirect.com/science/article/pii/...
Subjects Current > FOR (2020) Classification > 3102 Bioinformatics and computational biology
Current > Division/Research > Institute for Sustainable Industries and Liveable Cities
Keywords Parkinson’s disease detection; electroencephalogram signals; time-frequency representation; wavelet scattering transform; AlexNet CNN; feature extraction
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login