A novel brain EEG clustering based on Minkowski distance to improve intelligent epilepsy diagnosis
Download
A_novel_brain_EEG_clustering_based_on_Minkowski_distance.pdf
- Published Version
(1MB)
| Preview
Available under license: Creative Commons Attribution
Export
Al-Shammary, Dhiah ORCID: 0000-0002-7927-2900, Hakem, Ekram, Mahdiyar, Amir ORCID: 0000-0002-8075-5918, Ibaida, Ayman ORCID: 0000-0003-1581-7219 and Ahmed, Khandakar ORCID: 0000-0003-1043-2029 (2024) A novel brain EEG clustering based on Minkowski distance to improve intelligent epilepsy diagnosis. Informatics in Medicine Unlocked, 47. ISSN 2352-9148
Dimensions Badge
Altmetric Badge
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/48622 |
DOI | 10.1016/j.imu.2024.101492 |
Official URL | https://www.sciencedirect.com/science/article/pii/... |
Subjects | Current > FOR (2020) Classification > 3102 Bioinformatics and computational biology Current > FOR (2020) Classification > 3209 Neurosciences Current > FOR (2020) Classification > 4611 Machine learning Current > Division/Research > Institute for Sustainable Industries and Liveable Cities |
Keywords | particle swarm optimization; Minkowski distance; clustering; feature selection algorithms; EEG data; machine learning algorithms |
Download/View statistics | View download statistics for this item |
CORE (COnnecting REpositories)